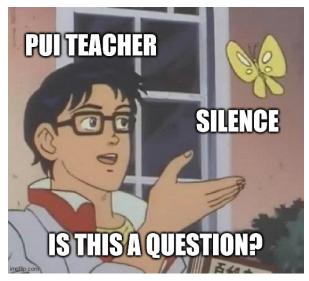
Deep learning in planning Assignment 1 consultations

Michaela Urbanovská

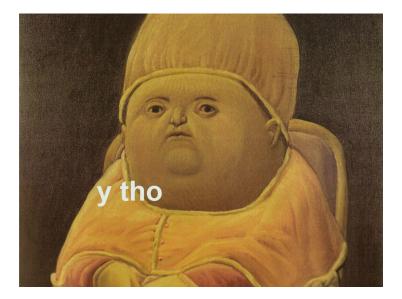
PUI Tutorial Week 8

Lecture check

• Any questions regarding the lecture?



Deep learning in classical planning



Deep learning in classical planning

- To reach general intelligence we cannot just use machine learning
- H. Geffner's talk about Model-free learners and model-based solvers [5]
- Similar Kahneman's mind model with System 1 and System 2 in [7]
- What I do
 - model-based solver classical planning
 - model-free learner deep learning

- Problems typically modeled by hand
- Standard languages / representation (PDDL, PPDDL, STRIPS, FDR, ...)
- Solved by off-shelf planners

Planning problem in PDDL

- Domain definition
 - Predicates
 - Actions parameters, preconditions, effects
- Problem definition
 - Objects
 - Initial state set of propositions
 - Goal state specification set of propositions

Introduction to Planning

(define (domain blocksworld)

(:requirements :strips) (:predicates (on ?x ?v) (ontable ?x) (clear ?x) (handempty) (holding ?x) (:action pick-up :parameters (?x) :precondition (and (clear ?x) (ontable ?x) (handempty)) :effect (and (not (ontable ?x)) (not (clear ?x)) (not (handempty)) (holding ?x))) (:action put-down :parameters (?x) :precondition (holding ?x) :effect (and (not (holding ?x)) (clear ?x) (handempty) (ontable ?x))) (:action stack :parameters (?x ?v) :precondition (and (holding ?x) (clear ?y)) :effect (and (not (holding ?x)) (not (clear ?v)) (clear ?x) (handempty) (on ?x ?v))) (:action unstack :parameters (?x ?y) :precondition (and (on ?x ?y) (clear ?x) (handempty)) :effect (and (holding ?x) (clear ?y) (not (clear ?x)) (not (handempty)) (not (on 2x 2v))))

(define (problem p01-blocksworld) (:domain blocksworld) (:objects A B C D) (:INIT (ontable A) (ontable C) (ontable D) (on B C) (clear A) (clear B) (clear D) (handempty) (:goal (AND (on C D) (on B C) (on A B) P Γ

Planning problem represented by STRIPS

 $\Pi = \langle F, O, \textit{s}_{\textit{i}}, \textit{s}_{\textit{g}}, \textit{c} \rangle$

- F set of facts that can hold in the world
- O set of operators which can be used to transform the world
- s_i fully defined initial state of the world
- $\bullet~s_g$ goal condition that holds in every goal state
- c cost function which gives cost to every operator

State

Every state $s \in S$ is a set of facts from F.

Operator

Every operator is a tuple that contains preconditions, add effects and delete effect for the given operator

$$o = \langle \textit{pre}(o), \textit{add}(o), \textit{del}(o) \rangle$$

Operator o is applicable in state s if $pre(o) \subset s$. By applying o in s we get state s'

$$s' = (s \setminus del(o) \cup add(o))$$

PDDL and STRIPS action

```
PDDL
(:action pick-up
     :parameters (?x)
     :precondition (and (clear ?x) (ontable ?x) (handempty))
     :effect
     (and (not (ontable ?x))
       (not (clear ?x))
       (not (handempty))
       (holding ?x)))
STRIPS
pickup(A) = <{clear(A), ontable(A), handempty},</pre>
            {holding(A)}.
```

```
{clear(A), ontable(A), handempty}>
```

Transition system

- $\boldsymbol{\Sigma} = \langle \boldsymbol{S}, \boldsymbol{A}, \boldsymbol{\gamma}, \boldsymbol{c} \rangle$
 - S set of states
 - A set of actions
 - γ state transition function
 - c cost function

Solving a planning problem means looking for a path in the graph induced by the transition system.

