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Value function of a policy
Look at the following definition of a value function of a policy for inifnite-horizon MDP. It
contains multiple mistakes, correct them on a piece of paper:

Def: Value function of a policy for infinite-horizon MDP
Assume infinite horizon MDP with γ ∈ [0, 100]. Then let Value function of a policy π for every
state s ∈ S be defined as

V π(s) =
∑
s′∈S

R(s, π(s), s ′)R(s, π(s), s ′) + γπ(s ′)

γ ∈ [0, 1)
V π(s) =

∑
s′∈S

T (s, π(s), s ′)[R(s, π(s), s ′) + γV π(s ′)]

Question: Difference to def. of an optimal value function?
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Value Iteration algorithm

Basic algorithm for finding solution of Bellman Equations iteratively:
1 initialize V0 arbitrarily for each state, e.g to 0, set n = 0
2 Set n = n + 1.
3 Compute Bellman Backup, i.e. for each s ∈ S:

1 Vn(s) = maxa∈A
∑

s′∈S T (s, a, s ′)[R(s, a, s ′) + γVn−1(s ′)]
4 GOTO 2.

Basic version uses 2 arrays to store state values.
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VI example - gridworld

Gridworld domain. Assuming γ = 1.
Using VI and initializing ∀s V0(s) = 0, calculate
V1,V2,V3 for the nine states around the +10 tile.
Domain rules:

Moving into edges gives -1 reward
Moving onto marked tiles gives corresponding
reward

Example from https://artint.info
Jan Mrkos PUI Tutorial 8 5 / 15

https://artint.info/2e/html/ArtInt2e.Ch9.S5.html#Ch9.Thmciexamplered28


value Iteration algorithm

Basic algorithm for finding solution of Bellman Equations iteratively.
1 initialize V0 arbitrarily for each state, e.g to 0, set n = 0
2 Set n = n + 1.
3 Compute Bellman Backup, i.e. for each s ∈ S:

1 Vn(s) = maxa∈A
∑

s′∈S T (s, a, s ′)[R(s, a, s ′) + γVn−1(s ′)]
4 GOTO 2.

Question: Does it converge? How fast? When do we stop?
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Residual - definition

Def: Residual
Residual of value function Vn from Vn+1 at state s ∈ S is defined by:

ResVn (s) = |Vn(s)− Vn+1(s)|

Residual of value function V from V ′ is given by:

ResVn = ||Vn − Vn+1||∞ = max
s
|Vn(s)− Vn+1(s)|
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VI stopping criterion

Stopping criterion: When residual of consecutive value functions is below low value of ε:

||Vn − Vn+1|| < ε

However, this does not imply ε distance of value of greedy policy from optimal value function.

Theorems for general MDP exist of form:

Vn,V ∗as above =⇒ ∀s |Vn(s)− V ∗(s)| < ε(Some MDP dependent term)

In case of discounted (γ < 1) infinite-horizon MDPs:

Vn,V ∗as above =⇒ ∀s |Vn(s)− V ∗(s)| < 2 εγ

1− γ
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VI with stopping criterion

Algorithm 1: Value Iteration
1 initialize V0 arbitrarily for each state, e.g to 0 while ResV > ε do
2 pick some state s
3 Bellman backup V (s)← maxa∈A

∑
s′∈S T (s, a, s ′)[R(s, a, s ′) + γV (s ′)]

4 Update residual at s ResV (s) = |Vold(s)− Vnew(s)|
5 return greedy policy πV ;

Question: What is the greedy policy?
Greedy policy πV

n is the policy given as argmax of Vn.
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VI with stopping criterion

Algorithm 3: Value Iteration
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Value iteration properties

Convergence: VI converges from any initialization (unlike PI)
Termination: when residual is ”small”

Question: What are the memory requirements of VI?
Value of each state needs to be stored twice
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Another beautiful MDP example

All undeclared rewards are -1
Task: Initialize VI with negative distance to S5 and calculate first 3 iterations of VI, with state
ordering S0 to S5
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Asynchronous VI
Algorithm 4: Asynchronous VI

1 initialize V0 arbitrarily for each state, e.g to 0 while ResV > ε do
2 pick some state s
3 Bellman backup V (s)← maxa∈A

∑
s′∈S T (s, a, s ′)[R(s, a, s ′) + γV (s ′)]

4 Update residual at s ResV (s) = |Vold(s)− Vnew(s)|
5 return greedy policy πV ;

Question: Memory requirements compared to VI?
Question: Convergence condition?

