
Value Iteration Algorithm
and its extensions

Jan Mrkos

PUI Tutorial
Week 10

Jan Mrkos PUI Tutorial 10 1 / 17

Outline

Review of MDP concepts
Value Iteration algorithm
VI extensions

Jan Mrkos PUI Tutorial 10 2 / 17

Value function of a policy
Look at the following definition of a value function of a policy for inifnite-horizon MDP. It
contains multiple mistakes, correct them on a piece of paper:

Def: Value function of a policy for infinite-horizon MDP
Assume infinite horizon MDP with γ ∈ [0, 100]. Then let Value function of a policy π for every
state s ∈ S be defined as

V π(s) =
∑
s′∈S

R(s, π(s), s ′)R(s, π(s), s ′) + γπ(s ′)

γ ∈ [0, 1)
V π(s) =

∑
s′∈S

T (s, π(s), s ′)[R(s, π(s), s ′) + γV π(s ′)]

Question: Difference to def. of an optimal value function?

Jan Mrkos PUI Tutorial 10 3 / 17

Value function of a policy
Look at the following definition of a value function of a policy for inifnite-horizon MDP. It
contains multiple mistakes, correct them on a piece of paper:

Def: Value function of a policy for infinite-horizon MDP
Assume infinite horizon MDP with γ ∈ [0, 100]. Then let Value function of a policy π for every
state s ∈ S be defined as

V π(s) =
∑
s′∈S

R(s, π(s), s ′)R(s, π(s), s ′) + γπ(s ′)

γ ∈ [0, 1)
V π(s) =

∑
s′∈S

T (s, π(s), s ′)[R(s, π(s), s ′) + γV π(s ′)]

Question: Difference to def. of an optimal value function?

Jan Mrkos PUI Tutorial 10 3 / 17

Value function of a policy
Look at the following definition of a value function of a policy for inifnite-horizon MDP. It
contains multiple mistakes, correct them on a piece of paper:

Def: Value function of a policy for infinite-horizon MDP
Assume infinite horizon MDP with γ ∈ [0, 100]. Then let Value function of a policy π for every
state s ∈ S be defined as

V π(s) =
∑
s′∈S

R(s, π(s), s ′)R(s, π(s), s ′) + γπ(s ′)

γ ∈ [0, 1)
V π(s) =

∑
s′∈S

T (s, π(s), s ′)[R(s, π(s), s ′) + γV π(s ′)]

Question: Difference to def. of an optimal value function?
Jan Mrkos PUI Tutorial 10 3 / 17

Solving MDPs

From last time:
Optimal value function V ∗ in acyclic MDP can be found by:

substituting values in order from terminal states to the initial state.
Value function of a policy V π in ANY MDP can be found by:

solving a system of linear equations.
Optimal value function V ∗ in ANY MDP can be found by:

solving a system of non-linear equations (max)?
Hard stuff to do analytically → iterative methods.

Jan Mrkos PUI Tutorial 10 4 / 17

Solving MDPs

From last time:
Optimal value function V ∗ in acyclic MDP can be found by:

substituting values in order from terminal states to the initial state.

Value function of a policy V π in ANY MDP can be found by:
solving a system of linear equations.

Optimal value function V ∗ in ANY MDP can be found by:
solving a system of non-linear equations (max)?

Hard stuff to do analytically → iterative methods.

Jan Mrkos PUI Tutorial 10 4 / 17

Solving MDPs

From last time:
Optimal value function V ∗ in acyclic MDP can be found by:

substituting values in order from terminal states to the initial state.
Value function of a policy V π in ANY MDP can be found by:

solving a system of linear equations.
Optimal value function V ∗ in ANY MDP can be found by:

solving a system of non-linear equations (max)?
Hard stuff to do analytically → iterative methods.

Jan Mrkos PUI Tutorial 10 4 / 17

Solving MDPs

From last time:
Optimal value function V ∗ in acyclic MDP can be found by:

substituting values in order from terminal states to the initial state.
Value function of a policy V π in ANY MDP can be found by:

solving a system of linear equations.

