Relaxation heuristics h^{max} , h^{add} and Assignment #1-3

Michaela Urbanovská

PUI Tutorial Week 5 • Any questions regarding the lecture?

- Many different possible ways to obtain a heuristic in general
- One general idea: solve a simplified version of the problem

- Many different possible ways to obtain a heuristic in general
- One general idea: solve a simplified version of the problem
 - relaxation

- Many different possible ways to obtain a heuristic in general
- One general idea: solve a simplified version of the problem
 - relaxation
 - abstraction

- Many different possible ways to obtain a heuristic in general
- One general idea: solve a simplified version of the problem
 - relaxation
 - abstraction
- This week: relaxation

- Relaxation is
 - general design technique
 - usually ignoring something
 - simplifying the problem

• What do we relax? Delete effects

- What do we relax? Delete effects
- But PDDL doesn't have any...we need STRIPS!
- Delete relaxation

Relaxed STRIPS planning task

Relaxation of a STRIPS planning task $\Pi = \langle F, O, s_{init}, s_{goal}, c \rangle$ is the planning task $\Pi^+ = \langle F, O^+, s_{init}, s_{goal}, c \rangle$ which contains set of relaxed operators.

- What do we relax? Delete effects
- But PDDL doesn't have any...we need STRIPS!
- Delete relaxation

Relaxed STRIPS planning task

Relaxation of a STRIPS planning task $\Pi = \langle F, O, s_{init}, s_{goal}, c \rangle$ is the planning task $\Pi^+ = \langle F, O^+, s_{init}, s_{goal}, c \rangle$ which contains set of relaxed operators.

Relaxation of operators

Relaxation of operator $o = \langle pre(o), add(o), del(o) \rangle$ is operator $o^+ = \langle pre(o), add(o), \emptyset \rangle$.

We can modify the PDDL accordingly.

Example - Blocks

Example - Blocks

h^+ heuristic

The h^+ heuristic computes length of the optimal relaxed plan π^+ which is an optimal solution to the relaxed problem Π^+ .

- h^* optimal for STRIPS definition Π
- h^+ optimal for relaxed STRIPS definition Π^+
- Computation of h^+ is still complicated.
- We can compute an **estimate** of h^+ .
 - h^{max}
 - h^{add}

h^{max} heuristic

- STRIPS planning task $\Pi = \langle F, O, s_{init}, s_{goal}, c \rangle$
- $h^{max}(s)$ gives estimate of the distance from s to a state that satisfies s_{goal} • $h^{max}(s) = max_{f \in s_{goal}} \Delta_1(s, f)$, where • $\Delta_1(s, o) = max_{f \in pre(o)} \Delta_1(s, f), \forall o \in O$ • $\Delta_1(s, f) =$ $\begin{cases}
 0 & \text{if } f \in s, \\
 \text{inf} & \text{if } \forall o \in O : f \notin add(o), \\
 min\{c(o) + \Delta_1(s, o) | o \in O, f \in add(o)\} & otherwise.
 \end{cases}$

h^{add} heuristic

- STRIPS planning task $\Pi = \langle F, O, \textit{s}_{\textit{init}}, \textit{s}_{\textit{goal}}, c \rangle$
- h^{add}(s) gives estimate of the distance from s to a state that satisfies
 s_{goal}

•
$$h^{add}(s) = \sum_{f \in s_{goal}} \Delta_0(s, f)$$
, where
• $\Delta_0(s, o) = \sum_{f \in pre(o)} \Delta_0(s, f), \forall o \in O$
• $\Delta_0(s, f) =$

$$\begin{cases}
0 & \text{if } f \in s, \\
\text{inf} & \text{if } \forall o \in O : f \notin add(o), \\
min\{c(o) + \Delta_0(s, o) | o \in O, f \in add(o)\} & otherwise.
\end{cases}$$

Compute $h^{max}(s_{init})$ for the following problem $\Pi = \langle F, O, s_{init}, s_{goal}, c \rangle$:

