Planning Problem Representation
 Problem representations + Assignment \#1-2

Michaela Urbanovská

PUI Tutorial

Week 3

Lecture check

- Any questions regarding the lecture?

Teacher: any questions
Me: *asks question*
Teacher:

Feedback check

Thank you for your feedback!

- 5 responses
- Suggestions
- Slow down the tutorials a bit
- Everyone keeps up with the lecture with no problems

Problem Definitions

- STRIPS
- FDR
- Specify the model
- Representations used in planners with the search algorithms
- PDDL \rightarrow Grounding \rightarrow STRIPS/FDR

Grounding

- Process that creates grounded problem representation ready to be transformed into STRIPS, FDR, ...
- Many works on effective grounding, partial grounding, ...
- Can speeds up a planner significantly

Grounding

Let's create grounding for the example from the last time.

Grounding

Grounding

Ground all predicates

- Naive grounding \rightarrow create all instances of predicates with existing objects
(:predicates
(at ?o - object ? I - location)
(in ?p - package ?v - vehicle)
(road ?|1-location ?l2-location)
(corridor ?!1 - location ? 12 - location)
(empty ?v - vehicle)

Grounding

Full naive grounding of predicates

(at a A)
(at a B)
(at a C)
(at t A)
(at t B)
(at t C)
(at p A)
(at p B)
(at p C)
(empty a)
(empty t)
(in pa)
(in pt)

$\left.\begin{array}{l}(\operatorname{road} A B) \\ (\operatorname{road} B \quad) \\ (\operatorname{road} A\end{array}\right)$
(corridor A B)
(corridor B A)
(corridor A A)
(corridor B B)
(corridor A C)
(corridor C A)
(corridor A A)
(corridor C C)
(corridor B C)
(corridor C B)
(corridor B B)
(corridor C C)

Grounding

Ground all actions

- Naive grounding \rightarrow create all instances of actions with existing objects
(load ?p - package ?l - location ?v - vehicle)
(unload ?p - package ?। - location ?v - vehicle)
(drive ?t - truck ?|1-location ?|2 - location)
(fly ?a - airplane ?!1 - location ?!2 - location)

Grounding

Full naive grounding of actions (all preconditions and effects have to be grounded as well)

(load p A t) (load p B t) (load pCt)
(load p A a)
(load p B a)
(load p C a)
(unload pAt)
(unload p B t)
(unload p Ct)
(unload p A a)
(unload p B a)
(unload p C a)

(drive t A A)	(fly a A A)
(drive t A B)	(fly a A B)
(drive t A B)	(fly a A B)
(drive t B A)	(fly a B A)
(drive t B B)	(fly a B B)
(drive t B C)	(fly a B C)
(drive t C A)	(fly a C A)
(drive t C B)	(fly a C B)
(drive t C C)	(fly a C C)

Grounding

Full naive grounding of actions (all preconditions and effects have to be grounded as well)

(load p A t) (load p B t) (load p Ct) (load p A a) (load p B a) (load $p \mathrm{C}$ a) (unload $p \mathrm{C}$ a)

(drive t A A)	(fly a A A)
(drive t A B)	(fly a A B)
(drive t A B)	(fly a A B)
(drive t B A)	(fly a B A)
(drive t B B)	(fly a B B)
(drive t B C)	(fly a B C)
(drive t C A)	(fly a C A)
(drive t C B)	(fly a C B)
(drive t C C)	(fly a C C)

Now we have full naive grounding so we can start creating problem representations for planners!

STRIPS

STRIPS problem $\Pi=\left\langle F, O, s_{\text {init }}, s_{\text {goal }}, c\right\rangle$

- $F=\left\{f_{1}, f_{2}, \ldots f_{n}\right\}$ (facts)
- $O=\left\{o_{1}, o_{2}, \ldots o_{m}\right\}$ (operators)
- $s_{\text {init }} \subseteq F$ (initial state)
- $s_{\text {goal }} \subseteq F$ (goal state specification)
- $c\left(o_{i}\right) \in \mathbb{R}^{+}$(cost function)

STRIPS

STRIPS problem $\Pi=\left\langle F, O, s_{\text {init }}, s_{\text {goal }}, c\right\rangle$

- $F=\left\{f_{1}, f_{2}, \ldots f_{n}\right\}$ (facts)
- $O=\left\{o_{1}, o_{2}, \ldots o_{m}\right\}$ (operators)
- $s_{\text {init }} \subseteq F$ (initial state)
- $s_{\text {goal }} \subseteq F$ (goal state specification)
- $c\left(o_{i}\right) \in \mathbb{R}^{+}$(cost function)

