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Lecture check

Any questions regarding the lecture?
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Deep learning in classical planning
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Deep learning in classical planning

Michaela Urbanovská PUI Tutorial 8 4 / 46



General intelligence

To reach general intelligence we cannot just use machine learning
H. Geffner’s talk about Model-free learners and model-based solvers
[5]
Similar Kahneman’s mind model with System 1 and System 2 in [7]
What I do

model-based solver classical planning
model-free learner deep learning
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Introduction to Planning

Problems typically modeled by hand
Standard languages / representation (PDDL, PPDDL, STRIPS, FDR,
...)
Solved by off-shelf planners
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Introduction to Planning

Planning problem in PDDL
Domain definition

Predicates
Actions - parameters, preconditions, effects

Problem definition
Objects
Initial state - set of propositions
Goal state specification - set of propositions
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Introduction to Planning

A

B

C D
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Introduction to Planning

Planning problem represented by STRIPS
Π = 〈F ,O, si , sg , c〉

F - set of facts that can hold in the world
O - set of operators which can be used to transform the world
si - fully defined initial state of the world
sg - goal condition that holds in every goal state
c - cost function which gives cost to every operator
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Introduction to Planning

State
Every state s ∈ S is a set of facts from F .

Operator
Every operator is a tuple that contains preconditions, add effects and
delete effect for the given operator

o = 〈pre(o), add(o), del(o)〉

Operator o is applicable in state s if pre(o) ⊂ s. By applying o in s we get
state s ′

s ′ = (s\del(o) ∪ add(o))
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Introduction to Planning

PDDL and STRIPS action
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Introduction to Planning

Transition system
Σ = 〈S,A, γ, c〉

S - set of states
A - set of actions
γ - state transition function
c - cost function

Solving a planning problem means looking for a path in the graph induced
by the transition system.

Forward search
Backward search
Bidirectional search
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Introduction to Planning

Most likely any search can use a heuristic function
Heuristic function makes the search informed

Heuristic function
Heuristic function h(s) maps any state s to a value that represents path
length from s to a goal state.
Function that maps each state s to the length of shortest path from s to a
goal is h∗ which is the perfect or optimal heuristic.
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Deep Learning in Classical Planning

Many different possible applications
grounding
heuristic computation
model learning
planning in latent space
many more...

Data which is not noisy
Relatively small data sets
Hard to compare with existing approaches
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Deep Learning in Classical Planning

Examples of research
Framework inspired by Kahneman’s work [3]
Learning policies and heuristics from images [6]
Planning with images in latent space [1], [2]
Using neural networks to learn heuristic functions [4]
...or literally anything that I did
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Deep Learning in Classical Planning

Drawbacks of many of these approaches
Input size or format
Domain-independence / generalization abilities
Size of the network
Speed of the evaluation
Time required for training
Overall results
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Ongoing research
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Ongoing research

Different domains
Maze traversal problem (vanilla, multi-goal, multi-agent)
Sokoban
...omw to domain-independence as well

Different problems
Learning transition function
Learning heuristic
Planning for grid domains
Creating machine learning friendly problem representation
Creating domain-independent architectures
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Learning transition system + heuristic function

State space + state-transition function
Expansion network that works with graphic representation

Heuristic function
Heuristic network that works with graphic representation
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Used domains
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Learning transition system + heuristic function
Grid domains (so far...)
One-hot encoding of the entities on cells
Convolutional + recurrent neural networks
Scale-free architectures
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Expansion network

Michaela Urbanovská PUI Tutorial 8 22 / 46



Expansion network

Convolutional neural network
4-neighborhood movement possible
3× 3 convolutional window to see the surroundings of the agent
residual connection in the architecture to not loose initial information
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Heuristic network

3 architectures
CNN - convolutional neural network (most simple)
CNN att - convolutional neural network using attention
RNN - reasoning recurrent network using MAC cell

Inspiration in landmarks, relaxations, abstractions...
Each architecture has intuition
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Heuristic network - loss function

We’re learning monotonocity
Property of a good heuristic
sample + label pairs aren’t enough anymore
one instance with multiple agent placements
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Heuristic network - CNN
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Heuristic network - CNN att
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Heuristic network - CNN att Sokoban attention masks
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Heuristic network - RNN
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Architecture comparison - 8× 8
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Architecture comparison - 16× 16
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Architecture comparison - 32× 32
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Architecture comparison - 64× 64
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Experiments

We tested all architectures against Euclidean distance, hLM−Cut and
hFF heuristics
Results on par on small domains
Time advantage in large complex domains
Less informed values in large state-spaces
Slower expansion can slow down the search too much
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Learning heuristic function using CSRN

Cellular Simultaneous Recurrent Neural Network (CSRN)
Recurrent architecture
Weight sharing
Input represented by grid
Scalable solution for input of any size
Originally used to solve maze navigation problem
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Learning heuristic function using CSRN

CSRN architecture consists of cell networks which share weights.
Cell network

Small recurrent network
Operating over one grid cell
Same set of weights for every cell network
Sending intermediate results with neighboring cell networks

Cell 
network

Cell 
network

Cell 
network

Cell 
network

Cell 
network

Cell 
network

Cell 
network

Cell 
network

Cell 
network
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Input

One grid cell represented by
one vector

n - length of grid tile
encoding
m - number of neighbors
h - number of hidden states
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grid tile encoding

neighbors' values

hidden states
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Cell network architecture

Input maze grid

hidden states

FC
-2

Intermediate outputs

Cell network

Heuristic value

FC-1 FC-2
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CSRN output

CSRN generates heuristic value
for each grid cell
Interpretation with respect to
agent’s coordinates for both
domains

8.0 14.0 13.0 12.0 13.0

7.0 11.0

6.0 9.0 10.0 11.0

5.0 6.0 7.0 8.0 12.0

4.0 13.0

3.0 2.0 1.0 0.0

Figure: CSRN Output for Maze Domain
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2.0
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Figure: CSRN Output for Sokoban
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Training and experimental setup

Problem domains: maze, Sokoban
Training data: small number of small exhaustively solved problem
instances

Maze: 5 instances of size 5× 5
Sokoban: 1 instance of size 3× 3 with one box

Optimization method: Bayesian optimization
Objective function: number of incorrect decisions in the search
algorithm

SokobanMaze
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Experiment results

CSRN is capable of scaling to larger problem instances
CSRN can be used on different grid domains
Sokoban results exceeded expectations
Results showed ability to generalize and perform well on larger / more
complex problem instances
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Story goes on...

Since then we are working on
Different CSRN settings (”3D”, variable number of recurrent
iterations, differentiability, loss functions)
Domain-independent CSRN-like architecture for STRIPS problems
Learning heuristic analogical to potential heuristic
Looking for more grid domains that can be used with this architecture
... many more things
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Story goes on...
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The End

Feedback form link
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https://forms.gle/Rmajc7NED3t3VN4u6
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