Optimal value function V ∗ in ANY MDP can be found by:
solving a system of non-linear equations (max)?

Hard stuff to do analytically → iterative methods.

Jan Mrkos PUI Tutorial 10 4 / 17

Solving MDPs

From last time:
Optimal value function V ∗ in acyclic MDP can be found by:

substituting values in order from terminal states to the initial state.
Value function of a policy V π in ANY MDP can be found by:

solving a system of linear equations.
Optimal value function V ∗ in ANY MDP can be found by:

solving a system of non-linear equations (max)?
Hard stuff to do analytically → iterative methods.

Jan Mrkos PUI Tutorial 10 4 / 17

Solving MDPs

From last time:
Optimal value function V ∗ in acyclic MDP can be found by:

substituting values in order from terminal states to the initial state.
Value function of a policy V π in ANY MDP can be found by:

solving a system of linear equations.
Optimal value function V ∗ in ANY MDP can be found by:

solving a system of non-linear equations (max)?
Hard stuff to do analytically → iterative methods.

Jan Mrkos PUI Tutorial 10 4 / 17

Value Iteration algorithm

Basic algorithm for finding solution of Bellman Equations iteratively:
Algorithm: Value Iteration

1 n← 0;
2 ∀s, V0(s)← 0; // arbitrarily chosen initialization

3 while running do
4 Set n = n + 1;
5 foreach state s ∈ S do
6 Vn(s)← maxa∈A

∑
s′∈S T (s, a, s ′)[R(s, a, s ′) + γVn−1(s ′)]; // Bellman backup

7 return Vn and greedy policy πVn

Basic version alternates 2 arrays to store state values.

Q: What is greedy policy?
A: πVn(s) = arg maxa∈A Qn(s, a) = arg maxa∈A

∑
s′∈S T (s, a, s ′)[R(s, a, s ′) + γVn−1(s ′).

Jan Mrkos PUI Tutorial 10 5 / 17

Value Iteration algorithm

Basic algorithm for finding solution of Bellman Equations iteratively:
Algorithm: Value Iteration

1 n← 0;
2 ∀s, V0(s)← 0; // arbitrarily chosen initialization
3 while running do

4 Set n = n + 1;
5 foreach state s ∈ S do
6 Vn(s)← maxa∈A

∑
s′∈S T (s, a, s ′)[R(s, a, s ′) + γVn−1(s ′)]; // Bellman backup

7 return Vn and greedy policy πVn

Basic version alternates 2 arrays to store state values.

Q: What is greedy policy?
A: πVn(s) = arg maxa∈A Qn(s, a) = arg maxa∈A

∑
s′∈S T (s, a, s ′)[R(s, a, s ′) + γVn−1(s ′).

Jan Mrkos PUI Tutorial 10 5 / 17

Value Iteration algorithm

Basic algorithm for finding solution of Bellman Equations iteratively:
Algorithm: Value Iteration

1 n← 0;
2 ∀s, V0(s)← 0; // arbitrarily chosen initialization
3 while running do
4 Set n = n + 1;
5 foreach state s ∈ S do

6 Vn(s)← maxa∈A
∑

s′∈S T (s, a, s ′)[R(s, a, s ′) + γVn−1(s ′)]; // Bellman backup

7 return Vn and greedy policy πVn

Basic version alternates 2 arrays to store state values.

Q: What is greedy policy?
A: πVn(s) = arg maxa∈A Qn(s, a) = arg maxa∈A

∑
s′∈S T (s, a, s ′)[R(s, a, s ′) + γVn−1(s ′).

Jan Mrkos PUI Tutorial 10 5 / 17

Value Iteration algorithm

Basic algorithm for finding solution of Bellman Equations iteratively:
Algorithm: Value Iteration

1 n← 0;
2 ∀s, V0(s)← 0; // arbitrarily chosen initialization
3 while running do
4 Set n = n + 1;
5 foreach state s ∈ S do
6 Vn(s)← maxa∈A

∑
s′∈S T (s, a, s ′)[R(s, a, s ′) + γVn−1(s ′)]; // Bellman backup

7 return Vn and greedy policy πVn

Basic version alternates 2 arrays to store state values.

