Planning Problem Representation Problem representations + Assignment #1-2

Michaela Urbanovská

PUI Tutorial Week 3

Lecture check

• Any questions regarding the lecture?

Teacher: any questions

Me: *asks question*

Teacher:

Feedback check

Thank you for your feedback!

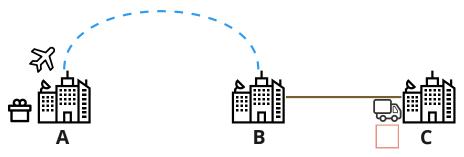
- 5 responses
- Suggestions
 - Slow down the tutorials a bit
 - Everyone keeps up with the lecture with no problems

Problem Definitions

- STRIPS
- FDR
- Specify the model
- Representations used in planners with the search algorithms
- $\bullet \ \mathsf{PDDL} \to \mathsf{Grounding} \to \mathsf{STRIPS}/\mathsf{FDR}$

- Process that creates grounded problem representation ready to be transformed into STRIPS, FDR, ...
- Many works on effective grounding, partial grounding, ...
- Can speeds up a planner significantly

Let's create grounding for the example from the last time.



```
(:objects
(:types
                                            A B C - location
   package vehicle - object
                                            t - truck
   location
                                            a - airplane
   airplane truck - vehicle
                                            p - package
```

Ground all predicates

 \bullet Naive grounding \to create all instances of predicates with existing objects

```
(:predicates
  (at ?o - object ?l - location)
  (in ?p - package ?v - vehicle)
  (road ?l1 - location ?l2 - location)
  (corridor ?l1 - location ?l2 - location)
  (empty ?v - vehicle)
)
```

Full naive grounding of predicates

Ground all actions

 \bullet Naive grounding \to create all instances of actions with existing objects

```
(load ?p - package ?l - location ?v - vehicle)
(unload ?p - package ?l - location ?v - vehicle)
(drive ?t - truck ?l1 - location ?l2 - location)
(fly ?a - airplane ?l1 - location ?l2 - location)
```

Michaela Urbanovská PUI Tutorial 3 10 / 31

Full naive grounding of actions (all preconditions and effects have to be grounded as well)

 $(d_{riv} + \Lambda \Lambda)$

 $(fl_{\Lambda} \circ \Lambda \Lambda)$

	(drive LAA)	(IIY a A A)
(load p A t)(unload p A t)(load p B t)(unload p B t)(load p C t)(unload p C t)(load p A a)(unload p A a)(load p B a)(unload p B a)(load p C a)(unload p C a)	(drive t A B)	(fly a A B)
	(drive t A B)	(fly a A B)
	,	(fly a B A)
	(drive t B B)	(fly a B B)
	(drive t B C)	(fly a B C)
	(drive t C A)	(fly a C A)
(unload p C a)	(drive t C B)	(fly a C B)
	(drive t C C)	(fly a C C)
	(unload p B t) (unload p C t) (unload p A a)	(unload p A t)(drive t A B)(unload p B t)(drive t A B)(unload p C t)(drive t B A)(unload p A a)(drive t B B)(unload p B a)(drive t B C)(unload p C a)(drive t C A)

Michaela Urbanovská PUI Tutorial 3 11/3

Full naive grounding of actions (all preconditions and effects have to be grounded as well)

```
(drive t A A)
                                                            (fly a A A)
                                        (drive t A B)
                                                            (fly a A B)
(load p A t)
                    (unload p A t)
                                        (drive t A B)
                                                            (fly a A B)
                    (unload p B t)
(load p B t)
                                        (drive t B A)
                                                            (fly a B A)
(load p C t)
                    (unload p C t)
                                        (drive t B B)
                                                            (fly a B B)
(load p A a)
                    (unload p A a)
                                        (drive t B C)
                                                            (fly a B C)
(load p B a)
                    (unload p B a)
                                        (drive t C A)
                                                            (fly a C A)
(load p C a)
                    (unload p C a)
                                        (drive t C B)
                                                            (fly a C B)
                                        (drive t C C)
                                                            (fly a C C)
```

Now we have **full naive grounding** so we can start creating problem representations for planners!

