Abstraction heuristics Merge & Shrink

Michaela Urbanovská

PUI Tutorial Week 7

### Lecture check

• Any questions regarding the lecture?



- Lectures reorganized
- Tutorials reorganized in response
- Assignment 1 deadline moved by a week
- New deadline: 11.4.2022



# **Obtaining heuristics**

- Many different possible ways to obtain a heuristic in general
- One general idea: solve a simplified version of the problem
  - relaxation
  - abstraction

# **Obtaining heuristics**

- Many different possible ways to obtain a heuristic in general
- One general idea: solve a simplified version of the problem
  - relaxation
  - abstraction
- This week: abstraction



- Simplification of the problem
- Making the problem smaller by dropping state distinctions

# Transition system $\mathcal{T} = \langle S, L, T, I, G \rangle$ • S - finite set of states • L - finite set of labels • $T \subseteq S \times L \times S$ - transition relation • $I \subseteq S$ - set of initial states • $G \subseteq S$ - set of goal states • $c(I) \in \mathbb{R}_0^+, \forall I \in L$ - cost function for each label

### Transition system for problem P

Transition system  $\mathcal{T}(P)$  is defined for FDR problem  $P = \langle V, O, s_{init}, s_{goal}, c \rangle$ . The mapping goes as followed:

• S is set of states over V

• 
$$T = \{(s, o, t) | res(o, s) = t\}$$

• 
$$I = \{s_{init}\}$$

•  $G = \{s | s \in S, s \text{ is consistent with } s_{goal}\}$ 

#### Abstraction definition

- Let's have two transition systems  $\mathcal{T}^1 = \langle S^1, L, T^1, I^1, G^1 \rangle$  and  $\mathcal{T}^2 = \langle S^2, L, T^2, I^2, G^2 \rangle$  with the same set of labels L.
- Let's have an abstraction function  $\alpha : S^1 \mapsto S^2$  which maps  $S^1$  to  $S^2$ .
- $S^2$  is an **abstraction** of  $S^1$  if
  - $\forall s \in I^1$  holds that  $\alpha(s) \in I^2$
  - $\forall s \in G^1$  holds that  $lpha(s) \in G^2$
  - $\forall (s, l, t) \in T^1$  holds that  $(\alpha(s), l, \alpha(t)) \in T^2$

## Abstraction heuristics

### Abstraction heuristic

Let *P* denote an FDR planning task and A denote an **abstraction** of its transition system T(P).

**Abstraction heuristic** induced by  $\mathcal{A}$  and  $\alpha$  is the function

 $h^{\mathcal{A}, lpha} = h^*_{\mathcal{A}}(lpha(s)), \forall s \in S$ 

### Abstraction heuristic

Let *P* denote an FDR planning task and A denote an **abstraction** of its transition system T(P).

**Abstraction heuristic** induced by  $\mathcal{A}$  and  $\alpha$  is the function

$$h^{\mathcal{A},lpha}=h^*_{\mathcal{A}}(lpha(s)), orall s\in S$$

### Synchronized product

Given two transition systems  $\mathcal{T}^1 = \langle S^1, L, T^1, I^1, G^1 \rangle$  and  $\mathcal{T}^2 = \langle S^2, L, T^2, I^2, G^2 \rangle$  with the same labels, their **synchronized product**  $\mathcal{T}^1 \otimes \mathcal{T}^2 = \mathcal{T}$  is a transition system  $\mathcal{T} = \langle S, L, T, I, G \rangle$ , where

•  $S = S^1 \times S^2$ 

• 
$$T = \{((s_1, s_2), l, (t_1, t_2)) | (s_1, l, s_2) \in T^1, (s_2, l, t_2) \in T^2\}$$
  
•  $l = l^1 \times l^2$ 

•  $G = G^1 \times G^2$ 

- Different types of abstraction heuristics
- How to select α?
- In this tutorial: merge & shrink
- Consists of
  - $\bullet\ merging = computing synchronized products of the abstractions$
  - ${\ensuremath{\, \bullet }}$  shrinking = abstracting the abstractions further
- There are many strategies...so we will just focus on the main thought behind it

| Transition systems $\mathcal{T}^1$ and $\mathcal{T}^2$                         |
|--------------------------------------------------------------------------------|
| • $L^1 = L^2 = \{a, b, c, d, e\}$                                              |
| • $S^1 = \{A, B, C, D\}$                                                       |
| • $T^1 = \{(A, a, B), (B, b, C), (C, c, A), (A, d, A), (A, e, D)\}$            |
| • $I^1 = \{A\}$                                                                |
| • $G^1 = \{A, C\}$                                                             |
| • $S^2 = \{X, Y, Z\}$                                                          |
| • $T^2 = \{(X, a, Y), (X, a, Z), (Y, b, Z), (Z, c, Y), (Z, d, Y), (Z, e, Z)\}$ |
| • $I^2 = \{X\}$                                                                |
| • $G^2 = \{X\}$                                                                |

Let's compute synchronized product!