STRIPS operator $o=\langle\operatorname{pre}(o), \operatorname{add}(o), \operatorname{del}(o)\rangle$

- pre $(o) \subseteq F$ (set of preconditions)
- add $(o) \subseteq F$ (set of add effects)
- del $(o) \subseteq F($ set of delete effects)

STRIPS

STRIPS problem $\Pi=\left\langle F, O, s_{\text {init }}, s_{\text {goal }}, c\right\rangle$

- $F=\left\{f_{1}, f_{2}, \ldots f_{n}\right\}$ (facts)
- $O=\left\{o_{1}, o_{2}, \ldots o_{m}\right\}$ (operators)
- $s_{\text {init }} \subseteq F$ (initial state)
- $s_{\text {goal }} \subseteq F$ (goal state specification)
- $c\left(o_{i}\right) \in \mathbb{R}^{+}$(cost function)

STRIPS operator $o=\langle\operatorname{pre}(o), \operatorname{add}(o), \operatorname{del}(o)\rangle$

- pre $(o) \subseteq F$ (set of preconditions)
- add $(o) \subseteq F$ (set of add effects)
- del $(o) \subseteq F$ (set of delete effects)
- operators are well-formed
- $\operatorname{add}(o) \cap \operatorname{del}(o)=\emptyset$
- $\operatorname{pre}(o) \cap \operatorname{add}(o)=\emptyset$

STRIPS

Applicable operator

Operator o is applicable in state s if $p r e(o) \subseteq s$. Resulting state res $(o, s)=(s \backslash \operatorname{del}(o)) \cup \operatorname{add}(o)$. State s is a goal state iff $s_{\text {goal }} \subseteq s$.

STRIPS

Applicable operator

Operator o is applicable in state s if pre $(o) \subseteq s$. Resulting state $\operatorname{res}(o, s)=(s \backslash \operatorname{del}(o)) \cup \operatorname{add}(o)$.
State s is a goal state iff $s_{\text {goal }} \subseteq s$.

Sequence of applicable operators

Sequence of operators $\pi=\left\langle o_{1}, o_{2}, \ldots o_{n}\right\rangle$ is applicable in state s_{0} if there are states $s_{1}, s_{2}, \ldots s_{n}$ such that o_{i} is applicable in s_{i-1} and $s_{i}=\operatorname{res}\left(o_{i}, s_{i-1}\right)$ for $1 \leq i \leq n$.

- res $\left(\pi, s_{0}\right)=s_{n}$ (result of the applied operator sequence π)
- $c(\pi)=\sum_{o \in \pi} c(o)$ (cost of applying the operator sequence π)

STRIPS

Applicable operator

Operator o is applicable in state s if pre $(o) \subseteq s$.
Resulting state $r e s(o, s)=(s \backslash \operatorname{del}(o)) \cup \operatorname{add}(o)$.
State s is a goal state iff $s_{\text {goal }} \subseteq s$.

Sequence of applicable operators

Sequence of operators $\pi=\left\langle o_{1}, o_{2}, \ldots o_{n}\right\rangle$ is applicable in state s_{0} if there are states $s_{1}, s_{2}, \ldots s_{n}$ such that o_{i} is applicable in s_{i-1} and $s_{i}=\operatorname{res}\left(o_{i}, s_{i-1}\right)$ for $1 \leq i \leq n$.

- res $\left(\pi, s_{0}\right)=s_{n}$ (result of the applied operator sequence π)
- $c(\pi)=\sum_{o \in \pi} c(o)$ (cost of applying the operator sequence π)

Sequence π is called a plan if $s_{\text {goal }} \subseteq r e s\left(\pi, s_{\text {init }}\right)$.

- π is an optimal plan is $c(\pi)$ is the minimal cost over all plans

STRIPS

Reachable state

State s is reachable if there exists an applicable sequence of operators π such that $r e s\left(\pi, s_{\text {init }}=s\right)$.
Set of all reachable states is denoted \mathcal{R}_{Π}.

STRIPS Example

Let's formulate STRIPS representation for the logistics problem.