Q: What is greedy policy?
A: πVn(s) = arg maxa∈A Qn(s, a) = arg maxa∈A

∑
s′∈S T (s, a, s ′)[R(s, a, s ′) + γVn−1(s ′).

Jan Mrkos PUI Tutorial 10 5 / 17

Value Iteration algorithm

Basic algorithm for finding solution of Bellman Equations iteratively:
Algorithm: Value Iteration

1 n← 0;
2 ∀s, V0(s)← 0; // arbitrarily chosen initialization
3 while running do
4 Set n = n + 1;
5 foreach state s ∈ S do
6 Vn(s)← maxa∈A

∑
s′∈S T (s, a, s ′)[R(s, a, s ′) + γVn−1(s ′)]; // Bellman backup

7 return Vn and greedy policy πVn

Basic version alternates 2 arrays to store state values.

Q: What is greedy policy?
A: πVn(s) = arg maxa∈A Qn(s, a) = arg maxa∈A

∑
s′∈S T (s, a, s ′)[R(s, a, s ′) + γVn−1(s ′).

Jan Mrkos PUI Tutorial 10 5 / 17

Value Iteration algorithm

Basic algorithm for finding solution of Bellman Equations iteratively:
Algorithm: Value Iteration

1 n← 0;
2 ∀s, V0(s)← 0; // arbitrarily chosen initialization
3 while running do
4 Set n = n + 1;
5 foreach state s ∈ S do
6 Vn(s)← maxa∈A

∑
s′∈S T (s, a, s ′)[R(s, a, s ′) + γVn−1(s ′)]; // Bellman backup

7 return Vn and greedy policy πVn

Basic version alternates 2 arrays to store state values.

Q: What is greedy policy?

A: πVn(s) = arg maxa∈A Qn(s, a) = arg maxa∈A
∑

s′∈S T (s, a, s ′)[R(s, a, s ′) + γVn−1(s ′).

Jan Mrkos PUI Tutorial 10 5 / 17

Value Iteration algorithm

Basic algorithm for finding solution of Bellman Equations iteratively:
Algorithm: Value Iteration

1 n← 0;
2 ∀s, V0(s)← 0; // arbitrarily chosen initialization
3 while running do
4 Set n = n + 1;
5 foreach state s ∈ S do
6 Vn(s)← maxa∈A

∑
s′∈S T (s, a, s ′)[R(s, a, s ′) + γVn−1(s ′)]; // Bellman backup

7 return Vn and greedy policy πVn

Basic version alternates 2 arrays to store state values.

Q: What is greedy policy?
A: πVn(s) = arg maxa∈A Qn(s, a)

= arg maxa∈A
∑

s′∈S T (s, a, s ′)[R(s, a, s ′) + γVn−1(s ′).

Jan Mrkos PUI Tutorial 10 5 / 17

Value Iteration algorithm

Basic algorithm for finding solution of Bellman Equations iteratively:
Algorithm: Value Iteration

1 n← 0;
2 ∀s, V0(s)← 0; // arbitrarily chosen initialization
3 while running do
4 Set n = n + 1;
5 foreach state s ∈ S do
6 Vn(s)← maxa∈A

∑
s′∈S T (s, a, s ′)[R(s, a, s ′) + γVn−1(s ′)]; // Bellman backup

7 return Vn and greedy policy πVn

Basic version alternates 2 arrays to store state values.

Q: What is greedy policy?
A: πVn(s) = arg maxa∈A Qn(s, a) = arg maxa∈A

∑
s′∈S T (s, a, s ′)[R(s, a, s ′) + γVn−1(s ′).

