Introduction to classical planning Problem representations

Michaela Urbanovská

PUI Tutorial Week 1

- Classical planning (M. Urbanovska), probabilistic planning (J. Mrkos)
- Each part one assignment 50 points total
- Classical planning assignment \rightarrow programming your own **planning** system
 - C, C++, Java
 - more details later
 - Deadline: half of April (TBD)
- Zapocet: 25 out of 50 points to pass
- Exam: 25 out of 50 points to pass
- Final grade: zapocet points + exam points
- Problems? Questions?
 - urbanm30@fel.cvut.cz

- STRIPS, FDR problem definitions
- PDDL, compilations
- Relaxation heuristics
- Landmark heuristics
- Abstraction heuristics
- LP based heuristics
- Machine learning in planning
- …and much more!

Lecture check

• Any questions regarding the lecture?

• Any questions regarding the lecture?

when your lecturer asks if you have any questions

- General problem solving
- Basically can solve all your problems

- General problem solving
- Basically can solve all your problems
- Problem

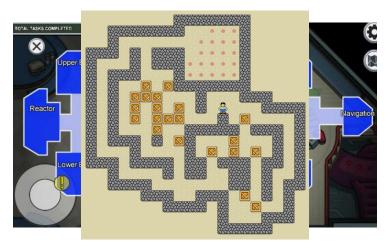
- General problem solving
- Basically can solve all your problems
- Problem + representation

- Basically can solve all your problems
- Problem + representation + solver

- Basically can solve all your problems
- Problem + representation + solver = **solution**

- Basically can solve all your problems
- Problem + representation + solver = solution

- Basically can solve all your problems
- Problem + representation + solver = **solution**



- Basically can solve all your problems
- Problem + representation + solver = **solution**

• General problem solving

• Basically can solve all your problems

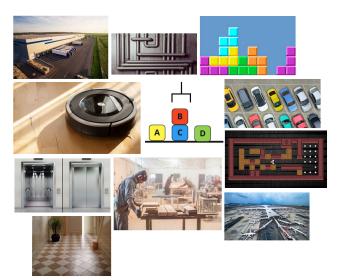
• Problem + representation + solver = solution

- Basically can solve all your problems
- Problem + representation + solver = solution

Planning benchmarks

For example...

- Airport
- Depot
- Sokoban
- Blocksworld
- Elevators
- Floortile
- Parking
- Pipesworld
- Tetris
- Tidybot
- Woodworking



- Often inspired by real-world problems
- Sometimes even modeled real-world problems
- Problems with interesting properties to test performance of algorithms heuristics
- Doesn't have to correlate with real-world performance

- Often inspired by real-world problems
- Sometimes even modeled real-world problems
- Problems with interesting properties to test performance of algorithms heuristics
- Doesn't have to correlate with real-world performance

...this is not the class with robots.

There are many different types of planning... In this part of the course \rightarrow classical planning

- Fully defined environment
- Deterministic actions
- Domain-independence

- STRIPS
- FDR
- Specify the model, capture the structure of the problem

- STRIPS
- FDR
- Specify the model, capture the structure of the problem

STRIPS problem $\Pi = \langle F, O, s_{init}, s_{goal}, c \rangle$

•
$$F = \{f_1, f_2, \dots, f_n\}$$
 (facts)

•
$$O = \{o_1, o_2, \dots o_m\}$$
 (operators)

• $s_{init} \subseteq F$ (initial state)

• $c(o_i) \in \mathbb{R}^+$ (cost function)

STRIPS problem $\Pi = \langle F, O, s_{init}, s_{goal}, c \rangle$

•
$$F = \{f_1, f_2, \dots, f_n\}$$
 (facts)

•
$$O = \{o_1, o_2, \dots o_m\}$$
 (operators)

s_{init} ⊆ F (initial state)

• $c(o_i) \in \mathbb{R}^+$ (cost function)

STRIPS operator $o = \langle pre(o), add(o), del(o) \rangle$

- $pre(o) \subseteq F$ (set of preconditions)
- $add(o) \subseteq F$ (set of add effects)
- $del(o) \subseteq F$ (set of delete effects)

STRIPS problem $\Pi = \langle F, O, s_{init}, s_{goal}, c \rangle$

•
$$F = \{f_1, f_2, \dots, f_n\}$$
 (facts)

