Relaxation heuristics
 $h^{\text {max }}, h^{\text {add }}$ and Assignment \#1-3

Michaela Urbanovská

PUI Tutorial
Week 5

Lecture check

- Any questions regarding the lecture?

Obtaining heuristics

- Many different possible ways to obtain a heuristic in general
- One general idea: solve a simplified version of the problem

Obtaining heuristics

- Many different possible ways to obtain a heuristic in general
- One general idea: solve a simplified version of the problem
- relaxation

Obtaining heuristics

- Many different possible ways to obtain a heuristic in general
- One general idea: solve a simplified version of the problem
- relaxation
- abstraction

Obtaining heuristics

- Many different possible ways to obtain a heuristic in general
- One general idea: solve a simplified version of the problem
- relaxation
- abstraction
- This week: relaxation

Relaxation heuristic

- Relaxation is
- general design technique
- usually ignoring something
- simplifying the problem

Relaxation heuristic

- What do we relax? Delete effects

Relaxation heuristic

- What do we relax? Delete effects
- But PDDL doesn't have any...we need STRIPS!
- Delete relaxation

Relaxed STRIPS planning task

Relaxation of a STRIPS planning task $\Pi=\left\langle F, O, s_{\text {init }}, s_{\text {goal }}, c\right\rangle$ is the planning task $\Pi^{+}=\left\langle F, O^{+}, s_{\text {init }}, s_{\text {goal }}, c\right\rangle$ which contains set of relaxed operators.

Relaxation heuristic

- What do we relax? Delete effects
- But PDDL doesn't have any...we need STRIPS!
- Delete relaxation

Relaxed STRIPS planning task

Relaxation of a STRIPS planning task $\Pi=\left\langle F, O, s_{\text {init }}, s_{\text {goal }}, c\right\rangle$ is the planning task $\Pi^{+}=\left\langle F, O^{+}, s_{\text {init }}, s_{\text {goal }}, c\right\rangle$ which contains set of relaxed operators.

Relaxation of operators

Relaxation of operator $o=\langle\operatorname{pre}(o), \operatorname{add}(o), \operatorname{del}(o)\rangle$ is operator $o^{+}=\langle$pre $(o), \operatorname{add}(o), \emptyset\rangle$.

We can modify the PDDL accordingly.

Example - Blocks

Blocksworld planning problem Init

Example - Blocks

Example - Blocks

Relaxation heuristic

h^{+}heuristic

The h^{+}heuristic computes length of the optimal relaxed plan π^{+}which is an optimal solution to the relaxed problem Π^{+}.

- h^{*} - optimal for STRIPS definition Π
- h^{+}- optimal for relaxed STRIPS definition Π^{+}
- Computation of h^{+}is still complicated.
- We can compute an estimate of h^{+}.
- $h^{\text {max }}$
- $h^{\text {add }}$

$h^{\max }$ heuristic

$h^{\text {max }}$ heuristic

- STRIPS planning task $\Pi=\left\langle F, O, s_{\text {init }}, s_{\text {goal }}, c\right\rangle$
- $h^{\text {max }}(s)$ gives estimate of the distance from s to a state that satisfies $S_{\text {goal }}$
- $h^{\text {max }}(s)=\max _{f \in s_{\text {goal }}} \Delta_{1}(s, f)$, where
- $\Delta_{1}(s, o)=\max _{f \in p r e(o)} \Delta_{1}(s, f), \forall o \in O$
- $\Delta_{1}(s, f)=$

$$
\begin{cases}0 & \text { if } f \in s, \\ \inf & \text { if } \forall o \in O: f \notin \operatorname{add}(o), \\ \min \left\{c(o)+\Delta_{1}(s, o) \mid o \in O, f \in \operatorname{add}(o)\right\} & \text { otherwise } .\end{cases}
$$

$h^{\text {add }}$ heuristic

$h^{\text {add }}$ heuristic

- STRIPS planning task $\Pi=\left\langle F, O, s_{\text {init }}, s_{\text {goal }}, c\right\rangle$
- $h^{\text {add }}(s)$ gives estimate of the distance from s to a state that satisfies Shoal
- $h^{\text {add }}(s)=\sum_{f \in s_{\text {goal }}} \Delta_{0}(s, f)$, where
- $\Delta_{0}(s, o)=\sum_{f \in \operatorname{pre}(o)} \Delta_{0}(s, f), \forall o \in O$
- $\Delta_{0}(s, f)=$

$$
\begin{cases}0 & \text { if } f \in s, \\ \inf & \text { if } \forall o \in O: f \notin \operatorname{add}(o), \\ \min \left\{c(o)+\Delta_{0}(s, o) \mid o \in O, f \in \operatorname{add}(o)\right\} & \text { otherwise } .\end{cases}
$$

Exercise $h^{\text {add }}, h^{\max }$

Compute $h^{\text {max }}\left(s_{\text {init }}\right)$ for the following problem $\Pi=\left\langle F, O, s_{\text {init }}, s_{\text {goal }}, c\right\rangle$:

$$
F=\{a, b, c, d, e, f, g\}
$$

$O=$| | pre | add | del | c |
| :---: | :---: | :---: | :---: | :---: |
| o_{1} | $\{\mathrm{a}\}$ | $\{\mathrm{c}, \mathrm{d}\}$ | $\{\mathrm{a}\}$ | 1 |
| o_{2} | $\{\mathrm{a}, \mathrm{b}\}$ | $\{\mathrm{e}\}$ | \emptyset | 1 |
| o_{3} | $\{\mathrm{~b}, \mathrm{e}\}$ | $\{\mathrm{d}, \mathrm{f}\}$ | $\{\mathrm{a}, \mathrm{e}\}$ | 1 |
| o_{4} | $\{\mathrm{~b}\}$ | $\{\mathrm{a}\}$ | \emptyset | 1 |
| O_{5} | $\{\mathrm{~d}, \mathrm{e}\}$ | $\{\mathrm{g}\}$ | $\{\mathrm{e}\}$ | 1 |

