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Lecture check
Any questions regarding the lecture?
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Feedback check

Thank you for your feedback!
5 responses
Suggestions

Slow down the tutorials a bit
Everyone keeps up with the lecture with no problems
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Problem Definitions

STRIPS
FDR
Specify the model
Representations used in planners with the search algorithms
PDDL → Grounding → STRIPS/FDR
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Grounding

Process that creates grounded problem representation ready to be
transformed into STRIPS, FDR, ...
Many works on effective grounding, partial grounding, ...
Can speeds up a planner significantly
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Grounding

Let’s create grounding for the example from the last time.

A B C
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Grounding

(:types
package vehicle - object
location
airplane truck - vehicle

)

(:objects
A B C - location
t - truck
a - airplane
p - package

)

A B C
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Grounding

Ground all predicates
Naive grounding → create all instances of predicates with existing
objects

(:predicates
(at ?o - object ?l - location)
(in ?p - package ?v - vehicle)
(road ?l1 - location ?l2 - location)
(corridor ?l1 - location ?l2 - location)
(empty ?v - vehicle)

)

Michaela Urbanovská PUI Tutorial 3 8 / 31



Grounding

Full naive grounding of predicates

(at a A)
(at a B)
(at a C)
(at t A)
(at t B)
(at t C)
(at p A)
(at p B)
(at p C)
(empty a)
(empty t)
(in p a)
(in p t)

(road A B)
(road B A)
(road A A)
(road B B)
(road A C)
(road C A)
(road A A)
(road C C)
(road B C)
(road C B)
(road B B)
(road C C)

(corridor A B)
(corridor B A)
(corridor A A)
(corridor B B)
(corridor A C)
(corridor C A)
(corridor A A)
(corridor C C)
(corridor B C)
(corridor C B)
(corridor B B)
(corridor C C)
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Grounding

Ground all actions
Naive grounding → create all instances of actions with existing objects

(load ?p - package ?l - location ?v - vehicle)
(unload ?p - package ?l - location ?v - vehicle)
(drive ?t - truck ?l1 - location ?l2 - location)
(fly ?a - airplane ?l1 - location ?l2 - location)
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Grounding

Full naive grounding of actions (all preconditions and effects have to be
grounded as well)

(load p A t)
(load p B t)
(load p C t)
(load p A a)
(load p B a)
(load p C a)

(unload p A t)
(unload p B t)
(unload p C t)
(unload p A a)
(unload p B a)
(unload p C a)

(drive t A A)
(drive t A B)
(drive t A B)
(drive t B A)
(drive t B B)
(drive t B C)
(drive t C A)
(drive t C B)
(drive t C C)

(fly a A A)
(fly a A B)
(fly a A B)
(fly a B A)
(fly a B B)
(fly a B C)
(fly a C A)
(fly a C B)
(fly a C C)

Now we have full naive grounding so we can start creating problem
representations for planners!
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STRIPS

STRIPS problem Π = ⟨F , O, sinit , sgoal , c⟩
F = {f1, f2, . . . fn} (facts)
O = {o1, o2, . . . om} (operators)
sinit ⊆ F (initial state)
sgoal ⊆ F (goal state specification)
c(oi) ∈ R+ (cost function)

STRIPS operator o = ⟨pre(o), add(o), del(o)⟩
pre(o) ⊆ F (set of preconditions)
add(o) ⊆ F (set of add effects)
del(o) ⊆ F (set of delete effects)
operators are well-formed

add(o) ∩ del(o) = ∅
pre(o) ∩ add(o) = ∅
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STRIPS

Applicable operator
Operator o is applicable in state s if pre(o) ⊆ s.
Resulting state res(o, s) = (s \ del(o)) ∪ add(o).
State s is a goal state iff sgoal ⊆ s.

