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@ VI extensions
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Value function of a policy

Look at the following definition of a value function of a policy for inifnite-horizon MDP. It
contains multiple mistakes, correct them on a piece of paper:

Def: Value function of a policy for infinite-horizon MDP

Assume infinite horizon MDP with € [0,100]. Then let Value function of a policy 7 for every
state s € S be defined as

V7™(s) = Z R(s,m(s),s")R(s,m(s),s") +yn(s')
s'eS
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Value lteration algorithm

Basic algorithm for finding solution of Bellman Equations iteratively:
@ initialize Vg arbitrarily for each state, e.gto 0, set n =0
Q Setn=n+1.
© Compute Bellman Backup, i.e. for each s € S:
0 V,(s) = maxaead oes T(s,a,5")[R(s,a,s") +7Va1(s)]
Q@ GOTO 2.
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Value lteration algorithm

Basic algorithm for finding solution of Bellman Equations iteratively:
@ initialize Vg arbitrarily for each state, e.gto 0, set n =0
Q Setn=n+1.
© Compute Bellman Backup, i.e. for each s € S:
0 V,(s) = maxaead oes T(s,a,5")[R(s,a,s") +7Va1(s)]
Q@ GOTO 2.

Basic version uses 2 arrays to store state values.
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VI example - gridworld

Gridworld domain. Assuming v = 1.
Using VI and initializing Vs Vy(s) = 0, calculate i H |
Vi, Vo, V3 for the nine states around the 410 tile.

Domain rules: . .:

@ Moving into edges gives -1 reward

@ Moving onto marked tiles gives corresponding
reward

0.1

D.14—I‘ 0.7

0.1
Example from https://artint.info
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https://artint.info/2e/html/ArtInt2e.Ch9.S5.html#Ch9.Thmciexamplered28

value lteration algorithm

Basic algorithm for finding solution of Bellman Equations iteratively.
@ initialize V4 arbitrarily for each state, e.gto 0, set n =0
Q Setn=n+1.
© Compute Bellman Backup, i.e. for each s € S:
O Vi(s) = maxaeaY ocs T(s,a,5)[R(s,a,s") +7Vp_1(s")]
Q@ GOTO 2.

Question: Does it converge? How fast? When do we stop?
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Residual - definition

Def: Residual

Residual of value function V,, from V11 at state s € S is defined by:

Resvn(s) = |Vn(5) - Vn+1(5)|
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Residual - definition

Def: Residual
Residual of value function V,, from V11 at state s € S is defined by:

Resvn(s) = |Vn(5) - Vn+1(5)|

Residual of value function V' from V' is given by:

Res"" = ||V — Vatlloo = e IVals) = Vi (s)]



VI stopping criterion

Stopping criterion: When residual of consecutive value functions is below low value of e:
[V = Vagal| <€

However, this does not imply € distance of value of greedy policy from optimal value function.
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VI stopping criterion

Stopping criterion: When residual of consecutive value functions is below low value of e:
[V = Vagal| <€

However, this does not imply € distance of value of greedy policy from optimal value function.
Theorems for general MDP exist of form:

Vp, V*as above = Vs |V,(s) — V*(s)| < e(Some MDP dependent term)

In case of discounted (v < 1) infinite-horizon MDPs:

Vp, V*as above = Vs |V,(s) — V*(s)| < 216_77
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VI with stopping criterion

Algorithm 1: Value lteration

1 initialize Vp arbitrarily for each state, e.g to 0 while ResV > ¢ do
2 pick some state s

3 Bellman backup V(s) <= maxaea Y gcs T(s,a,5")[R(s,a,s") +vV(s')]
4 Update residual at s Res"'(s) = |Void(s) — Vaew(s)|

5 return greedy policy 7V
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VI with stopping criterion

Algorithm 2: Value lteration

1 initialize Vp arbitrarily for each state, e.g to 0 while ResV > ¢ do
2 pick some state s

3 Bellman backup V(s) <= maxaea Y gcs T(s,a,5")[R(s,a,s") +vV(s')]
4 Update residual at s Res"'(s) = |Void(s) — Vaew(s)|

5 return greedy policy 7V

Question: What is the greedy policy?
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VI with stopping criterion

Algorithm 3: Value lteration

initialize Vg arbitrarily for each state, e.g to 0 while ResY > ¢ do
pick some state s