- Forward search
- Backward search
- Bidirectional search

- Most likely any search can use a heuristic function
- Heuristic function makes the search informed

Heuristic function

Heuristic function h(s) maps any state s to a value that represents path length from s to a goal state.

Function that maps each state s to the length of shortest path from s to a goal is h* which is the perfect or optimal heuristic.

• Many different possible applications

- grounding
- heuristic computation
- model learning
- planning in latent space
- many more...
- Data which is not noisy
- Relatively small data sets
- Hard to compare with existing approaches

Examples of research

- Framework inspired by Kahneman's work [3]
- Learning policies and heuristics from images [6]
- Planning with images in latent space [1], [2]
- Using neural networks to learn heuristic functions [4]
- ...or literally anything that I did

Drawbacks of many of these approaches

- Input size or format
- Domain-independence / generalization abilities
- Size of the network
- Speed of the evaluation
- Time required for training
- Overall results

Ongoing research

imgflip.con

Michaela Urbanovská

PUI Tutorial 8

Different domains

- Maze traversal problem (vanilla, multi-goal, multi-agent)
- Sokoban
- ...omw to domain-independence as well

Different problems

- Learning transition function
- Learning heuristic
- Planning for grid domains
- Creating machine learning friendly problem representation
- Creating domain-independent architectures

- State space + state-transition function
- Expansion network that works with graphic representation
- Heuristic function
- Heuristic network that works with graphic representation

Ē		開後	
E			
田田		開開	
田			

8 8 8			
		Ŕ	図
	盟		題
	盟		围
8 🛱		Ē	

Single-agent maze

E		国移		8	8
田	臣				
		田	_	_	
	開開				

Multi-agent maze

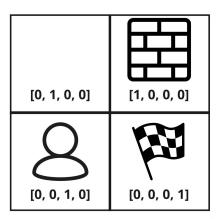
Multi-goal maze

	臣	臣	E	臣	臣
		臣			
		臣			田
E					
田		田	8		田
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	100	田田			田
Ē					田
		臣	E	田	

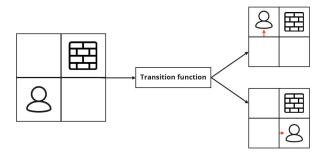
Sokoban

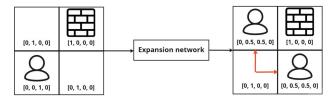
Learning transition system + heuristic function

- Grid domains (so far...)
- One-hot encoding of the entities on cells
- Convolutional + recurrent neural networks
- Scale-free architectures



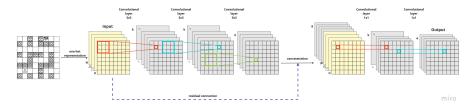
Expansion network





Michaela Urbanovská

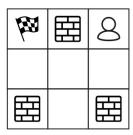
- Convolutional neural network
- 4-neighborhood movement possible
- $\bullet~3\times3$ convolutional window to see the surroundings of the agent
- residual connection in the architecture to not loose initial information

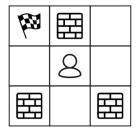


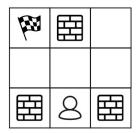
- 3 architectures
- CNN convolutional neural network (most simple)
- CNN_att convolutional neural network using attention
- RNN reasoning recurrent network using MAC cell
- Inspiration in landmarks, relaxations, abstractions...
- Each architecture has intuition

Heuristic network - loss function

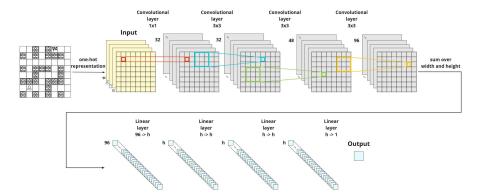
- We're learning monotonocity
- Property of a good heuristic
- \bullet sample + label pairs aren't enough anymore
- one instance with multiple agent placements