Jan Mrkos PUI Tutorial 10 5 / 17

Example - gridworld

Gridworld domain. Assuming γ = 1.
Using VI and initializing ∀s V0(s) = 0, calculate
V1,V2,V3 for the nine states around the +10 tile.
Domain rules:

Moving into edges gives -1 reward
Moving onto marked tiles gives corresponding
reward

Example from https://artint.info
Jan Mrkos PUI Tutorial 10 6 / 17

https://artint.info/2e/html/ArtInt2e.Ch9.S5.html#Ch9.Thmciexamplered28

Value Iteration algorithm

Basic algorithm for finding solution of Bellman Equations iteratively.
Algorithm: Value Iteration

1 n← 0;
2 ∀s, V0(s)← 0; // arbitrarily chosen initialization
3 while running do
4 Set n = n + 1;
5 foreach state s ∈ S do
6 Vn(s)← maxa∈A

∑
s′∈S T (s, a, s ′)[R(s, a, s ′) + γVn−1(s ′)]; // Bellman backup

7 return Vn and greedy policy πVn

Question: Does it converge? How fast? When do we stop?

Jan Mrkos PUI Tutorial 10 7 / 17

Residual - definition

Def: Residual
Residual of value function Vn from Vn+1 at state s ∈ S is defined by:

ResVn (s) = |Vn(s)− Vn+1(s)|

Residual of value function V from V ′ is given by:

ResVn = ||Vn − Vn+1||∞ = max
s
|Vn(s)− Vn+1(s)|

Jan Mrkos PUI Tutorial 10 8 / 17

Residual - definition

Def: Residual
Residual of value function Vn from Vn+1 at state s ∈ S is defined by:

ResVn (s) = |Vn(s)− Vn+1(s)|

Residual of value function V from V ′ is given by:

ResVn = ||Vn − Vn+1||∞ = max
s
|Vn(s)− Vn+1(s)|

Jan Mrkos PUI Tutorial 10 8 / 17

VI stopping criterion1

Stopping criterion: When residual of consecutive value functions is below low value of ε:

||Vn − Vn+1|| < ε

However, this does not imply ε distance of value of greedy policy from optimal value function.

Theorems for general MDP exist of form:

Vn,V ∗as above =⇒ ∀s |Vn(s)− V ∗(s)| < ε× (Some MDP dependent term)

In case of discounted (γ < 1) infinite-horizon MDPs:

Vn,V ∗as above =⇒ ∀s |Vn(s)− V ∗(s)| < 2 εγ

1− γ

1Y for proof, see: [Singh, Yee: An Upper Bound on the Loss from Approximate Optimal-Value Functions,
p.229]

Jan Mrkos PUI Tutorial 10 9 / 17

https://web.eecs.umich.edu/~baveja/Papers/approx-rl-loss.pdf
https://web.eecs.umich.edu/~baveja/Papers/approx-rl-loss.pdf

VI stopping criterion1

Stopping criterion: When residual of consecutive value functions is below low value of ε:

||Vn − Vn+1|| < ε

However, this does not imply ε distance of value of greedy policy from optimal value function.
Theorems for general MDP exist of form:

Vn,V ∗as above =⇒ ∀s |Vn(s)− V ∗(s)| < ε× (Some MDP dependent term)

In case of discounted (γ < 1) infinite-horizon MDPs:

Vn,V ∗as above =⇒ ∀s |Vn(s)− V ∗(s)| < 2 εγ

1− γ

1Y for proof, see: [Singh, Yee: An Upper Bound on the Loss from Approximate Optimal-Value Functions,
p.229]

Jan Mrkos PUI Tutorial 10 9 / 17

https://web.eecs.umich.edu/~baveja/Papers/approx-rl-loss.pdf
https://web.eecs.umich.edu/~baveja/Papers/approx-rl-loss.pdf

VI stopping criterion1

Stopping criterion: When residual of consecutive value functions is below low value of ε:

||Vn − Vn+1|| < ε

However, this does not imply ε distance of value of greedy policy from optimal value function.
Theorems for general MDP exist of form:

Vn,V ∗as above =⇒ ∀s |Vn(s)− V ∗(s)| < ε× (Some MDP dependent term)

In case of discounted (γ < 1) infinite-horizon MDPs:

Vn,V ∗as above =⇒ ∀s |Vn(s)− V ∗(s)| < 2 εγ

1− γ

1Y for proof, see: [Singh, Yee: An Upper Bound on the Loss from Approximate Optimal-Value Functions,
p.229]