Michaela Urbanovská PUI Tutorial 3 11/3

STRIPS problem $\Pi = \langle F, O, s_{init}, s_{goal}, c \rangle$

- $F = \{f_1, f_2, \dots f_n\}$ (facts)
- $O = \{o_1, o_2, \dots o_m\}$ (operators)
- $s_{init} \subseteq F$ (initial state)
- $s_{goal} \subseteq F$ (goal state specification)
- $c(o_i) \in \mathbb{R}^+$ (cost function)

STRIPS problem $\Pi = \langle F, O, s_{init}, s_{goal}, c \rangle$

- $F = \{f_1, f_2, \dots f_n\}$ (facts)
- $O = \{o_1, o_2, \dots o_m\}$ (operators)
- $s_{init} \subseteq F$ (initial state)
- $s_{goal} \subseteq F$ (goal state specification)
- $c(o_i) \in \mathbb{R}^+$ (cost function)

STRIPS operator $o = \langle pre(o), add(o), del(o) \rangle$

- $pre(o) \subseteq F$ (set of preconditions)
- $add(o) \subseteq F$ (set of add effects)
- $del(o) \subseteq F$ (set of delete effects)

12/31

STRIPS problem $\Pi = \langle F, O, s_{init}, s_{goal}, c \rangle$

- $F = \{f_1, f_2, \dots f_n\}$ (facts)
- $O = \{o_1, o_2, \dots o_m\}$ (operators)
- $s_{init} \subseteq F$ (initial state)
- $s_{goal} \subseteq F$ (goal state specification)
- $c(o_i) \in \mathbb{R}^+$ (cost function)

STRIPS operator $o = \langle pre(o), add(o), del(o) \rangle$

- $pre(o) \subseteq F$ (set of preconditions)
- $add(o) \subseteq F$ (set of add effects)
- $del(o) \subseteq F$ (set of delete effects)
- operators are well-formed
 - $add(o) \cap del(o) = \emptyset$
 - $pre(o) \cap add(o) = \emptyset$

Applicable operator

Operator o is applicable in state s if $pre(o) \subseteq s$.

Resulting state $res(o, s) = (s \setminus del(o)) \cup add(o)$.

State s is a **goal state** iff $s_{goal} \subseteq s$.

Applicable operator

Operator o is applicable in state s if $pre(o) \subseteq s$.

Resulting state $res(o, s) = (s \setminus del(o)) \cup add(o)$.

State s is a **goal state** iff $s_{goal} \subseteq s$.

Sequence of applicable operators

Sequence of operators $\pi = \langle o_1, o_2, \dots o_n \rangle$ is applicable in state s_0 if there are states $s_1, s_2, \dots s_n$ such that o_i is applicable in s_{i-1} and $s_i = res(o_i, s_{i-1}) \text{ for } 1 \le i \le n.$

- $res(\pi, s_0) = s_n$ (result of the applied operator sequence π)
- $c(\pi) = \sum_{o \in \pi} c(o)$ (cost of applying the operator sequence π)

13 / 31

Applicable operator

Operator o is applicable in state s if $pre(o) \subseteq s$.

Resulting state $res(o, s) = (s \setminus del(o)) \cup add(o)$.

State s is a **goal state** iff $s_{goal} \subseteq s$.

Sequence of applicable operators

Sequence of operators $\pi = \langle o_1, o_2, \dots o_n \rangle$ is applicable in state s_0 if there are states $s_1, s_2, \dots s_n$ such that o_i is applicable in s_{i-1} and $s_i = res(o_i, s_{i-1})$ for $1 \le i \le n$.