Sequence of applicable operators
Sequence of operators π = ⟨o1, o2, . . . on⟩ is applicable in state s0 if
there are states s1, s2, . . . sn such that oi is applicable in si−1 and
si = res(oi , si−1) for 1 ≤ i ≤ n.

res(π, s0) = sn (result of the applied operator sequence π)
c(π) =

∑
o∈π c(o) (cost of applying the operator sequence π)

Sequence π is called a plan if sgoal ⊆ res(π, sinit).
π is an optimal plan is c(π) is the minimal cost over all plans
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STRIPS

Reachable state
State s is reachable if there exists an applicable sequence of operators π
such that res(π, sinit = s).
Set of all reachable states is denoted RΠ.
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STRIPS Example

Let’s formulate STRIPS representation for the logistics problem.

A B C

Π = ⟨F , O, sinit , sgoal , c⟩
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Grounding to STRIPS

Full naive grounding of predicates corresponds to STRIPS facts

(at a A) → a-A
(at a B) → a-B
(at a C) → a-C
(at t A) → t-A
(at t B) → t-B
(at t C) → t-C
(at p A) → p-A
(at p B) → p-B
(at p C) → p-C
(empty a) → emp-a
(empty t) → emp-t
(in p a) → p-a
(in p t) → p-t

(road A B) → r-A-B
(road B A) ...
(road A A) ...
(road B B) → r-B-B
(road A C) ...
(road C A) ...
(road A A) ...
(road C C) ...
(road B C) → r-B-C
(road C B) ...
(road B B) ...
(road C C) ...

(corridor A B) → c-A-B
(corridor B A) ...
(corridor A A) ...
(corridor B B) ...
(corridor A C) ...
(corridor C A) → c-C-A
(corridor A A) ...
(corridor C C) ...
(corridor B C) ...
(corridor C B) ...
(corridor B B) → c-B-B
(corridor C C) ...
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Grounding to STRIPS

Full naive grounding of actions can be transformed into STRIPS
operators

(load p A t)
(load p B t)
(load p C t)
(load p A a)
(load p B a)
(load p C a)

(unload p A t)
(unload p B t)
(unload p C t)
(unload p A a)
(unload p B a)
(unload p C a)

(drive t A A)
(drive t A B)
(drive t A B)
(drive t B A)
(drive t B B)
(drive t B C)
(drive t C A)
(drive t C B)
(drive t C C)

(fly a A A)
(fly a A B)
(fly a A B)
(fly a B A)
(fly a B B)
(fly a B C)
(fly a C A)
(fly a C B)
(fly a C C)
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STRIPS Example

Lifted action
(:action load

:parameters (
?p - package
?l - location
?v - vehicle)

:precondition (and
(at ?p ?l)
(at ?v ?l)
(empty ?v)

)
:effect (and

(not (at ?p ?l))
(in ?p ?v)
(not (empty ?v))

)
)

Grounded action
(:action load

:parameters (
p - package
A - location
t - vehicle)

:precondition (and
(at p A)
(at t A)
(empty t)

)
:effect (and

(not (at p A))
(in p t)
(not (empty t))

)
)
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STRIPS Example

Grounded action
(:action load

:parameters (
p - package
A - location
t - vehicle)

:precondition (and
(at p A)
(at t A)
(empty t)

)
:effect (and

(not (at p A))
(in p t)
(not (empty t))

)
)

STRIPS operator load-p-A-t
pre(load-p-A-t) = {}
add(load-p-A-t) = {}
del(load-p-A-t) = {}
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STRIPS Example

Grounded action
(:action load

:parameters (
p - package
A - location
t - vehicle)

:precondition (and
(at p A)
(at t A)
(empty t)

)
:effect (and

(not (at p A))
(in p t)
(not (empty t))

)
)

STRIPS operator load-p-A-t
pre(load-p-A-t) = {p-A, t-A, emp-t}
add(load-p-A-t) = {p-t}
del(load-p-A-t) = {p-A, emp-t}