Jan Mrkos PUI Tutorial 10 9 / 17

https://web.eecs.umich.edu/~baveja/Papers/approx-rl-loss.pdf
https://web.eecs.umich.edu/~baveja/Papers/approx-rl-loss.pdf

VI with stopping criterion

Algorithm: Value Iteration with epsilon stop
1 n← 0;
2 ∀s, V0(s)← 0; // arbitrarily chosen initialization
3 while ResV > ε do
4 Set n = n + 1;
5 foreach state s ∈ S do
6 Vn(s)← maxa∈A

∑
s′∈S T (s, a, s ′)[R(s, a, s ′) + γVn−1(s ′)];

7 ResV (s)← |Vn(s)− Vn−1(s)|; // Update residual

8 return Vn and greedy policy πVn

Jan Mrkos PUI Tutorial 10 10 / 17

Value iteration properties

Convergence: VI converges from any initialization (unlike PI)
Termination: when residual is ”small”

Q: What are the memory requirements of VI?
A: Value of each state needs to be stored twice, residual can be calculated on the fly.

Jan Mrkos PUI Tutorial 10 11 / 17

Value iteration properties

Convergence: VI converges from any initialization (unlike PI)
Termination: when residual is ”small”

Q: What are the memory requirements of VI?

A: Value of each state needs to be stored twice, residual can be calculated on the fly.

Jan Mrkos PUI Tutorial 10 11 / 17

Value iteration properties

Convergence: VI converges from any initialization (unlike PI)
Termination: when residual is ”small”

Q: What are the memory requirements of VI?
A: Value of each state needs to be stored twice, residual can be calculated on the fly.

Jan Mrkos PUI Tutorial 10 11 / 17

MDP example

All undeclared rewards are -1
Task: Initialize VI with negative distance to S5 and calculate first 3 iterations of VI, with state
ordering S0 to S5

Jan Mrkos PUI Tutorial 10 12 / 17

Gauss-Seidel (Asynchronous) VI

Algorithm: Gauss-Seidel VI
1 n← 0;
2 ∀s, V0(s)← 0;
3 while ResV > ε do
4 Set n = n + 1;
5 foreach state s ∈ S do
6 Vn(s)← maxa∈A

∑
s′∈S T (s, a, s ′)[R(s, a, s ′) + γVn(s ′)];

7 ResV (s)← |Vn(s)− Vn−1(s)|;

8 return Vn and greedy policy πVn

Q: Memory requirements compared to VI?

Q: Is order of states in line 5 important?

Jan Mrkos PUI Tutorial 10 13 / 17

Gauss-Seidel (Asynchronous) VI

Algorithm: Gauss-Seidel VI
1 n← 0;
2 ∀s, V0(s)← 0;
3 while ResV > ε do
4 Set n = n + 1;
5 foreach state s ∈ S do
6 Vn(s)← maxa∈A

∑
s′∈S T (s, a, s ′)[R(s, a, s ′) + γVn(s ′)];

7 ResV (s)← |Vn(s)− Vn−1(s)|;

8 return Vn and greedy policy πVn

Q: Memory requirements compared to VI?

Q: Is order of states in line 5 important?

Jan Mrkos PUI Tutorial 10 13 / 17

Gauss-Seidel (Asynchronous) VI

Algorithm: Gauss-Seidel VI
1 n← 0;
2 ∀s, V0(s)← 0;
3 while ResV > ε do
4 Set n = n + 1;
5 foreach state s ∈ S do
6 Vn(s)← maxa∈A

∑
s′∈S T (s, a, s ′)[R(s, a, s ′) + γVn(s ′)];

7 ResV (s)← |Vn(s)− Vn−1(s)|;

8 return Vn and greedy policy πVn

Q: Memory requirements compared to VI?

Q: Is order of states in line 5 important?

Jan Mrkos PUI Tutorial 10 13 / 17

Asyncchronous VI

Algorithm: Asynchronous VI
1 ∀s, V (s)← 0;
2 while ResV > ε do
3 s ← select s ∈ S;
4 V (s)← maxa∈A

∑
s′∈S T (s, a, s ′)[R(s, a, s ′) + γV (s ′)];

5 ResV (s)← |Vold(s)− Vnew(s)|;
6 return V and greedy policy πV

Q: Convergence condition? A: Asymptotic as VI if every state visited ∞ often.
Q: How to pick s on line 5? A: Simplest is Gauss-Seidel VI, that is run AVI over all
states iteratively.

