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VI Recap

Try identify missing (?) components in the equation of the value update (Vn to Vn+1):

Vn(s) = max
?

∑
?

?(?)[?(?) + γ?(?)]
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Vn(s) = max
a∈A

∑
s′∈S

T (s, a, s ′)[R(s, a, s ′) + γVn−1(s ′)]

What is the difference to the Bellman equation?
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Outline

Recap of Simple Temporal Networks
Simple Temporal Network example
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Motivation

Many planners don’t work with time explicitly. Given a plan Simple Temporal Networks
(STNs) can be used to efficiently:

check time consistency of a plan under time constraints,
if consistent, determine temporal schedule,
manage real-time execution of a plan and new constraints.
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Simple Temporal Networks 1

Def: Simple Temporal Network
A Simple Temporal Network (STN) is a pair S = (T ,C) where:

T is a set of time-points, real valued variables
C a set of constraints of the form:

Y − X ≤ δ

for X ,Y ∈ T and δ ∈ R

Q: Can time-points in T be assigned values, so that C is satisfied? (Is STN consistent?)

We map STNs to graphs:
Variables → nodes
Constraints → edges

1Slides based mostly on AIMA, these slides and this example, definition by [Dechter et al., 1991]
Jan Mrkos PUI Tutorial 11 5 / 12

https://www.cs.vassar.edu/~hunsberg/__papers__/tempNets2.pdf
https://pages.mtu.edu/~nilufer/classes/cs5811/2009-fall/lecture-slides/stn-example.pdf
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A Simple Temporal Network (STN) is a pair S = (T ,C) where:

T is a set of time-points, real valued variables
C a set of constraints of the form:

Y − X ≤ δ

for X ,Y ∈ T and δ ∈ R

Q: Can time-points in T be assigned values, so that C is satisfied? (Is STN consistent?)

We map STNs to graphs (how?)

:
Variables → nodes
Constraints → edges

1Slides based mostly on AIMA, these slides and this example, definition by [Dechter et al., 1991]
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Example

I have a plan for getting to the PDV exam:
Take a train from Koĺın to Prague-Libeň
Walk from Prague-Libeň to Vysočanská (Yellow - B line)
Take metro from Vysočanská to Karlovo náměst́ı

Regardless whether there are other possible (better) plans, we want to check whether this one
is consistent (i.e. feasible) under following constraints:

A friend drops me off at the at the station in Kolin at 8:00.
Train ride takes at least 50 minutes, I might have to wait for the train.
Walking takes 10 to 20 minutes, depending whether I run or walk.
Ride on the metro takes at most 20 minutes, the metro runs every minute.
I have to be at the PDV exam by 9:30.
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Example

O –Train– X1 – (walk) – X2 –Metro– X3

Given the constraints, we have S = (T ,C):
(We introduce a special reference variable (node), O = 0 as a starting point.)

T = {O,X1,X2,X3},where O maps to 8:00

C =



O − X1 ≤ −50 train
X2 − X1 ≤ 20 walk
X1 − X2 ≤ −10 walk
X3 − X2 ≤ 20 metro
X3 − O ≤ 90 exam start
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O X1 X2 X3−50 −10
20 20

0

90

C =



O − X1 ≤ −50 train
X2 − X1 ≤ 20 walk
X1 − X2 ≤ −10 walk
X3 − X2 ≤ 20 metro
X3 − O ≤ 90 exam start

X2 − X3 ≤ 0 metro
Note: Right-to-left arrows are (+) upper bounds, left-to-right are (-) lower bounds
Explicit constraints generate other, implicit constraints:

Sum constraints → paths in graph (e.g., X3 − X1 ≤ 40)
Stronger constraints → shorter paths
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Example

O X1 X2 X3−50 −10
20 20

0

90

Using the explicit constraints, we can calculate shortest path lengths between all combinations
of nodes:

D O X1 X2 X3
O 90
X1 -50 20
X2 -10 20
X3 0

(e.g. by using Floyd-Warshall in more complex cases)
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Example

O X1 X2 X3−50 −10
20 20

0

90

Using the explicit constraints, we can calculate shortest path lengths between all combinations
of nodes:

D O X1 X2 X3
O 0 80 90 90
X1 -50 0 20 40
X2 -60 -10 0 20
X3 -60 -10 0 0

(e.g. by using Floyd-Warshall in more complex cases)
Jan Mrkos PUI Tutorial 11 9 / 12



Consistency?

Questions:
Q: Was the plan consistent?

A: Yes.
Q: When would it be inconsistent?
A: e.g. if I wanted to wake up at 9:00
Q: How would we know it was infeasible?

Thm: ”Fundamental Theorem” of STNs
STN consistent ⇐⇒ Distance matrix has zeros on diagonal ⇐⇒ graph has no negative
cycles
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Summary

O X1 X2 X3−50 −10
20 20

0

90

Solution is an assignment of values to timepoints (nodes) that satisfies given constraints.
If such solution exists, it is consistent.
Consistency can be checked by checking the distance matrix.
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Thank you for
participating in the

tutorials :-)

Please fill out the
feedback form →

https://forms.gle/gQHP1uA3CLajtcdr8
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