Grounding to STRIPS

Full naive grounding of predicates corresponds to STRIPS facts
(at a A) \rightarrow a-A
$($ at a B) $\rightarrow a-B$
$($ at a C) $\rightarrow a-C$
(at $t A) \rightarrow t-A$
$($ at $t B) \rightarrow t-B$
(at t C) $\rightarrow \mathrm{t}-\mathrm{C}$
$($ at $p A) \rightarrow p-A$
$($ at $p B) \rightarrow p-B$
$($ at $p \mathrm{C}) \rightarrow \mathrm{p}-\mathrm{C}$
(empty a) \rightarrow emp-a
(empty t) \rightarrow emp-t
(in p a) $\rightarrow \mathrm{p}-\mathrm{a}$
$($ in $p \mathrm{t}) \rightarrow \mathrm{p}-\mathrm{t}$
$($ road $A B) \rightarrow r-A-B$
$($ road B A)...
(road A A) ...
$($ road B B) $\rightarrow r-B-B$
(road A C) ...
(road C A) ...
(road A A) ...
(road C C) ...
$($ road B C) $\rightarrow r$-B-C
(road C B) ...
(road B B) ...
(road C C) ...
(corridor A B) \rightarrow c-A-B
(corridor B A) ...
(corridor A A) ...
(corridor B B) ...
(corridor A C) ...
(corridor C A) \rightarrow c-C-A
(corridor A A) ...
(corridor C C) ...
(corridor B C) ...
(corridor C B) ...
(corridor B B) \rightarrow c-B-B
(corridor C C) ...

Grounding to STRIPS

Full naive grounding of actions can be transformed into STRIPS operators

(load p A t)	(unload p A t)
(load p B t)	(unload p B t)
(load p t)	(unload p C t)
(load p a a)	(unload p a a)
(load p B a)	(unload p B a)
(load p C a)	(unload p C a)

(drive t A A)
(drive t A B)
(drive t A B)
(drive t B A)
(drive t B B)
(drive t B C)
(drive t C A)
(drive t C B)
(drive t C C)
(fly a A A)
(fly a A B)
(fly a AB)
(fly a B A)
(fly a B B)
(fly a B C)
(fly a C A)
(fly a C B)
(fly a C C)

STRIPS Example

Lifted action

(:action load
:parameters (
?p - package
? I - location
?v - vehicle)
:precondition (and
(at ?p ? !)
(at ?v ?l)
(empty ?v)
)
:effect (and
(not (at ?p ?l))
(in ?p ?v)
(not (empty ?v))
)
)

STRIPS Example

Lifted action

(:action load
:parameters (
?p - package
? I - location
?v - vehicle)
:precondition (and
(at ?p ? ?)
(at ?v ?l)
(empty ?v)
)
:effect (and
(not (at ?p ?l))
(in ?p ?v)
(not (empty ?v))
)

Grounded action

(:action load

:parameters (
p - package
A - location
t - vehicle)
:precondition (and
(at pA)
(at t A)
(empty t)
)
:effect (and
(not (at p A))
(in pt)
(not (empty t))
)

STRIPS Example

Grounded action

(:action load
:parameters (
p - package
A - location
t - vehicle)
:precondition (and
(at pA)
(at t A)
(empty t)
)
:effect (and
(not (at p A))
(in pt)
(not (empty t))
)
)

STRIPS Example

Grounded action

(:action load
:parameters (
p - package
A - location
t - vehicle)
:precondition (and
(at pA)
(at t A)
(empty t)
)
:effect (and
(not (at p A))
(in pt)
(not (empty t))
)

STRIPS Example

Grounded action

(:action load
:parameters (
p - package
A - location
t - vehicle)
:precondition (and
(at pA)
(at t A)
(empty t)
)
:effect (and
(not (at p A))
(in pt)
(not (empty t))
)

STRIPS Example

$$
\Pi=\left\langle F, O, s_{\text {init }}, s_{\text {goal }}, c\right\rangle
$$

$F=\{\mathrm{a}-\mathrm{A}, \mathrm{a}-\mathrm{B}, \ldots, \mathrm{t}-\mathrm{A}, \ldots, \mathrm{p}-\mathrm{A}, \ldots$, emp-a, emp-t, r-A-A$, \ldots, \mathrm{c}-\mathrm{A}-\mathrm{A}, \ldots\}$ $O=\{$ load-p-A-t, \ldots, unload-p-A-t, \ldots, drive-t-A-A, ..., fly-a-A-A, ... $\}$ $s_{\text {init }}=\{p-A, a-A, t-C, c-A-B, c-B-A, r-B-C, r-C-B\}$ $s_{\text {goal }}=\{p-C\}$

Problem definitions

FDR

FDR problem $P=\left\langle\mathcal{V}, \mathcal{O}, s_{\text {init }}, s_{\text {goal }}, c\right\rangle$