Jan Mrkos PUI Tutorial 10 14 / 17

Asyncchronous VI

Algorithm: Asynchronous VI
1 ∀s, V (s)← 0;
2 while ResV > ε do
3 s ← select s ∈ S;
4 V (s)← maxa∈A

∑
s′∈S T (s, a, s ′)[R(s, a, s ′) + γV (s ′)];

5 ResV (s)← |Vold(s)− Vnew(s)|;
6 return V and greedy policy πV

Q: Convergence condition?

A: Asymptotic as VI if every state visited ∞ often.
Q: How to pick s on line 5? A: Simplest is Gauss-Seidel VI, that is run AVI over all
states iteratively.

Jan Mrkos PUI Tutorial 10 14 / 17

Asyncchronous VI

Algorithm: Asynchronous VI
1 ∀s, V (s)← 0;
2 while ResV > ε do
3 s ← select s ∈ S;
4 V (s)← maxa∈A

∑
s′∈S T (s, a, s ′)[R(s, a, s ′) + γV (s ′)];

5 ResV (s)← |Vold(s)− Vnew(s)|;
6 return V and greedy policy πV

Q: Convergence condition? A: Asymptotic as VI if every state visited ∞ often.

Q: How to pick s on line 5? A: Simplest is Gauss-Seidel VI, that is run AVI over all
states iteratively.

Jan Mrkos PUI Tutorial 10 14 / 17

Asyncchronous VI

Algorithm: Asynchronous VI
1 ∀s, V (s)← 0;
2 while ResV > ε do
3 s ← select s ∈ S;
4 V (s)← maxa∈A

∑
s′∈S T (s, a, s ′)[R(s, a, s ′) + γV (s ′)];

5 ResV (s)← |Vold(s)− Vnew(s)|;
6 return V and greedy policy πV

Q: Convergence condition? A: Asymptotic as VI if every state visited ∞ often.
Q: How to pick s on line 5?

A: Simplest is Gauss-Seidel VI, that is run AVI over all
states iteratively.

Jan Mrkos PUI Tutorial 10 14 / 17

Asyncchronous VI

Algorithm: Asynchronous VI
1 ∀s, V (s)← 0;
2 while ResV > ε do
3 s ← select s ∈ S;
4 V (s)← maxa∈A

∑
s′∈S T (s, a, s ′)[R(s, a, s ′) + γV (s ′)];

5 ResV (s)← |Vold(s)− Vnew(s)|;
6 return V and greedy policy πV

Q: Convergence condition? A: Asymptotic as VI if every state visited ∞ often.
Q: How to pick s on line 5? A: Simplest is Gauss-Seidel VI, that is run AVI over all
states iteratively.

Jan Mrkos PUI Tutorial 10 14 / 17

Prioritized VI

Q: How else can we pick states to update? (A: by ordering them in clever ways)

E.g.: build priority queue of states to update → Prioritized Sweeping VI. Update states in the
order of the queue. Priority function:

priorityPS(s)← max{priorityPS(s),max
a∈A
{T (s, a, s ′)ResV (s ′)}}

EXAMPLE ON BOARD

Convergence?
If all states start with non-zero priority
OR If you interleave regular VI sweeps with Prioritized VI

Jan Mrkos PUI Tutorial 10 15 / 17

Prioritized VI

Q: How else can we pick states to update? (A: by ordering them in clever ways)

E.g.: build priority queue of states to update → Prioritized Sweeping VI. Update states in the
order of the queue. Priority function:

priorityPS(s)← max{priorityPS(s),max
a∈A
{T (s, a, s ′)ResV (s ′)}}

EXAMPLE ON BOARD

Convergence?
If all states start with non-zero priority
OR If you interleave regular VI sweeps with Prioritized VI

