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Review of previous tutorial



Stopping criterion for prioritized VI

Question: What is the stopping criterion for prioritized VI?

Question: What is the convergence criterion for prioritized VI?

Algorithm 1: Prioritized VI

1 initialize V0 e.g to 0 and initialize priority queue q

2 while ResV > ε do

3 pick state s′ according to priority: s′ = q.pop()

4 Bellman backup on s′: V (s′)← maxa∈A
∑

s∈S T (s′, a, s)[R(s′, a, s) + γV (s)]

5 Update residual at s′: ResV (s′) = |Vold(s′)− Vnew(s′)|
6 foreach s predecessor of s′, i.e. {s|T (s, a, s′) > 0 for some a} do
7 Update priority of s:

priorityPS (s)← max{priorityPS (s),maxa∈A{T (s, a, s′)ResV (s′)}}

8 return greedy policy πV

2



Stopping criterion for prioritized VI

Question: What is the stopping criterion for prioritized VI?

Question: What is the convergence criterion for prioritized VI?

Algorithm 2: Prioritized VI

1 initialize V0 e.g to 0 and initialize priority queue q

2 while ResV > ε do

3 pick state s′ according to priority: s′ = q.pop()

4 Bellman backup on s′: V (s′)← maxa∈A
∑

s∈S T (s′, a, s)[R(s′, a, s) + γV (s)]

5 Update residual at s′: ResV (s′) = |Vold(s′)− Vnew(s′)|
6 foreach s predecessor of s′, i.e. {s|T (s, a, s′) > 0 for some a} do
7 Update priority of s:

priorityPS (s)← max{priorityPS (s),maxa∈A{T (s, a, s′)ResV (s′)}}

8 return greedy policy πV

2



UCT



K-armed bandit problem

• Each bandit has different mean reward

Question: Given M pulls, how do you choose which action (arm) to pull?
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K-armed bandit problem

Question: Given M pulls, how do you choose which action (arm) to pull?

Expected value of each arm: Q∗(a) = E (Rt |π(t) = a)

Empirical mean of each arm at time n, after nj =
∑n

i=0 1π(i)=aj pulls on

j − th arm: Qn(aj) =
∑n

i=0 Ri1π(i)=aj

nj

• Greedy policy - pick action that currently gives best reward,

π(t) = argmaxa Qt(a)

• ε-greedy algorithm - with ε probability, pick another arm randomly.

Y Marcello Restelli: Reinforcement LearningExploration vs Exploitation 4

http://home.deib.polimi.it/restelli/MyWebSite/pdf/rl5.pdf


• Task: find arm-pulling strategy such that the expected total reward at 

time n is close to the best possible.

•Uniform Bandit – bad choice, wastes time with bad arms

•Need to balance exploitation of good arms with exploration of 
poorly understood arms.

Multi-Armed bandit – Regret Minimization
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UCB Adaptive Bandit Algortihm
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• Aiming at “reward as close as possible to the best reward” means we 

are minimizing regret:

𝑅𝑛 = 𝜇∗𝑛 −

𝑗=1

𝑘

𝜇𝑗𝐸[𝑇𝑗(𝑛)]

Where 𝜇𝑗 are the expected payoffs of arms, 𝜇∗ is the best expected payoff 

and 𝐸[𝑇𝑗(𝑛)] is the expected number of pulls on arm 𝑗 in total 𝑛 pulls.

• 𝑋𝑗,1, 𝑋𝑗,2… = i.i.d r.v. of rewards from bandit 𝑗

• 𝜇𝑗= expected value of 𝑋𝑗

Regret

s
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• Upper Confidence Bounds [Auer er. al., 2002]:

• When choosing arm, always select arm with highest UCB value

• ഥ𝑋𝑗 = mean of observed rewards, 𝑛 = number of plays so far

• Using UCB, regret is upper bound by O(ln(n))

Minimizing regret - UCB

𝑈𝐶𝐵 = ഥ𝑋𝑗 +
2 ln 𝑛

𝑛𝑗

ExplorationExploitation



• Play all arms once initially

• Then based on the formula

UCB - Example
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•
2 ln 𝑛

𝑛𝑗
is based of bound of the form 𝑃 ഥ𝑋𝑗 − 𝐸[𝑋] ≥ 𝑓(𝜎, 𝑛) ≤ 𝜎

(Remember PAC?)

• And 𝜎 is chosen to be time dependent (by 𝑛), goes to zero.

UCB - Example

ഥ𝑋𝑗 +
2 ln 𝑛

𝑛𝑗



Excel example: 

https://drive.google.com/open?id=1A9Kr-

JDz_ZJlYOX3aFMrFaLUAPeAZV7Z

Google sheets:

https://docs.google.com/spreadsheets/d/17xxXMAGbXqjt6N1tah3VwKbu

sz5c44kGcAWQuhV93P0/edit?usp=sharing

UCB

s

𝑎1 𝑎2
𝑎𝑘

https://drive.google.com/open?id=1A9Kr-JDz_ZJlYOX3aFMrFaLUAPeAZV7Z
https://docs.google.com/spreadsheets/d/17xxXMAGbXqjt6N1tah3VwKbusz5c44kGcAWQuhV93P0/edit?usp=sharing


UCB for Trees = UCT

•Tree node:
• Associated state, 
• incoming action, 
• number of visits, 
• accumulated reward

•External slides by Michele Sebag: 
https://drive.google.com/open?id=1ytp9l33_6WNe62qLAzV326iS4WmYeFpY

https://drive.google.com/open?id=1ytp9l33_6WNe62qLAzV326iS4WmYeFpY


• Aheuristic

•Does not require any domain specific knowledge

•Domain specific knowledge can provide significant speedups

• Anytime

•Can return currently best action when stopped at any time

• Asymmetric

•Tree is not explored fully

• MCTS = UCT? No consistency 

in the naming

MCTS notes

[Arnaud et al., 2007]



Michele Sebag – MCTS slides

•External slides by Michele Sebag: 
https://drive.google.com/open?id=1ytp9l33_6W
Ne62qLAzV326iS4WmYeFpY

https://drive.google.com/open?id=1ytp9l33_6WNe62qLAzV326iS4WmYeFpY


Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
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