Let's try an example we know well...



### FDR representation

FDR problem 
$$P = \langle V, O, s_I, s_G, c \rangle$$
  
 $V = \{a, t, p\}$   
 $D_a = \{A, B\} D_t = \{B, C\} D_p = \{A, B, C, a, t\}$   
 $s_I = \{a = A, t = C, p = A\}$   
 $s_G = \{p = C\}$ 

0

|   |     | pre      | eff | С |
|---|-----|----------|-----|---|
| - | fAB | a=A      | a=B | 1 |
| = | fBA | a=B      | a=A | 1 |
|   | dBC | t=B      | t=C | 1 |
|   | dCB | t=C      | t=B | 1 |
|   | laA | a=A, p=A | p=a | 1 |
|   | laB | a=B, p=B | p=a | 1 |
|   | ltΒ | t=B, p=B | p=t | 1 |
|   | ltC | t=C, p=C | p=t | 1 |
|   | uaA | p=a, a=A | p=A | 1 |
|   | uaB | p=a, a=B | p=B | 1 |
|   | utB | p=t, t=B | p=B | 1 |
|   | utC | p=t, t=C | p=C | 1 |

- One possible representation is by atomic projections
- One transition system for one variable from  $V = \{a, t, p\}$

$$\begin{array}{ll} \mathcal{T}^{a} & \mathcal{T}^{t} & S^{p} = \\ S^{a} = \{aA, aB\} & S^{t} = \{tB, tC\} & \{pA, pB, pC, pa, pt\} \\ I^{a} = \{aA\} & I^{t} = \{tC\} & I^{p} = \{pA\} \\ G^{a} = \{aA, aB\} & G^{t} = \{tB, tC\} & G^{p} = \{pC\} \end{array}$$

### $L = \{ fAB, fBA, dBC, dCB, IaA, IaB, uaA, uaB, ItB, ItC, utB, utC \}$

 $L = \{ fAB, fBA, dBC, dCB, laA, laB, uaA, uaB, ltB, ltC, utB, utC \}$  $T^{a} = \{ (aA, fAB, aB), (aB, fBA, aA) \}$ 

 $L = \{fAB, fBA, dBC, dCB, IaA, IaB, uaA, uaB, ItB, ItC, utB, utC\}$  $T^{a} = \{(aA, fAB, aB), (aB, fBA, aA)\}$  $T^{t} = \{(tB, dBC, tC), (tC, dCB, tB)\}$ 

$$\begin{split} & L = \{ \textit{fAB}, \textit{fBA}, \textit{dBC}, \textit{dCB}, \textit{IaA}, \textit{IaB}, \textit{uaA}, \textit{uaB}, \textit{ItB}, \textit{ItC}, \textit{utB}, \textit{utC} \} \\ & T^a = \{ (\textit{aA}, \textit{fAB}, \textit{aB}), (\textit{aB}, \textit{fBA}, \textit{aA}) \} \\ & T^t = \{ (\textit{tB}, \textit{dBC}, \textit{tC}), (\textit{tC}, \textit{dCB}, \textit{tB}) \} \\ & T^p = \{ (\textit{pA}, \textit{IaA}, \textit{pa}), (\textit{pa}, \textit{uaA}, \textit{pA}), (\textit{pa}, \textit{uaB}, \textit{pB}), (\textit{pB}, \textit{IaB}, \textit{pa}), \\ & (\textit{pB}, \textit{ItB}, \textit{pt}), (\textit{pt}, \textit{utB}, \textit{pB}), (\textit{pt}, \textit{utC}, \textit{pC}), (\textit{pC}, \textit{ItC}, \textit{pt}) \} \end{split}$$

- Create atomic projections (one per variable)
- Ø Merge two arbitrary transition systems (synchronized product)
- Shrink the new transition graph (merge states together to create smaller abstraction)
- Repeat 2 and 3 until you're left with one abstraction in which you can find the solution

- How to create synchronized product
- Atomic projections
- Merge & Shrink main principle
  - $merging = \mbox{creating synchronized products of two transition systems}$
  - $\bullet \ shrinking = {\sf creating \ smaller \ abstraction}$

# The End



#### Feedback form link