•
$$O = \{o_1, o_2, \dots o_m\}$$
 (operators)

s_{init} ⊆ F (initial state)

• $c(o_i) \in \mathbb{R}^+$ (cost function)

STRIPS operator $o = \langle pre(o), add(o), del(o) \rangle$

- $pre(o) \subseteq F$ (set of preconditions)
- $add(o) \subseteq F$ (set of add effects)
- $del(o) \subseteq F$ (set of delete effects)
- operators are well-formed
 - $add(o) \cap del(o) = \emptyset$
 - $pre(o) \cap add(o) = \emptyset$

Applicable operator

Operator *o* is applicable in state *s* if $pre(o) \subseteq s$. **Resulting state** $res(o, s) = (s \setminus del(o)) \cup add(o)$. State *s* is a **goal state** iff $s_{goal} \subseteq s$.

Applicable operator

Operator *o* is applicable in state *s* if $pre(o) \subseteq s$. **Resulting state** $res(o, s) = (s \setminus del(o)) \cup add(o)$. State *s* is a **goal state** iff $s_{goal} \subseteq s$.

Sequence of applicable operators

Sequence of operators $\pi = \langle o_1, o_2, \dots o_n \rangle$ is applicable in state s_0 if there are states $s_1, s_2, \dots s_n$ such that o_i is applicable in s_{i-1} and $s_i = res(o_i, s_{i-1})$ for $1 \le i \le n$.

- $res(\pi, s_0) = s_n$ (result of the applied operator sequence π)
- $c(\pi) = \sum_{o \in \pi} c(o)$ (cost of applying the operator sequence π)

Applicable operator

Operator *o* is applicable in state *s* if $pre(o) \subseteq s$. **Resulting state** $res(o, s) = (s \setminus del(o)) \cup add(o)$. State *s* is a **goal state** iff $s_{goal} \subseteq s$.

Sequence of applicable operators

Sequence of operators $\pi = \langle o_1, o_2, \dots o_n \rangle$ is applicable in state s_0 if there are states $s_1, s_2, \dots s_n$ such that o_i is applicable in s_{i-1} and $s_i = res(o_i, s_{i-1})$ for $1 \le i \le n$.

- $res(\pi, s_0) = s_n$ (result of the applied operator sequence π)
- $c(\pi) = \sum_{o \in \pi} c(o)$ (cost of applying the operator sequence π) Sequence π is called a **plan** if $s_{goal} \subseteq res(\pi, s_{init})$.
 - π is an **optimal plan** is $c(\pi)$ is the minimal cost over all plans

Reachable state

State *s* is **reachable** if there exists an applicable sequence of operators π such that $res(\pi, s_{init} = s)$. Set of all reachable states is denoted \mathcal{R}_{Π} .

Problem definitions

THERE'S MORE

Michaela Urbanovská

PUI Tutorial 1

FDR problem $P = \langle \mathcal{V}, \mathcal{O}, s_{init}, s_{goal}, c \rangle$

- $\mathcal{V} = \{V_1, V_2, \dots, V_n\}$ (finite set of variables)
- $\mathcal{O} = \{o_1, o_2, \dots o_m\}$ (set of operators)
- s_{init} (initial state)
- s_{goal} (goal state)
- $c(o_i) \in \mathbb{R}^+$

FDR problem $P = \langle \mathcal{V}, \mathcal{O}, s_{init}, s_{goal}, c \rangle$

- \mathcal{V} (finite set of variables)
 - $V \in \mathcal{V}$ (variable)
 - D_V (finite domain of variable V)
- s (state) is partial variable assignment over ${\cal V}$
 - vars(s) = $V \in \mathcal{V}$ assigned in s
 - s[V] = value of V in s
 - s is consistent with s' if s[V] = s'[V] for all V ∈ vars(s')
 - atom V = v is true in s if s[V] = v

FDR operator $o = \langle pre(o), eff(o) \rangle$

- \mathcal{O} (set of operators)
 - pre(o) = partial assignment over V (preconditions)
 - eff(o) = partial assignment over V (effects)
 - V = v cannot be in both pre(o) and eff(o)