Asymptotic as VI under condition that every state visited ∞ often.
Question: How to pick s in 2.1?

Simplest is Gauss-Seidel VI, that is run AVI over all states iteratively

Jan Mrkos PUI Tutorial 8 12 / 15



Asynchronous VI
Algorithm 5: Asynchronous VI

1 initialize V0 arbitrarily for each state, e.g to 0 while ResV > ε do
2 pick some state s
3 Bellman backup V (s)← maxa∈A

∑
s′∈S T (s, a, s ′)[R(s, a, s ′) + γV (s ′)]

4 Update residual at s ResV (s) = |Vold(s)− Vnew(s)|
5 return greedy policy πV ;

Question: Memory requirements compared to VI?

Question: Convergence condition?
Asymptotic as VI under condition that every state visited ∞ often.

Question: How to pick s in 2.1?
Simplest is Gauss-Seidel VI, that is run AVI over all states iteratively

Jan Mrkos PUI Tutorial 8 12 / 15



Asynchronous VI
Algorithm 6: Asynchronous VI

1 initialize V0 arbitrarily for each state, e.g to 0 while ResV > ε do
2 pick some state s
3 Bellman backup V (s)← maxa∈A

∑
s′∈S T (s, a, s ′)[R(s, a, s ′) + γV (s ′)]

4 Update residual at s ResV (s) = |Vold(s)− Vnew(s)|
5 return greedy policy πV ;

Question: Memory requirements compared to VI?
Question: Convergence condition?

Asymptotic as VI under condition that every state visited ∞ often.

Question: How to pick s in 2.1?
Simplest is Gauss-Seidel VI, that is run AVI over all states iteratively

Jan Mrkos PUI Tutorial 8 12 / 15



Asynchronous VI
Algorithm 7: Asynchronous VI

1 initialize V0 arbitrarily for each state, e.g to 0 while ResV > ε do
2 pick some state s
3 Bellman backup V (s)← maxa∈A

∑
s′∈S T (s, a, s ′)[R(s, a, s ′) + γV (s ′)]

4 Update residual at s ResV (s) = |Vold(s)− Vnew(s)|
5 return greedy policy πV ;

Question: Memory requirements compared to VI?
Question: Convergence condition?

Asymptotic as VI under condition that every state visited ∞ often.
Question: How to pick s in 2.1?

Simplest is Gauss-Seidel VI, that is run AVI over all states iteratively
Jan Mrkos PUI Tutorial 8 12 / 15



Prioritized VI

How else can we pick states to update? (Ans: by ordering them in clever ways)
Build priority queue of states to update → Prioritized Sweeping VI. Update states in the
order of the queue. Priority function:

priorityPS(s)← max{priorityPS(s),max
a∈A
{T (s, a, s ′)ResV (s ′)}}

EXAMPLE ON BOARD

Convergence?
If all states start with non-zero priority
OR If you interleave regular VI sweeps with Prioritized VI
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Partitioned VI

Subdivide state space into partitions. Pre-solve parts independently.
Example is Topological VI

Topological VI:
1 Find acyclic paritioning (by finding strongly connected components in the graph)
2 Run VI in each partition to convergence backward from terminal states

Question: Why acyclic partitioning?
EXAMPLE ON BOARD
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Thank you for
participating in the

tutorials :-)

Please fill out the
feedback form →

https://forms.gle/wyVaeHbXJYEKdUNX7
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