 $\textit{F} = \{\textit{a},\textit{b},\textit{c},\textit{d},\textit{e},\textit{f},\textit{g}\}$

		pre	add	del	с			
	<i>o</i> 1	{a}	{c,d}	{a}	1			
0 =	<i>o</i> ₂	${a,b}$	{e}	Ø	1			
	<i>0</i> 3	${b,e}$	{d,f}	a,e	1			
	<i>0</i> 4	{b}	{a}	Ø	1			
	<i>0</i> 5	$\{d,e\}$	{g}	{e}	1			
$s_{init} = \{a, b\} \ s_{goal} = \{f, g\}$								

h^{max} algorithm

Algorithm 1: Algorithm for computing $h^{\max}(s)$. **Input:** $\Pi = \langle \mathcal{F}, \mathcal{O}, s_{init}, s_{goal}, c \rangle$, state s Output: $h^{\max}(s)$ 1 for each $f \in s$ do $\Delta_1(s, f) \leftarrow 0$; 2 for each $f \in \mathcal{F} \setminus s$ do $\Delta_1(s, f) \leftarrow \infty$; 3 for each $o \in \mathcal{O}$, $pre(o) = \emptyset$ do for each $f \in add(o)$ do $\Delta_1(s, f) \leftarrow \min\{\Delta_1(s, f), c(o)\}$; 4 5 end 6 for each $o \in \mathcal{O}$ do $U(o) \leftarrow |\operatorname{pre}(o)|$; 7 $C \leftarrow \emptyset$; s while $s_{goal} \not\subseteq C$ do $k \leftarrow \arg\min_{f \in \mathcal{F} \setminus C} \Delta_1(s, f);$ 9 $C \leftarrow C \cup \{k\};$ 10 for each $o \in \mathcal{O}, k \in pre(o)$ do 11 $U(o) \leftarrow U(o) - 1$: 12 if U(o) = 0 then 13 for each $f \in add(o)$ do 14 $\Delta_1(s, f) \leftarrow \min\{\Delta_1(s, f), \mathbf{c}(o) + \Delta_1(s, k)\};\$ 15 end 16 17 end end 18 19 end 20 $h^{\max}(s) = \max_{f \in s_{goal}} \Delta_1(s, f);$

Compute $h^{add}(s_{init})$ for the following problem $\Pi = \langle F, O, s_{init}, s_{goal}, c \rangle$:

 $F = \{a, b, c, d, e, f, g\}$

		pre	add	del	с			
0 =	<i>o</i> ₁	{a}	$\{c,d\}$	{a}	1			
	<i>o</i> ₂	a,b	{e}	Ø	1			
	<i>0</i> 3	${b,e}$	$\{d,f\}$	$\{a,e\}$	1			
	<i>0</i> 4	{b}	{a}	Ø	1			
	<i>0</i> 5	$\{d,e\}$	{g}	{e}	1			
$s_{\textit{init}} = \{a, b\} \; s_{\textit{goal}} = \{f, g\}$								

What's the difference in the algorithm?

Heuristic dominance

Admissible heuristic h_1 dominates an admissible heuristic h_2 if for every state s $h_1(s) \ge h_2(s)$

- *h*⁺ is admissible, consistent
- *h^{max}* is admissible, consistent
- h^{add} is not admissible, nor consistent but can be very informative
- $h^{max} \leq h^+ \leq h^*$

- Third and final part of Assignment #1
- **Task:** implement a planner that uses A* search and a relaxation heuristic to solve problem formulated in PDDL
- Points: maximum 15
- Deadlines
 - 10.4.2023 23:59 (Monday)
 - 12.4.2023 23:59 (Wednesday)

- **Submission:** archive with *planner.py* and *grounder.py* (from Assignment #1-2)
- **Output:** *plan.txt* file with cost of the plan, heuristic for the inital state, plan (operator sequence)
- AE
 - 10 private problem domains (one problem per domain)
 - 400 seconds for all problems (roughly 30 seconds per problem)
 - Validator, cost check, heuristic check, operator sequence check
- **Debugging:** 3 public problems are available including the PDDLs and plans
 - Public domains are also in the private data but with different problems

- The parser.py has been slightly altered so download it again
- Your own grounder.py should be used for this assignment
 - In case you don't have a working one, you will be provided with a reference grounder

- Know what is delete relaxation and which heuristics are based on it
- Know h^+ , h^{max} and h^{add} heuristics
- Get into implementation of Assignment #1-3
- Be capable of implementing h^{max} for your assignment

The End

Feedback form link