- $\mathcal{V}=\left\{V_{1}, V_{2}, \ldots V_{n}\right\}$ (finite set of variables)
- $\mathcal{O}=\left\{o_{1}, o_{2}, \ldots o_{m}\right\}$ (set of operators)
- $s_{\text {init }}$ (initial state)
- $s_{\text {goal }}$ (goal state)
- $c\left(o_{i}\right) \in \mathbb{R}^{+}$

FDR

FDR problem $P=\left\langle\mathcal{V}, \mathcal{O}, s_{\text {init }}, s_{\text {goal }}, c\right\rangle$

- \mathcal{V} (finite set of variables)
- $V \in \mathcal{V}$ (variable)
- D_{V} (finite domain of variable V)
- s (state) is partial variable assignment over \mathcal{V}
- vars(s) $=V \in \mathcal{V}$ assigned in s
- $s[V]=$ value of V in s
- s is consistent with s^{\prime} if $s[V]=s^{\prime}[V]$ for all $V \in \operatorname{vars}\left(s^{\prime}\right)$
- atom $V=v$ is true in s if $s[V]=v$

FDR

FDR operator $o=\langle$ pre(o), eff $(o)\rangle$

- \mathcal{O} (set of operators)
- pre $(o)=$ partial assignment over \mathcal{V} (preconditions)
- $\operatorname{eff}(o)=$ partial assignment over \mathcal{V} (effects)
- $V=v$ cannot be in both pre(o) and eff(o)

FDR

Applicable operator

Operator o is applicable in state s if pre(o) is consistent with s.
Resulting state $\operatorname{res}(o, s)= \begin{cases}\operatorname{eff}(o)[V], & \text { if } V \in \operatorname{vars}(e f f(o))) \\ s[V], & \text { otherwise }\end{cases}$

FDR

Applicable operator

Operator o is applicable in state s if pre(o) is consistent with s. Resulting state $\operatorname{res}(o, s)= \begin{cases}\operatorname{eff}(o)[V], & \text { if } V \in \operatorname{vars}(e f f(o))) \\ s[V], & \text { otherwise }\end{cases}$

Sequence of applicable operators

Sequence of operators $\pi=\left\langle o_{1}, o_{2}, \ldots o_{n}\right\rangle$ is applicable in state s_{0} if there are state $s_{1}, s_{2}, \ldots s_{n}$ such that o_{i} is applicable in s_{i-1} and $s_{i}=\operatorname{res}\left(o_{i}, s_{i-1}\right)$ for $1 \leq i \leq n$.

- res $\left(\pi, s_{0}\right)=s_{n}$ (result of the applied operator sequence π)
- $c(\pi)=\sum_{o \in \pi} c(o)$ (cost of applying the operator sequence π)

FDR

Applicable operator

Operator o is applicable in state s if pre(o) is consistent with s. Resulting state $\operatorname{res}(o, s)= \begin{cases}\operatorname{eff}(o)[V], & \text { if } V \in \operatorname{vars}(e f f(o))) \\ s[V], & \text { otherwise }\end{cases}$

Sequence of applicable operators

Sequence of operators $\pi=\left\langle o_{1}, o_{2}, \ldots o_{n}\right\rangle$ is applicable in state s_{0} if there are state $s_{1}, s_{2}, \ldots s_{n}$ such that o_{i} is applicable in s_{i-1} and $s_{i}=\operatorname{res}\left(o_{i}, s_{i-1}\right)$ for $1 \leq i \leq n$.

- res $\left(\pi, s_{0}\right)=s_{n}$ (result of the applied operator sequence π)
- $c(\pi)=\sum_{o \in \pi} c(o)$ (cost of applying the operator sequence π)

Sequence π is called a plan if res $\left(\pi, s_{\text {init }}\right)$ is consistent with $s_{\text {goal }}$.

- π is an optimal plan is $c(\pi)$ is the minimal cost over all plans

FDR Example

Let's model the logistics example using FDR.

Transition system

- Both STRIP and FDR have a notion of state and operator
- s_{0} is the initial state which gets expanded by using $o \in O$ creating new state $s^{\prime} \rightarrow$ transition system

Assignment \#1-2 - Grounding

- Second part of the Assignment \#1
- Task: implement a grounder for parsed PDDL files that will be base for the STRIPS representation in your planner
- Points: maximum 10
- Deadlines
- 20.3.2023-23:59 (Monday)
- 22.3.2023-23:59 (Wednesday)

All information is available on Courseware

Recap

- You know how to create naive grounding
- You know how to construct STRIPS and FDR representations
- You should be able to implement Assignment 1-2 - Grounding

The End

Feedback form