Michaela Urbanovská PUI Tutorial 3 20 / 31



STRIPS Example

A B C

Π = ⟨F , O, sinit , sgoal , c⟩

F = {a-A, a-B, ..., t-A, ..., p-A, ..., emp-a, emp-t, r-A-A, ..., c-A-A, ...}
O = {load-p-A-t, ..., unload-p-A-t, ..., drive-t-A-A, ..., fly-a-A-A, ...}
sinit = {p-A, a-A, t-C, c-A-B, c-B-A, r-B-C, r-C-B}
sgoal = {p-C}
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Problem definitions
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FDR

FDR problem P = ⟨V , O, sinit , sgoal , c⟩
V = {V1, V2, . . . Vn} (finite set of variables)
O = {o1, o2, . . . om} (set of operators)
sinit (initial state)
sgoal (goal state)
c(oi) ∈ R+
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FDR

FDR problem P = ⟨V , O, sinit , sgoal , c⟩
V (finite set of variables)

V ∈ V (variable)
DV (finite domain of variable V )

s (state) is partial variable assignment over V
vars(s) = V ∈ V assigned in s
s[V ] = value of V in s
s is consistent with s ′ if s[V ] = s ′[V ] for all V ∈ vars(s ′)
atom V = v is true in s if s[V ] = v
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FDR

FDR operator o = ⟨pre(o), eff (o)⟩
O (set of operators)

pre(o) = partial assignment over V (preconditions)
eff (o) = partial assignment over V (effects)
V = v cannot be in both pre(o) and eff(o)
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FDR

Applicable operator
Operator o is applicable in state s if pre(o) is consistent with s.

Resulting state res(o, s) =
{

eff (o)[V ], if V ∈ vars(eff (o)))
s[V ], otherwise

Sequence of applicable operators
Sequence of operators π = ⟨o1, o2, . . . on⟩ is applicable in state s0 if
there are state s1, s2, . . . sn such that oi is applicable in si−1 and
si = res(oi , si−1) for 1 ≤ i ≤ n.

res(π, s0) = sn (result of the applied operator sequence π)
c(π) =

∑
o∈π c(o) (cost of applying the operator sequence π)

Sequence π is called a plan if res(π, sinit) is consistent with sgoal .
π is an optimal plan is c(π) is the minimal cost over all plans

Michaela Urbanovská PUI Tutorial 3 26 / 31



FDR

Applicable operator
Operator o is applicable in state s if pre(o) is consistent with s.

Resulting state res(o, s) =
{

eff (o)[V ], if V ∈ vars(eff (o)))
s[V ], otherwise

Sequence of applicable operators
Sequence of operators π = ⟨o1, o2, . . . on⟩ is applicable in state s0 if
there are state s1, s2, . . . sn such that oi is applicable in si−1 and
si = res(oi , si−1) for 1 ≤ i ≤ n.

res(π, s0) = sn (result of the applied operator sequence π)
c(π) =

∑
o∈π c(o) (cost of applying the operator sequence π)

Sequence π is called a plan if res(π, sinit) is consistent with sgoal .
π is an optimal plan is c(π) is the minimal cost over all plans
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FDR Example

Let’s model the logistics example using FDR.

A B C

Michaela Urbanovská PUI Tutorial 3 27 / 31



Transition system

Both STRIP and FDR have a notion of state and operator
s0 is the initial state which gets expanded by using o ∈ O creating

new state s ′ → transition system

s0 s1move-​down s2move-​down

s3

m
ov

e-
​up

s4

m
ov

e-
​up

s5move-​left

...

sG

...

...

... ...
...
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Assignment #1-2 - Grounding

Second part of the Assignment #1
Task: implement a grounder for parsed PDDL files that will be base
for the STRIPS representation in your planner
Points: maximum 10
Deadlines

20.3.2023 - 23:59 (Monday)
22.3.2023 - 23:59 (Wednesday)

All information is available on Courseware
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https://cw.fel.cvut.cz/b222/courses/pui/assignments/assignment1-2


Recap

You know how to create naive grounding
You know how to construct STRIPS and FDR representations
You should be able to implement Assignment 1-2 - Grounding
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The End

Feedback form
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https://forms.gle/3WDPchmE3VuhwaKH6