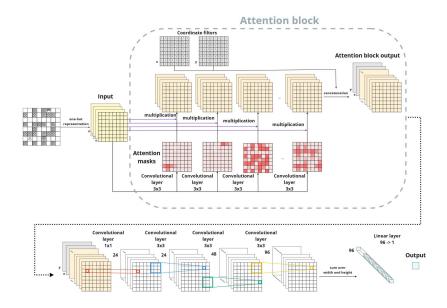




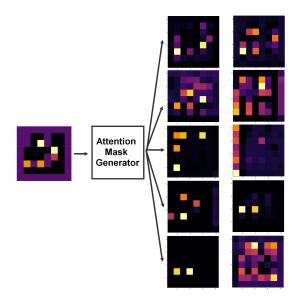
Heuristic network - CNN



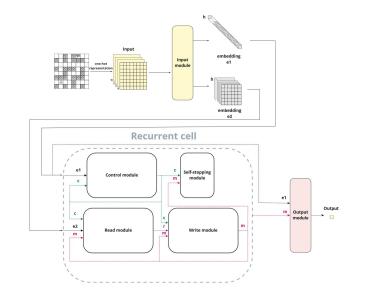
Heuristic network - CNN_att



Heuristic network - CNN_att Sokoban attention masks

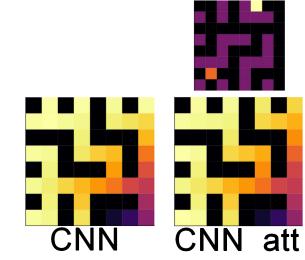


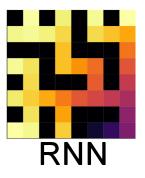
Heuristic network - RNN



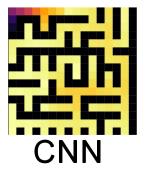
PUI Tutorial 8

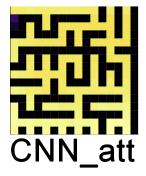
Architecture comparison - 8×8

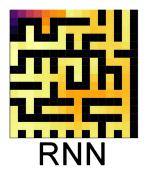




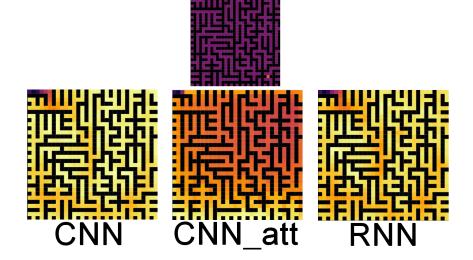
Architecture comparison - 16×16



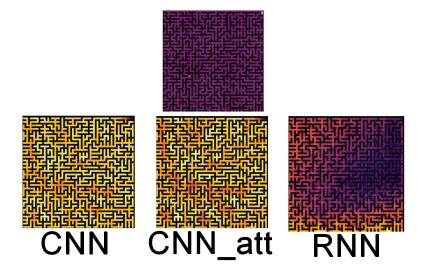




Architecture comparison - 32×32



Architecture comparison - 64×64



- We tested all architectures against Euclidean distance, h^{LM-Cut} and h^{FF} heuristics
- Results on par on small domains
- Time advantage in large complex domains
- Less informed values in large state-spaces
- Slower expansion can slow down the search too much

Cellular Simultaneous Recurrent Neural Network (CSRN)

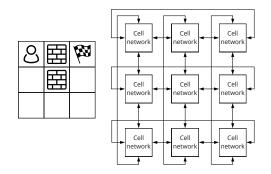
- Recurrent architecture
- Weight sharing
- Input represented by grid
- Scalable solution for input of any size
- Originally used to solve maze navigation problem

Learning heuristic function using CSRN

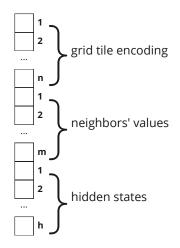
CSRN architecture consists of **cell networks** which share weights.