Jan Mrkos PUI Tutorial 10 15 / 17

Prioritized VI

Q: How else can we pick states to update? (A: by ordering them in clever ways)

E.g.: build priority queue of states to update → Prioritized Sweeping VI. Update states in the
order of the queue. Priority function:

priorityPS(s)← max{priorityPS(s),max
a∈A
{T (s, a, s ′)ResV (s ′)}}

EXAMPLE ON BOARD

Convergence?
If all states start with non-zero priority
OR If you interleave regular VI sweeps with Prioritized VI

Jan Mrkos PUI Tutorial 10 15 / 17

Prioritized VI

Q: How else can we pick states to update? (A: by ordering them in clever ways)

E.g.: build priority queue of states to update → Prioritized Sweeping VI. Update states in the
order of the queue. Priority function:

priorityPS(s)← max{priorityPS(s),max
a∈A
{T (s, a, s ′)ResV (s ′)}}

EXAMPLE ON BOARD

Convergence?

If all states start with non-zero priority
OR If you interleave regular VI sweeps with Prioritized VI

Jan Mrkos PUI Tutorial 10 15 / 17

Prioritized VI

Q: How else can we pick states to update? (A: by ordering them in clever ways)

E.g.: build priority queue of states to update → Prioritized Sweeping VI. Update states in the
order of the queue. Priority function:

priorityPS(s)← max{priorityPS(s),max
a∈A
{T (s, a, s ′)ResV (s ′)}}

EXAMPLE ON BOARD

Convergence?
If all states start with non-zero priority

OR If you interleave regular VI sweeps with Prioritized VI

Jan Mrkos PUI Tutorial 10 15 / 17

Prioritized VI

Q: How else can we pick states to update? (A: by ordering them in clever ways)

E.g.: build priority queue of states to update → Prioritized Sweeping VI. Update states in the
order of the queue. Priority function:

priorityPS(s)← max{priorityPS(s),max
a∈A
{T (s, a, s ′)ResV (s ′)}}

EXAMPLE ON BOARD

Convergence?
If all states start with non-zero priority
OR If you interleave regular VI sweeps with Prioritized VI

Jan Mrkos PUI Tutorial 10 15 / 17

Partitioned VI

Subdivide state space into partitions. Pre-solve parts independently.
Example is Topological VI

Topological VI:
1 Find acyclic paritioning (by finding strongly connected components in the graph)
2 Run VI in each partition to convergence backward from terminal states

Q: Why acyclic partitioning?

EXAMPLE ON BOARD

Jan Mrkos PUI Tutorial 10 16 / 17

Partitioned VI

Subdivide state space into partitions. Pre-solve parts independently.
Example is Topological VI

Topological VI:
1 Find acyclic paritioning (by finding strongly connected components in the graph)
2 Run VI in each partition to convergence backward from terminal states

Q: Why acyclic partitioning?

EXAMPLE ON BOARD

Jan Mrkos PUI Tutorial 10 16 / 17

Partitioned VI

Subdivide state space into partitions. Pre-solve parts independently.
Example is Topological VI

Topological VI:
1 Find acyclic paritioning (by finding strongly connected components in the graph)
2 Run VI in each partition to convergence backward from terminal states

Q: Why acyclic partitioning?

EXAMPLE ON BOARD

Jan Mrkos PUI Tutorial 10 16 / 17

Partitioned VI

Subdivide state space into partitions. Pre-solve parts independently.
Example is Topological VI

Topological VI:
1 Find acyclic paritioning (by finding strongly connected components in the graph)
2 Run VI in each partition to convergence backward from terminal states

Q: Why acyclic partitioning?

EXAMPLE ON BOARD

Jan Mrkos PUI Tutorial 10 16 / 17

Thank you for
participating in the

tutorials :-)

Please fill out the
feedback form →

https://forms.gle/JxJBaGeLgwxVbKiNA

Jan Mrkos PUI Tutorial 10 17 / 17

https://forms.gle/JxJBaGeLgwxVbKiNA
https://forms.gle/JxJBaGeLgwxVbKiNA

	Review of previous tutorial
	Value Iteration
	VI extensions

