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Definitions



Markov Decision Process

Tuple 〈S ,A,D,T ,R〉:

• S : finite set of states agent can find itself in

• A: finite set of action agent can perform

• D: finite set of timesteps

• T : transition function - transitions between states

• R: reward function - rewards obtained from transitions

oOnly one of many possible definitions!
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Example: Emil in the gridworld

• S : Possible Emils positions

• A: Move directions

• D: Emil has e.g. 200 steps to find gold

• T : stochastic movement, e.g. 10% to

move to the side of selected action

• R: e.g. +100 for finding gold, -1 for each

move

3



MDP example - blackjack

Blackjack

• S : Possible player hands and played cards

• A: Hit, Stand, ...

• T : Possible drawn cards,

• R: Win/loose at the end
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Example: Abstract example

• S : S0,S1, S2, S3

• A: a0, a1, a2

• T :

T (S0, a0, S1) = 0.6

T (S0, a0, S2) = 0.4

T (S1, a1, S3) = 1

T (S2, a2, S3) = 1

• R :

R(S0, a0,S1) = 5

R(S0, a0,S2) = 2

R(S1, a1,S3) = 1

R(S2, a2,S3) = 4
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When MDP might be a good model?

• Domain with uncertainty - uncertain utoucomes of actions

• Sequential decision making - for sequences of decisions

• Fair Nature - no one is actively playing against us

• Full observability, perfect sensors - we know where agent is

• Cyclic domain structures - when states can be revisited
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MDP Solution



Policy

Def: Policy

Assignment of action to state, π : S → A

• Partial policy - e.g. output of robust replanning

• Complete policy - domain of π is whole state space S .

• Stationary policy - independent of timestep (e.g. emil)

• Markovian policy - dependent only on last state

oIn general, policy can be history dependent and stochastic!
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Value function (of a policy)

Def: Value function

Assignment of value to state, V : S →< −∞,∞ >

Def: Value function of a policy

Assignment of value to state based on utility of rewards obtained by following

policy π from a state, V π : S →< −∞,∞ >, V π(s) = u(Rπs
1 ,Rπs

2 , . . .)

Def: Optimal MDP solution

Optimal MDP solution is a policy π∗ such that value function V π∗ called

optimal value function dominates all other value functions in all states,

∀sV π∗(s) ≥ V π(s).

Question: can we choose u(R1,R2, . . .) =
∑

i Ri ?
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Expected linear aditive utility

Def: Expected linear aditive utility

Function u(Rt ,Rt+1, . . .) = E
[∑|D|

t′=t γ
t′Rt′

]
is expected linear additive utility

• γ ∈ (0, 1] is a discount factor, makes agent prefer earlier rewards.

• Risk-neutral

• For infinite D and bounded rewards, γ < 1 gives convergence (why?)

• Implies existence of optimal solution
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Optimality principle

When using expected linear additive utility, ”MDP”has an optimal deterministic

Markovian policy π∗.

Thm: The optimality principle for infinite-horizon MDPs

Infinite horizon MDP with V π(st) = E
[∑∞

t′=0 γ
t′Rπ

t+t′

]
and γ ∈ [0, 1). Then

there exists optimal value function V ∗, is stationary, Markovian, and satisfies

for all s:

V ∗(s) = max
π

V π(s)

V ∗(s) = max
a∈A

[∑
s′∈S

T (s, a, s ′)[R(s, a, s ′) + γV ∗ (s ′)]

]

π∗(s) = arg max
a∈A

[∑
s′∈S

T (s, a, s ′)[R(s, a, s ′) + γV ∗ (s ′)]

]
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Finding MDP solutions



Calculate value function for acyclic MDP

• S : S0,S1, S2, S3

• A: a0, a1, a2

• T :

T (S0, a0, S1) = 0.6

T (S0, a0, S2) = 0.4

T (S1, a1, S3) = 1

T (S2, a2, S3) = 1

• R :

R(S0, a0,S1) = 5

R(S0, a0,S2) = 2

R(S1, a1,S3) = 1

R(S2, a2,S3) = 4
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Calculate value function for cyclic MDP

• S : S0,S1, S2, S3

• A: a0, a1, a2

• T :

T (S0, a0, S1) = 0.6

T (S0, a0, S2) = 0.4

T (S1, a1, S3) = 1

T (S2, a2, S3) = 0.7

T (S2, a2, S0) = 0.3

• R :

R(S0, a0,S1) = 5

R(S0, a0,S2) = 2

R(S1, a1,S3) = 1

R(S2, a2,S3) = 4

R(S2, a2,S0) = 3
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