Problem in FDR

Applicable operator

Operator *o* is applicable in state *s* if pre(o) is **consistent** with *s*. **Resulting state** $res(o, s) = \begin{cases} eff(o)[V], & \text{if } V \in vars(eff(o))) \\ s[V], & \text{otherwise} \end{cases}$

Problem in FDR

Applicable operator

Operator *o* is applicable in state *s* if pre(o) is **consistent** with *s*. **Resulting state** $res(o, s) = \begin{cases} eff(o)[V], & \text{if } V \in vars(eff(o))) \\ s[V], & \text{otherwise} \end{cases}$

Sequence of applicable operators

Sequence of operators $\pi = \langle o_1, o_2, \dots o_n \rangle$ is applicable in state s_0 if there are state $s_1, s_2, \dots s_n$ such that o_i is applicable in s_{i-1} and $s_i = res(o_i, s_{i-1})$ for $1 \le i \le n$.

- $res(\pi, s_0) = s_n$ (result of the applied operator sequence π)
- $c(\pi) = \sum_{o \in \pi} c(o)$ (cost of applying the operator sequence π)

Problem in FDR

Applicable operator

Operator *o* is applicable in state *s* if pre(o) is **consistent** with *s*. **Resulting state** $res(o, s) = \begin{cases} eff(o)[V], & \text{if } V \in vars(eff(o))) \\ s[V], & \text{otherwise} \end{cases}$

Sequence of applicable operators

Sequence of operators $\pi = \langle o_1, o_2, \dots o_n \rangle$ is applicable in state s_0 if there are state $s_1, s_2, \dots s_n$ such that o_i is applicable in s_{i-1} and $s_i = res(o_i, s_{i-1})$ for $1 \le i \le n$.

• $res(\pi, s_0) = s_n$ (result of the applied operator sequence π)

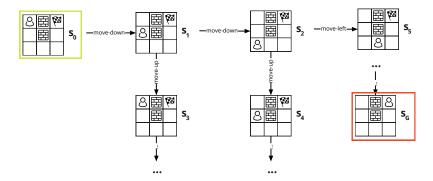
• $c(\pi) = \sum_{o \in \pi} c(o)$ (cost of applying the operator sequence π)

Sequence π is called a **plan** if $res(\pi, s_{init})$ is consistent with s_{goal} .

• π is an **optimal plan** is $c(\pi)$ is the minimal cost over all plans

Transition system

- Both STRIP and FDR have a notion of state and operator
 - s_0 is the initial state which gets expanded by using $o \in O$ creating new state $s' \rightarrow$ transition system



- Exhaustive search can be used but can be very slow
- Improvement? Heuristic function!
 - Additional information
 - Gives plan cost estimate for a state
 - Helps to navigate the search
 - Informed search

- Exhaustive search can be used but can be very slow
- Improvement? Heuristic function!
 - Additional information
 - Gives plan cost estimate for a state
 - Helps to navigate the search
 - Informed search

s-plan

Let Π denote a STRIPS planning task. Sequence of operators π is an **s-plan** iff π is applicable in *s* and $res(\pi, s)$ is a goal state. Heuristic $h : \mathcal{R}_{\Pi} \mapsto \mathbb{R} \cup \{\infty\}$ estimates costs of optimal s-plans. Heuristic function properties

- *h** **optimal** heuristic
- *h* is admissible iff $h(s) \le h^*(s)$ for every $s \in \mathcal{R}_{\Pi}$
- *h* is **goal-aware** iff $h(s) \leq 0$ for every reachable goal state *s*
- *h* is safe iff $h(s) = \infty$ implies $h^* = \infty$ (there's no plan)
- h is consistent iff h(s) ≤ h(res(o, s)) + c(o) for all reachable states s ∈ R_Π and o ∈ O applicable in s

Which statement holds?

- If *h* is both goal-aware and save, then *h* is admissible.
- If *h* is both goal-aware and consistent, then *h* is admissible.
- If *h* is both safe and consistent, then *h* is admissible.

Goals for today

• think that planning is useful

Goals for today

 \bullet think that planning is useful \checkmark

Goals for today

- \bullet think that planning is useful \checkmark
- know STRIPS and FDR problem definition
- know what is a plan
- know what is a heuristic and why we need it
- know heuristic function properties

For more details and structure check out

• Notes on Classical Planning by Daniel Fiser

The End

Feedback form