$s_{\text {init }}=\{a, b\} s_{\text {goal }}=\{f, g\}$

$h^{\text {max }}$ algorithm

```
Algorithm 1: Algorithm for computing \(\mathrm{h}^{\max }(s)\).
    Input: \(\Pi=\left\langle\mathcal{F}, \mathcal{O}, s_{\text {init }}, s_{\text {goal }}, \mathrm{c}\right\rangle\), state \(s\)
    Output: \(\mathrm{h}^{\text {max }}(s)\)
    for each \(f \in s\) do \(\Delta_{1}(s, f) \leftarrow 0\);
    for each \(f \in \mathcal{F} \backslash s\) do \(\Delta_{1}(s, f) \leftarrow \infty\);
    for each \(o \in \mathcal{O}\), pre \((o)=\emptyset\) do
        for each \(f \in \operatorname{add}(o)\) do \(\Delta_{1}(s, f) \leftarrow \min \left\{\Delta_{1}(s, f), \mathrm{c}(o)\right\} ;\)
    end
    for each \(o \in \mathcal{O}\) do \(U(o) \leftarrow|\operatorname{pre}(o)| ;\)
    \(C \leftarrow \emptyset ;\)
    while \(s_{\text {goal }} \nsubseteq C\) do
        \(k \leftarrow \arg \min _{f \in \mathcal{F} \backslash C} \Delta_{1}(s, f) ;\)
        \(C \leftarrow C \cup\{k\} ;\)
        for each \(o \in \mathcal{O}, k \in \operatorname{pre}(o)\) do
            \(U(o) \leftarrow U(o)-1\);
            if \(U(o)=0\) then
                for each \(f \in \operatorname{add}(o)\) do
                    \(\Delta_{1}(s, f) \leftarrow \min \left\{\Delta_{1}(s, f), \mathrm{c}(o)+\Delta_{1}(s, k)\right\} ;\)
                end
            end
        end
    end
    \(\mathrm{h}^{\max }(s)=\max _{f \in s_{\text {goal }}} \Delta_{1}(s, f) ;\)
```


Exercise $h^{\text {add }}, h^{\max }$

Compute $h^{\text {add }}\left(s_{\text {init }}\right)$ for the following problem $\Pi=\left\langle F, O, s_{\text {init }}, s_{\text {goal }}, c\right\rangle$:

$$
F=\{a, b, c, d, e, f, g\}
$$

$O=$| | pre | add | del | c |
| :---: | :---: | :---: | :---: | :---: |
| o_{1} | $\{\mathrm{a}\}$ | $\{\mathrm{c}, \mathrm{d}\}$ | $\{\mathrm{a}\}$ | 1 |
| o_{2} | $\{\mathrm{a}, \mathrm{b}\}$ | $\{\mathrm{e}\}$ | \emptyset | 1 |
| o_{3} | $\{\mathrm{~b}, \mathrm{e}\}$ | $\{\mathrm{d}, \mathrm{f}\}$ | $\{\mathrm{a}, \mathrm{e}\}$ | 1 |
| o_{4} | $\{\mathrm{~b}\}$ | $\{\mathrm{a}\}$ | \emptyset | 1 |
| O_{5} | $\{\mathrm{~d}, \mathrm{e}\}$ | $\{\mathrm{g}\}$ | $\{\mathrm{e}\}$ | 1 |

$s_{\text {init }}=\{a, b\} s_{\text {goal }}=\{f, g\}$
What's the difference in the algorithm?

Heuristic properties

Heuristic dominance

Admissible heuristic h_{1} dominates an admissible heuristic h_{2} if for every state $s h_{1}(s) \geq h_{2}(s)$

- h^{+}is admissible, consistent
- $h^{\text {max }}$ is admissible, consistent
- $h^{\text {add }}$ is not admissible, nor consistent but can be very informative
- $h^{\text {max }} \leq h^{+} \leq h^{*}$

Assignment \#1-3 - Planner

- Third and final part of Assignment \#1
- Task: implement a planner that uses A* search and a relaxation heuristic to solve problem formulated in PDDL
- Points: maximum 15
- Deadlines
- 10.4.2023 23:59 (Monday)
- 12.4.2023 23:59 (Wednesday)

Assignment \#1-3 - Planner

- Submission: archive with planner.py and grounder.py (from Assignment \#1-2)
- Output: plan.txt file with cost of the plan, heuristic for the inital state, plan (operator sequence)
- AE
- 10 private problem domains (one problem per domain)
- 400 seconds for all problems (roughly 30 seconds per problem)
- Validator, cost check, heuristic check, operator sequence check
- Debugging: 3 public problems are available including the PDDLs and plans
- Public domains are also in the private data but with different problems

Assignment \#1-3 - Planner

- The parser.py has been slightly altered so download it again
- Your own grounder.py should be used for this assignment
- In case you don't have a working one, you will be provided with a reference grounder

Recap

- Know what is delete relaxation and which heuristics are based on it
- Know $h^{+}, h^{\text {max }}$ and $h^{\text {add }}$ heuristics
- Get into implementation of Assignment \#1-3
- Be capable of implementing $h^{\text {max }}$ for your assignment

The End

Feedback form link

