

## **MCTS** and **UCT**

Tutorial 12, PUI 2021

Jan Mrkos







### Offline algorithms

- Policy iteration
- · Value iteration

Online algorithms

0.7

- · Replanning
- . MCTS

• • • •

### **MDP** model

Problem model/definition



(S, T, R, A)

#### Solution

Explicitly **use** distributions and reward functions

**Probability calculations** to find policy

• VI

• P

**Sample** distributions and reward functions to get outcomes of actions

**Approximate** best actions based on averages

Solution evaluation

Evaluate in simulator (that can sample distributions)

MCTS

Robust Replan

### **Monte-Carlo and MDPs**



- Exact state space description not available in large state spaces, but there exist simulators:
  - Traffic simulations
  - Robotics simulators
  - •Go
- Monte-Carlo in MDPs
  - •Use simulator to evaluate stochastically selected actions
  - •Finite (but large) state set S
  - •Finite action set A
  - •Stochastic, real-valued, bounded reward function R(s, a)=r
  - •Stochastic transition function T(s,a)=s'

### Planning in single state



- Multi-Armed Bandit Problem
  - •Which action will yield best expected reward?
  - •Simulator returns reward R(s, a)



## **UCB Adaptive Bandit Algortihm**



- **Task:** find arm-pulling strategy such that the expected total reward at time n is close to the best possible.
  - •Uniform Bandit bad choice, wastes time with bad arms
  - •Need to balance exploitation of good arms with exploration of poorly understood arms.



## Regret



 Aiming at "reward as close as possible to the best reward" means we are minimizing regret:

$$R_n = \mu^* n - \sum_{j=1}^k \mu_j E[T_j(n)]$$

Where  $\mu_j$  are the expected payoffs of arms,  $\mu^*$  is the best expected payoff and  $E[T_j(n)]$  is the expected number of pulls on arm j in total n pulls.

•  $X_{j,1}, X_{j,2} \dots$  = i.i.d r.v. of rewards from bandit j

•  $\mu_i$ = expected value of  $X_i$ 



## Minimizing regret - UCB



- Exploration may increase regret
- Upper Confidence Bounds [Auer er. al., 2002]: (for rewards in (0,1))

$$UCB = \overline{X_j} + \sqrt{\frac{2 \ln n}{n_j}}$$
 Exploration

- When choosing arm, always select arm with highest UCB value
- $\overline{X_j}$  = mean of observed rewards, n = number of plays so far
- Selecting arms with UCB gives regret growing with O(ln n), SLOWEST POSSIBLE!

## **UCB - Example**





- Play all arms once initially
- Then based on the formula



### **UCB** - Example



$$\overline{X}_j + \sqrt{\frac{2 \ln n}{n_j}}$$

- $\sqrt{\frac{2 \ln n}{n_j}}$  is based of bound of the form  $P(\overline{X_j} E[X] \ge f(\sigma, n)) \le \sigma$  (Comes from PAC, probably approximately correct)
- And  $\sigma$  is chosen to be time dependent (by n), goes to zero.
- This form derived for rewards in [0,1] interval. In practice, the formula includes "exploration constant" that scales the exploration term to the range of rewards:

$$\overline{X}_j + C \sqrt{\frac{\ln n}{n_j}}$$

### **UCB**



#### Excel example:

https://drive.google.com/open?id=IA9Kr-JDz ZJIYOX3aFMrFaLUAPeAZV7Z

#### Google sheets:

https://docs.google.com/spreadsheets/d/I7xxXMAGbXqjt6NItah3VwKbusz5c44kGcAWQuhV93P0/edit?usp=sharing

#### **UCB** for Trees = **UCT**





#### •Tree node:

- Associated state,
- incoming action,
- number of visits,
- accumulated reward

#### External slides by Michele Sebag:

https://drive.google.com/open?id=1ytp9l33\_6WNe62qLAzV326iS4WmYeFpY

### **UCT** algorithm



#### Algorithm 1 General MCTS approach.

```
function MCTSSEARCH(s_0)

create root node v_0 with state s_0

while within computational budget do

v_l \leftarrow \text{TREEPOLICY}(v_0)

\Delta \leftarrow \text{DEFAULTPOLICY}(s(v_l))

BACKUP(v_l, \Delta)

return a(\text{BESTCHILD}(v_0))
```

## **MCTS** example





#### **UCT** in detail

return v'



```
Algorithm 2 The UCT algorithm.
  function UCTSEARCH(s_0)
     create root node v_0 with state s_0
      while within computational budget do
         v_l \leftarrow \text{TREEPOLICY}(v_0)
         \Delta \leftarrow \text{DefaultPolicy}(s(v_l))
         BACKUP(v_l, \Delta)
      return a(BESTCHILD(v_0, 0))
  function TREEPOLICY(v)
      while v is nonterminal do
         if v not fully expanded then
             return EXPAND(v)
         else
             v \leftarrow \text{BESTCHILD}(v, Cp)
      return v
  function EXPAND(v)
      choose a \in \text{untried} actions from A(s(v))
      add a new child v' to v
         with s(v') = f(s(v), a)
         and a(v') = a
```

```
\begin{aligned} & \textbf{function BESTCHILD}(v,c) \\ & \textbf{return} & \underset{v' \in \text{children of } v}{\text{arg max}} & \frac{Q(v')}{N(v')} + c\sqrt{\frac{2 \ln N(v)}{N(v')}} \\ & \textbf{function DEFAULTPOLICY}(s) \\ & \textbf{while } s \text{ is non-terminal } \textbf{do} \\ & \text{choose } a \in A(s) \text{ uniformly at random } s \leftarrow f(s,a) \\ & \textbf{return reward for state } s \\ & \textbf{function BACKUP}(v,\Delta) \\ & \textbf{while } v \text{ is not null } \textbf{do} \\ & N(v) \leftarrow N(v) + 1 \\ & Q(v) \leftarrow Q(v) + \Delta(v,p) \\ & v \leftarrow \text{parent of } v \end{aligned}
```

### Picking the best action



When the time is up, how do we pick the best action?

- Highest UCB scoring action
- Most used action
- others

### **MCTS** for MDP example



How do you apply MCTS to MDPs?

- What about stochastic outcomes?
- What about rewards from transitions?

# **MCTS** for **MDP** example





#### **MCTS** notes



- Aheuristic
  - •Does not require any domain specific knowledge
  - •Domain specific knowledge can provide significant speedups
- Anytime
  - •Can return currently best action when stopped at any time
- Asymmetric
  - Tree is not explored fully
- MCTS = UCT? No consistency in the naming



[Arnaud et al., 2007]