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News

• Demonstrates the algorithmic

foundations of computer intelligence

• Integrates programming, theoretical

computer science, optimization, machine

learning, data mining, data analytics

• Covers searching, sorting and deep

learning with applications to big data, 

games, biology, robotics, IT security





Two Meanings
of Planning



Driving Research 
Questions 

Steer Robots 
of the 21st Century

• How can we improve motion planning for complex systems?

• How can we develop motion planners that are generally applicable?

• How can we achieve planning efficiency even with nonlinear 

dynamics?

• How far back can we push the “curse of dimensionality”?

• How to integrate domain-independent planners for more flexible 

task planning?

• How to solve the inspection problem?

• How to combine efficient discrete solving with searching the 

continuous space of feasible motions?

• Is there Pareto optimality between efficiency and solution quality?

• What formal guarantees can we provide?

• How can we take resource and energy constraints into account?



Ongoing Work

SubT Challenge, Complex Resources, 
DeepRRT*, Emergency Planning, 
Location Routing, …
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Prelude: 
Planning Tours 



Given a map, compute a minimum-cost 
round trip visiting certain cities
Shortest paths graph reduction 
precompute all-pairs-shortest-paths 
with Dijkstra’s SSSP algorithm

Traveling Salesman
Problem

Task



TSP 
Variants
Time Windows, Capacities, Premium Services, 
Pickup and Deliveries

TSP+TW: Restricted time intervals / service times
C+TSP: Limited vehicle load
TSP+PD: Pickup and deliveries (PDP)
TSP*: Premium service – same-day delivery preferred
VRP: Vehicle routing – several vehicles
…



Cache-efficient
Implementation of
Dijkstra‘s algorithm

Shortest
Paths

Time in milliseconds for shortest paths search in the game maps of Baldur’s Gate II, Starcraft, Warcraft III,and Dragon Age (top to bottom, left to right) 
using scatter plots wrt the performance of shortest paths search with heaps.



Solving TSPs

NRPA (Reinforcement Learning)

Nested-Monte-Carlo Tree Search (with Policy Adaptation)

Input: Iteration width (exploitation), nestedness (exploration)

Policy: (city-to-city) Mapping IN x IN -> IR to be learnt

Given a distance matrix, compute a minimum-cost trip

Traditional

Model problem as an IP and call solver (CPLEX, IPSolve,. . . )

Neighborhood search (xOPT: SA; GA; AA; PSO; LNS,. . . )

Depth-First Branch and Bound with

DFBnB0 No Heuristic – incremental O(1) time

DFBnB1 Column/Row Minima – incremental O(1) time

DFBnB2 Assignment Problem – incremental O(n²) time

…



Planning & Optimization
with
NRPA

Tour search(level) 
best = new Tour(); 
best.score = MAXVALUE;
if (level == 0) 

best.score = rollout();  
best.tour = tour;

for (int i = 0; i < ITERATIONS; i++) 
Tour r = search(level - 1);
if (r.score < best.score) 

best.score = r.score; 
best.tour = r.tour; 
adapt(best.tour,level);

return best;



Integration in 
Multiagent System



In Motion



Physical Traveling
Salesman Problem

The main purpose of the PTSP is to 

provide a benchmark for combined 

task and motion planning in 

interactive computer games.

To reach waypoint locations, the robot often has to avoid numerous obstacles. 
Planning such motions requires taking into account the robot geometry as well as 
constraints imposed by its dynamics. 



Introducing Colors
Clustered TSPs and Generalized TSPs

Either only one of each color or all of one color needs to be

visited in sequence, minimizing traveling time

→



Inspection

As defects to objects such as pipeline leakage can result in tremendous economical 
loss, the inspection problem is one of the most important problems in robotics. 

Inspection poses significant challenges since the robot needs to determine and 
reach a set of locations whose combined visibility covers the inspection area. 