- $res(\pi, s_0) = s_n$ (result of the applied operator sequence π)
- $c(\pi) = \sum_{o \in \pi} c(o)$ (cost of applying the operator sequence π)

Sequence π is called a **plan** if $s_{goal} \subseteq res(\pi, s_{init})$.

ullet π is an **optimal plan** is $c(\pi)$ is the minimal cost over all plans

Michaela Urbanovská PUI Tutorial 3 13 / 31

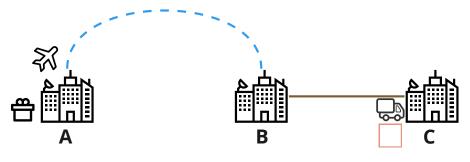
Reachable state

State s is **reachable** if there exists an applicable sequence of operators π such that $res(\pi, s_{init} = s)$.

Set of all reachable states is denoted \mathcal{R}_{Π} .

STRIPS Example

Let's formulate STRIPS representation for the logistics problem.



$$\Pi = \langle F, O, s_{init}, s_{goal}, c \rangle$$

Full naive grounding of predicates corresponds to STRIPS facts

```
(at a A) \rightarrow a-A
(at a B) \rightarrow a-B
(at a C) \rightarrow a-C
(at t A) \rightarrow t-A
(at t B) \rightarrow t-B
(at t C) \rightarrow t-C
(at p A) \rightarrow p-A
(at p B) \rightarrow p-B
(at p C) \rightarrow p-C
(empty a) \rightarrow emp-a
(empty t) \rightarrow emp-t
(in p a) \rightarrow p-a
(in p t) \rightarrow p-t
```

```
(road A B) \rightarrow r-A-B
(road B A) ...
(road A A) ...
(road B B) \rightarrow r-B-B
(road A C) ...
(road C A) ...
(road A A) ...
(road C C) ...
(road B C) \rightarrow r-B-C
(road C B) ...
(road B B) ...
(road C C) ...
```

```
(corridor A B) \rightarrow c-A-B
(corridor B A) ...
(corridor A A) ...
(corridor B B) ...
(corridor A C) ...
(corridor C A) \rightarrow c-C-A
(corridor A A) ...
(corridor C C) ...
(corridor B C) ...
(corridor C B) ...
(corridor B B) \rightarrow c-B-B
(corridor C C) ...
```

Grounding to STRIPS

Full naive grounding of actions can be transformed into STRIPS operators

```
(drive t A A)
                                                             (fly a A A)
                                        (drive t A B)
                                                             (fly a A B)
                    (unload p A t)
(load p A t)
                                        (drive t A B)
                                                             (fly a A B)
(load p B t)
                    (unload p B t)
                                        (drive t B A)
                                                             (fly a B A)
(load p C t)
                    (unload p C t)
                                        (drive t B B)
                                                             (fly a B B)
(load p A a)
                    (unload p A a)
                                        (drive t B C)
                                                             (fly a B C)
(load p B a)
                    (unload p B a)
                                                            (fly a C A)
                                        (drive t C A)
(load p C a)
                    (unload p C a)
                                        (drive t C B)
                                                            (fly a C B)
                                        (drive t C C)
                                                             (fly a C C)
```

Lifted action

```
(:action load
   :parameters (
       ?p - package
       ?I - location
       ?v - vehicle)
   :precondition (and
       (at ?p ?l)
       (at ?v ?l)
       (empty ?v)
   :effect (and
       (not (at ?p ?l))
       (in ?p ?v)
       (not (empty ?v))
```

STRIPS Example

Lifted action (:action load :parameters (?p - package ?l - location ?v - vehicle) :precondition (and (at ?p ?l) (at ?v ?l) (empty ?v) :effect (and (not (at ?p ?l)) (in ?p ?v) (not (empty ?v))

Grounded action

```
(:action load
   :parameters (
       p - package
       A - location
       t - vehicle)
   :precondition (and
       (at p A)
       (at t A)
       (empty t)
   :effect (and
       (not (at p A))
       (in p t)
       (not (empty t))
```

