Markov Decision Processes

24. dubna 2019

B4M36PUI/BE4M36PUI — Planning for Artificial Intelligence

- MDP definition and examples
- MDP solution
- Value function calculation

Definitions

Tuple $\langle S, A, D, T, R \rangle$:

- S: finite set of states agent can find itself in
- A: finite set of action agent can perform
- *D*: finite set of timesteps
- T: transition function transitions between states
- R: reward function rewards obtained from transitions

Tuple $\langle S, A, D, T, R \rangle$:

- S: finite set of states agent can find itself in
- A: finite set of action agent can perform
- D: finite set of timesteps
- T: transition function transitions between states
- R: reward function rewards obtained from transitions

AOnly one of many possible definitions!

- S: Possible Emils positions
- A: Move directions
- D: Emil has e.g. 200 steps to find gold
- *T*: stochastic movement, e.g. 10% to move to the side of selected action
- *R*: e.g. +100 for finding gold, -1 for each move

Blackjack

- S: Possible player hands and played cards
- A: Hit, Stand, ...
- T: Possible drawn cards,
- R: Win/loose at the end

Example: Abstract example

• $S: S_0, S_1, S_2, S_3$ • A: a₀, a₁, a₂ $T(S_0, a_0, S_1) = 0.6$ • $T: \frac{T(S_0, a_0, S_2) = 0.4}{T(S_1, a_1, S_3) = 1}$ $T(S_2, a_2, S_3) = 1$ $R(S_0, a_0, S_1) = 5$ • $R: R(S_0, a_0, S_2) = 2$ $R(S_1,a_1,S_3)=1$ $R(S_2, a_2, S_3) = 4$

- Domain with uncertainty uncertain utoucomes of actions
- Sequential decision making for sequences of decisions
- Fair Nature no one is actively playing against us
- Full observability, perfect sensors we know where agent is
- Cyclic domain structures when states can be revisited

MDP Solution

Def: Policy

Assignment of action to state, $\pi: S \rightarrow A$

- Partial policy e.g. output of robust replanning
- Complete policy domain of π is whole state space S.
- Stationary policy independent of timestep (e.g. emil)
- Markovian policy dependent only on last state

Aln general, policy can be history dependent and stochastic!

Value function (of a policy)

Def: Value function

Assignment of value to state, $V: S \rightarrow < -\infty, \infty >$

Def: Value function

Assignment of value to state, $V: S \rightarrow < -\infty, \infty >$

Def: Value function of a policy

Assignment of value to state based on utility of rewards obtained by following policy π from a state, $V^{\pi}: S \to <-\infty, \infty >$, $V^{\pi}(s) = u(R_1^{\pi_s}, R_2^{\pi_s}, \ldots)$

Def: Value function

Assignment of value to state, $V: S \rightarrow < -\infty, \infty >$

Def: Value function of a policy

Assignment of value to state based on utility of rewards obtained by following policy π from a state, $V^{\pi}: S \to <-\infty, \infty >$, $V^{\pi}(s) = u(R_1^{\pi_s}, R_2^{\pi_s}, \ldots)$

Def: Optimal MDP solution

Optimal MDP solution is a policy π^* such that value function V^{π^*} called optimal value function dominates all other value functions in all states, $\forall s V^{\pi^*}(s) \geq V^{\pi}(s)$.

Question: can we choose $u(R_1, R_2, \ldots) = \sum_i R_i$?

Def: Expected linear aditive utility

Function $u(R_t, R_{t+1}, \ldots) = \mathbb{E}\left[\sum_{t'=t}^{|D|} \gamma^{t'} R_{t'}\right]$ is expected linear additive utility

- $\gamma \in (0,1]$ is a discount factor, makes agent prefer earlier rewards.
- Risk-neutral
- For infinite D and bounded rewards, $\gamma < 1$ gives convergence (why?)
- Implies existence of optimal solution

When using expected linear additive utility, "MDP" has an optimal deterministic Markovian policy π^* .

Thm: The optimality principle for infinite-horizon MDPs

Infinite horizon MDP with $V^{\pi}(s_t) = \mathbb{E}\left[\sum_{t'=0}^{\infty} \gamma^{t'} R_{t+t'}^{\pi}\right]$ and $\gamma \in [0, 1)$. Then there exists optimal value function V^* , is stationary, Markovian, and satisfies for all s:

$$V^{*}(s) = \max_{\pi} V^{\pi}(s)$$
$$V^{*}(s) = \max_{a \in A} \left[\sum_{s' \in S} T(s, a, s') [R(s, a, s') + \gamma V * (s')] \right]$$
$$\pi^{*}(s) = \arg\max_{a \in A} \left[\sum_{s' \in S} T(s, a, s') [R(s, a, s') + \gamma V * (s')] \right]$$

Finding MDP solutions

• $S: S_0, S_1, S_2, S_3$ • A: a₀, a₁, a₂ $T(S_0, a_0, S_1) = 0.6$ • $T: \frac{T(S_0, a_0, S_2) = 0.4}{T(S_1, a_1, S_3) = 1}$ $T(S_2, a_2, S_3) = 1$ $R(S_0, a_0, S_1) = 5$ • $R: R(S_0, a_0, S_2) = 2$ $R(S_1, a_1, S_3) = 1$ $R(S_2, a_2, S_3) = 4$

- S: S₀, S₁, S₂, S₃
- A: a_0, a_1, a_2
- $T(S_0, a_0, S_1) = 0.6$ $T(S_0, a_0, S_2) = 0.4$ • $T: T(S_1, a_1, S_3) = 1$ $T(S_2, a_2, S_3) = 0.7$ $T(S_2, a_2, S_0) = 0.3$ $R(S_0, a_0, S_1) = 5$ $R(S_0, a_0, S_2) = 2$ • $R: R(S_1, a_1, S_3) = 1$ $R(S_2, a_2, S_3) = 4$ $R(S_2, a_2, S_0) = 3$