Results



Integration into
the „Framework“



Approach

Sampling-based motion planning

* generality: dynamics as black-box function snew  MOTION(s,u,dt)
* continuous state/control spaces: probabilistic sampling to make it 
feasible
*  high-dimensionality: search to find solution

coupled with discrete abstractions

* provide simplified planning layer
* guide search in the continuous state/control spaces

and motion controllers

* open up the black-box MOTION function
* facilitate search expansion

Formal guarantees

* probabilistic completeness



Probabilistic
Roadmap



PRM: (Uniform) Sampling
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PRM: Valid Nodes
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PRM: Filtering Edges
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PRM: Connect Nearest Neighbors
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PRM: Filtering Edges
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PRM: Entire Graph

Stefan Edelkamp 27



PRM: Integrate Start and Goal 
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PRM: Path Search
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Dynamics
Express relation between input controls and resulting motions

Modeled via physics-based engines



Dynamics
Necessary to plan motions that can be 
executed
Impose significant challenges

➢ Constrain the feasible motions
➢ Often are nonlinear and high-
dimensional
➢ Give rise to nonholonomic systems
➢ State and control spaces are 
continuous
➢ Solution trajectories are often long

Computational complexity of motion planning with 
dynamics 
Point with Newtonian dynamics NP-Hard [DXCR 
1993]
Polygon Dubin’s car Decidable [CPK 2008]
General nonlinear dynamics Undecidable [Branicky
1995]
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Introduce Discrete Layer to Guide the Search
Workspace decomposition provides
discrete layer as adjacency graph G = (R,E)
R denotes the regions of the decomposition
E = {(ri,rj) | ri, rj in R are physically adjacent}

hcost(r) estimates the difficulty of reaching the goal 
region from r defined as length of shortest path in 
G = (R,E) from r to goal

[hcost(r1), hcost(r2),…, hcost(rn)]
computed via BFS/A* on G backwards from goal
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Sampling Based Motion Planning
Expand a tree T of collision-free and
dynamically-feasible motions
➢select a state s from which to

expand the tree
➢sample control input u
➢generate new trajectory by
➢applying u to s
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Sampling Based Motion Planning
Expand a tree T of collision-free and
dynamically-feasible motions
➢select a state s from which to

expand the tree
➢sample control input u
➢generate new trajectory by
➢applying u to s
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Guided Expansion 
of Motion Tree
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selecting an equivalence class
from which to expand motion tree T

sampling-based motion planning to expand T



Architecture
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Abstraction

40

Used to induce partition of motion tree into 
equivalence classes

vi = vj
iff

TRAJ(T,vi) provides same abstract information as TRAJ (T,vj)
iff

region(vi) = region(vj)

➔ equivalence class corresponding to abstract state <r>
Γ<r> = {v | v in T and region(v) = r}

➔ partition of motion tree T into equivalence classes
Γ = {Γ <r> : Γ <r> > 0}



Inspection 
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In 2D

42



Skeletonization via Grassfiring (Medial Axis)
and Filtering
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Grassfiring
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Generating Inspection Waypoints (1)
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Generating Inspection Waypoints (2)
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In 3D 
a) Inside                                 b) Outside
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https://youtu.be/XPPUMtkwaFE


Some more…
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Skeleton, Filtering 
Algorithm



Hitting Set (Exact Cover) Filtering

Using
NRPA again



Temporal Task-Motion Planning

51

Time is money

Real-world has and needs time constraints

Combining task with motion planning “holy grail”   



Examples
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Integration of Automated Planning

Integration with PDDL Planner 
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Interface with PDDL
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TIL = Timed Initial Literal

(at timepoint (fact))

(at timepoint (not fact))

Specified in initial state

➔ actions time windows 



PDDL 3
Planning
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NRPA             BnB Optic         OPTIMAL      Random
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NRPA             BnB Optic         OPTIMAL      Random
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NRPA             BnB Optic         OPTIMAL      Random



Combined Task and 
Motion
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More Robots

→MAPF as
discrete problem

Multigoal Multirobot
Planning?
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Goods

61



(a) MC            (B) OPTIC        (C) Random

Stefan Edelkamp62



Adjusting Time Windows

Stefan Edelkamp63



Adjusting 
Vehicle 
Capacity
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Energy

66



Recharging
Multi-goal motion planning with multiple recharging stations. Goal regions, recharging 
stations, and obstacles are shown in red, blue, and magenta, respectively. The robot is 
required to visit each goal while reducing the distance traveled and the number of 
recharges
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Recharging with
Temporal
Constraints



Results



Conclusion

Full-Fledged Solution:
➢ high-dimensional robotic systems with nonlinear dynamics and
➢ nonholonomic constraints
➢ visit all goal regions fast in suitable cost-minimizing order
➢ unstructured, complex environments
and efficiently computes
➢ collision-free, dynamically-feasible, low-cost trajectories that
➢ enable the robot to satisfy the task specification  
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Physical VRP

71



Deep RRT*

72



Unity / ROS [many]

73



Geometric
Reasoning
in AI Planning

74



PDDL can
represent a lot



Risk-Aware MGMP 
+ Energy
+ Item Load
+ TW
+ PD 

76
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