Grounded action

```
(:action load
   :parameters (
       p - package
      A - location
      t - vehicle)
   :precondition (and
       (at p A)
       (at t A)
       (empty t)
   :effect (and
       (not (at p A))
       (in pt)
       (not (empty t))
```

Grounded action

```
(:action load
   :parameters (
       p - package
      A - location
      t - vehicle)
   :precondition (and
       (at p A)
       (at t A)
       (empty t)
   :effect (and
       (not (at p A))
       (in p t)
       (not (empty t))
```

STRIPS operator load-p-A-t

```
pre(load-p-A-t) = {}
add(load-p-A-t) = {}
del(load-p-A-t) = {}
```

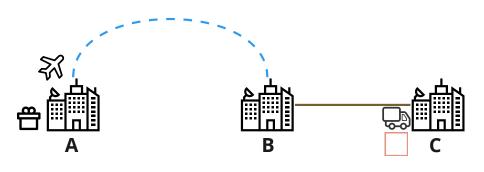
Grounded action

```
(:action load
   :parameters (
       p - package
      A - location
      t - vehicle)
   :precondition (and
       (at p A)
       (at t A)
       (empty t)
   :effect (and
       (not (at p A))
       (in p t)
       (not (empty t))
```

STRIPS operator load-p-A-t

```
\begin{split} & \mathsf{pre}(\mathsf{load}\text{-}\mathsf{p}\text{-}\mathsf{A}\text{-}\mathsf{t}) = \{\mathsf{p}\text{-}\mathsf{A},\,\mathsf{t}\text{-}\mathsf{A},\,\mathsf{emp}\text{-}\mathsf{t}\} \\ & \mathsf{add}(\mathsf{load}\text{-}\mathsf{p}\text{-}\mathsf{A}\text{-}\mathsf{t}) = \{\mathsf{p}\text{-}\mathsf{t}\} \\ & \mathsf{del}(\mathsf{load}\text{-}\mathsf{p}\text{-}\mathsf{A}\text{-}\mathsf{t}) = \{\mathsf{p}\text{-}\mathsf{A},\,\mathsf{emp}\text{-}\mathsf{t}\} \end{split}
```

STRIPS Example



$$\Pi = \langle F, O, s_{init}, s_{goal}, c \rangle$$

$$\begin{split} F &= \{\text{a-A, a-B, ..., t-A, ..., p-A, ..., emp-a, emp-t, r-A-A, ..., c-A-A, ...}\} \\ O &= \{\text{load-p-A-t, ..., unload-p-A-t, ..., drive-t-A-A, ..., fly-a-A-A, ...}} \\ s_{init} &= \{\text{p-A, a-A, t-C, c-A-B, c-B-A, r-B-C, r-C-B}\} \\ s_{goal} &= \{\text{p-C}\} \end{split}$$

Michaela Urbanovská PUI Tutorial 3 21 / 31

Michaela Urbanovská PUI Tutorial 3

FDR problem $P = \langle \mathcal{V}, \mathcal{O}, s_{init}, s_{goal}, c \rangle$

- $V = \{V_1, V_2, \dots V_n\}$ (finite set of variables)
- $\mathcal{O} = \{o_1, o_2, \dots o_m\}$ (set of operators)
- s_{init} (initial state)
- s_{goal} (goal state)
- $c(o_i) \in \mathbb{R}^+$

FDR problem $P = \langle \mathcal{V}, \mathcal{O}, s_{\textit{init}}, s_{\textit{goal}}, c angle$

- V (finite set of variables)
 - $V \in \mathcal{V}$ (variable)
 - D_V (finite domain of variable V)
- ullet s (state) is partial variable assignment over ${\cal V}$
 - $vars(s) = V \in \mathcal{V}$ assigned in s
 - s[V] = value of V in s
 - s is **consistent** with s' if s[V] = s'[V] for all $V \in vars(s')$
 - atom V = v is true in s if s[V] = v

FDR operator $o = \langle pre(o), eff(o) \rangle$

- O (set of operators)
 - pre(o) = partial assignment over V (preconditions)
 - eff(o) = partial assignment over V (effects)
 - V = v cannot be in both pre(o) and eff(o)

FDR

Applicable operator

Operator o is applicable in state s if pre(o) is **consistent** with s.