• Cell network

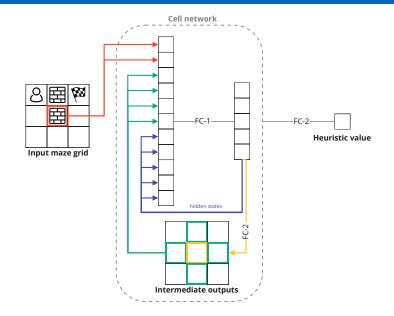
- Small recurrent network
- Operating over one grid cell
- Same set of weights for every cell network
- Sending intermediate results with neighboring cell networks



- One grid cell represented by one vector
 - *n* length of grid tile encoding
 - *m* number of neighbors
 - *h* number of hidden states



Cell network architecture



- CSRN generates heuristic value for each grid cell
- Interpretation with respect to agent's coordinates for both domains

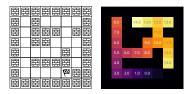


Figure: CSRN Output for Maze Domain

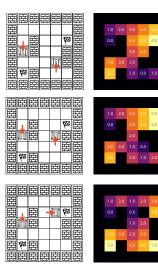


Figure: CSRN Output for Sokoban

Training and experimental setup

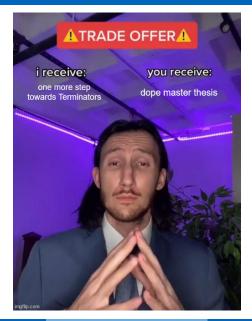
- Problem domains: maze, Sokoban
- *Training data:* small number of small exhaustively solved problem instances
 - Maze: 5 instances of size 5×5
 - Sokoban: 1 instance of size 3×3 with one box
- Optimization method: Bayesian optimization
- *Objective function:* number of incorrect decisions in the search algorithm

Maze	Sokoban

- CSRN is capable of scaling to larger problem instances
- CSRN can be used on different grid domains
- Sokoban results exceeded expectations
- Results showed ability to generalize and perform well on larger / more complex problem instances

Since then we are working on

- Different CSRN settings ("3D", variable number of recurrent iterations, differentiability, loss functions)
- Domain-independent CSRN-like architecture for STRIPS problems
- Learning heuristic analogical to potential heuristic
- Looking for more grid domains that can be used with this architecture
- ... many more things



Michaela Urbanovská

The End

Feedback form link

Citations I

Masataro Asai and Alex Fukunaga.

Classical planning in deep latent space: From unlabeled images to PDDL (and back).

In Tarek R. Besold, Artur S. d'Avila Garcez, and Isaac Noble, editors, *Proceedings of the Twelfth International Workshop* on Neural-Symbolic Learning and Reasoning, NeSy 2017, London, UK, July 17-18, 2017, volume 2003 of CEUR Workshop Proceedings. CEUR-WS.org, 2017.

Masataro Asai and Alex Fukunaga.

Classical planning in deep latent space: Bridging the subsymbolic-symbolic boundary. In *Thirty-Second AAAI Conference on Artificial Intelligence*, 2018.

.

Di Chen, Yiwei Bai, Wenting Zhao, Sebastian Ament, John M. Gregoire, and Carla P. Gomes.

Deep reasoning networks: Thinking fast and slow. CoRR, abs/1906.00855, 2019.

Using neural networks for evaluation in heuristic search algorithm.

In Wolfram Burgard and Dan Roth, editors, Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2011, San Francisco, California, USA, August 7-11, 2011. AAAI Press, 2011.

Hector Geffner.

Model-free, model-based, and general intelligence.

In Jérôme Lang, editor, Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, pages 10–17. ijcai.org, 2018.

Edward Groshev, Aviv Tamar, Maxwell Goldstein, Siddharth Srivastava, and Pieter Abbeel.

Learning generalized reactive policies using deep neural networks.

In 2018 AAAI Spring Symposium Series, 2018.

Daniel Kahneman.

Thinking, fast and slow. Macmillan, 2011.