Bellman backup V(s) <= maxaea Y gcs T(s,a,5")[R(s,a,s") +vV(s')]
Update residual at s Res"'(s) = |Void(s) — Vaew(s)|

return greedy policy 75

S NN =

(5]

Question: What is the greedy policy?

o Greedy policy ¥ is the policy given as argmax of V.
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Value iteration properties

e Convergence: VI converges from any initialization (unlike PI)

@ Termination: when residual is "small”
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Value iteration properties

e Convergence: VI converges from any initialization (unlike PI)

@ Termination: when residual is "small”

Question: What are the memory requirements of VI?
o Value of each state needs to be stored twice

Jan Mrkos PUI Tutorial 8 10/15



Another beautiful MDP example

@ All undeclared rewards are -1

Task: Initialize VI with negative distance to Ss and calculate first 3 iterations of VI, with state
ordering Sp to Sy

Jan Mrkos PUI Tutorial 8 11/15



Asynchronous VI

Algorithm 4: Asynchronous VI

1 initialize Vo arbitrarily for each state, e.g to 0 while ResV > ¢ do
2 pick some state s

3 Bellman backup V/(s) <= maxaea > gcs T(s,a,5")[R(s,a,s") +vV(s')]
4 Update residual at s Res"(s) = |Void(s) — View(s)|

5 return greedy policy Vv
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Asynchronous VI

Algorithm 5: Asynchronous VI

1 initialize Vo arbitrarily for each state, e.g to 0 while ResV > ¢ do
2 pick some state s
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4 Update residual at s Res"(s) = |Void(s) — View(s)|

5 return greedy policy Vv

Question: Memory requirements compared to VI?
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Asynchronous VI

Algorithm 6: Asynchronous VI

initialize Vg arbitrarily for each state, e.g to 0 while Res" > ¢ do
pick some state s

1
2
3 Bellman backup V/(s) < maxaea Y gcs T(s,a,5")[R(s,a,s") +vV(s')]
4 Update residual at s Res"(s) = |Void(s) — View(s)|

5 return greedy policy Vv

Question: Memory requirements compared to VI?
Question: Convergence condition?

e Asymptotic as VI under condition that every state visited oo often.
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Asynchronous VI

Algorithm 7: Asynchronous VI

initialize Vg arbitrarily for each state, e.g to 0 while Res" > ¢ do
pick some state s

Bellman backup V/(s) <= maxaea > gcs T(s,a,5")[R(s,a,s") +vV(s')]
Update residual at s Res"(s) = |Void(s) — View(s)|

return greedy policy Vv

Question: Memory requirements compared to VI?
Question: Convergence condition?

e Asymptotic as VI under condition that every state visited oo often.
Question: How to pick s in 2.17
e Simplest is Gauss-Seidel VI, that is run AVI over all states iteratively
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Prioritized VI

How else can we pick states to update? (Ans: by ordering them in clever ways)
@ Build priority queue of states to update — Prioritized Sweeping VI. Update states in the
order of the queue. Priority function:

priority ps(s) <— max{priority ps(s), ma/>\<{ T(s,a,s')ResV(s')}}
ac
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Prioritized VI

How else can we pick states to update? (Ans: by ordering them in clever ways)

@ Build priority queue of states to update — Prioritized Sweeping VI. Update states in the
order of the queue. Priority function:

priority ps(s) <— max{priority ps(s), ma/>\<{ T(s,a,s')ResV(s')}}
ac

EXAMPLE ON BOARD

Convergence?
o If all states start with non-zero priority
e OR If you interleave regular VI sweeps with Prioritized VI

Jan Mrkos PUI Tutorial 8 13/15



Partitioned VI

Subdivide state space into partitions. Pre-solve parts independently.

@ Example is Topological VI
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@ Example is Topological VI
Topological VI:
@ Find acyclic paritioning (by finding strongly connected components in the graph)

@ Run VI in each partition to convergence backward from terminal states
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Partitioned VI

Subdivide state space into partitions. Pre-solve parts independently.
@ Example is Topological VI
Topological VI:

@ Find acyclic paritioning (by finding strongly connected components in the graph)
@ Run VI in each partition to convergence backward from terminal states

Question: Why acyclic partitioning?
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Thank you for
participating in the
tutorials :-)

Please fill out the
feedback form —

Jan Mrkos

Id

https://forms.gle/wyVaeHbXJYEKAUNX7
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