Resulting state
$$res(o, s) = \begin{cases} eff(o)[V], & \text{if } V \in vars(eff(o))) \\ s[V], & \text{otherwise} \end{cases}$$

Michaela Urbanovská PUI Tutorial 3 26 / 31

FDR

Applicable operator

Operator o is applicable in state s if pre(o) is **consistent** with s.

Resulting state
$$res(o, s) = \begin{cases} eff(o)[V], & \text{if } V \in vars(eff(o))) \\ s[V], & \text{otherwise} \end{cases}$$

Sequence of applicable operators

Sequence of operators $\pi = \langle o_1, o_2, \dots o_n \rangle$ is applicable in state s_0 if there are state $s_1, s_2, \dots s_n$ such that o_i is applicable in s_{i-1} and $s_i = res(o_i, s_{i-1}) \text{ for } 1 \le i \le n.$

- $res(\pi, s_0) = s_n$ (result of the applied operator sequence π)
- $c(\pi) = \sum_{o \in \pi} c(o)$ (cost of applying the operator sequence π)

26 / 31

Applicable operator

Operator o is applicable in state s if pre(o) is **consistent** with s.

Resulting state
$$res(o, s) = \begin{cases} eff(o)[V], & \text{if } V \in vars(eff(o))) \\ s[V], & \text{otherwise} \end{cases}$$

Sequence of applicable operators

Sequence of operators $\pi = \langle o_1, o_2, \dots o_n \rangle$ is applicable in state s_0 if there are state $s_1, s_2, \dots s_n$ such that o_i is applicable in s_{i-1} and $s_i = res(o_i, s_{i-1})$ for $1 \le i \le n$.

- $res(\pi, s_0) = s_n$ (result of the applied operator sequence π)
- $c(\pi) = \sum_{o \in \pi} c(o)$ (cost of applying the operator sequence π)

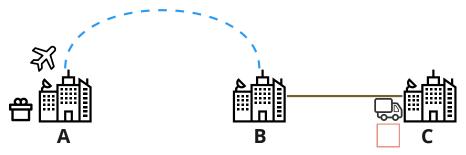
Sequence π is called a **plan** if $res(\pi, s_{init})$ is consistent with s_{goal} .

• π is an **optimal plan** is $c(\pi)$ is the minimal cost over all plans

Michaela Urbanovská PUI Tutorial 3 26 / 31

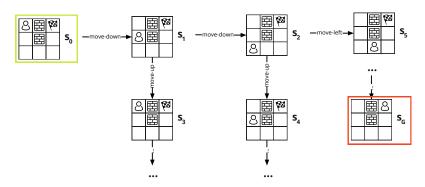
FDR Example

Let's model the logistics example using FDR.



Transition system

- Both STRIP and FDR have a notion of state and operator
 - s_0 is the initial state which gets expanded by using $o \in O$ creating new state $s' \to \mathbf{transition}$ system



Assignment #1-2 - Grounding

- ullet Second part of the Assignment #1
- Task: implement a grounder for parsed PDDL files that will be base for the STRIPS representation in your planner
- Points: maximum 10
- Deadlines
 - 20.3.2023 23:59 (Monday)
 - 22.3.2023 23:59 (Wednesday)

All information is available on Courseware

Recap

- You know how to create naive grounding
- You know how to construct STRIPS and FDR representations
- You should be able to implement Assignment 1-2 Grounding

Michaela Urbanovská PUI Tutorial 3 30 / 3

The End

Feedback form

