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Search in Transition Systems
Principles

big success of symbolic AI1

most automated planners use search algorithms
not only for planners! – CSP/(D)COP, (PO)MDPs, MCTS
(AlphaGo), ...
required solution properties: soundness and completeness
categorization of search algorithms2 by:

▶ solution quality: satisficing vs. optimal
▶ direction: forward, backward, bidirectional, sampling, ...
▶ informativeness: uninformed, informed (heuristic – weak to strong)
▶ orderliness: local vs. global (systematic)

1Stuart Russell, Peter Norvig: Artificial Intelligence: A Modern Approach (4th
Edition). Pearson 2020, ISBN 9780134610993 (Chapters 3 and 4)

2Stefan Edelkamp, Stefan Schrödl: Heuristic Search - Theory and Applications.
Academic Press 2012, ISBN 978-0-12-372512-7
Antonín Komenda (AIC, FEE, CTU) Heuristic Search for Classical Planning March 6, 2023 3 / 35



img/logo

Search in Transition Systems
Solution Properties

Two required properties on a solution of a problem represented as a search
in a transition system:

soundness(correctness): a found solution (plan) by a search algorithm
is sound if the path in the transition system sequentially follows the
nodes and transitions (only allowed states and only allowed transitions
(action applications) between them) and if defined starts in the
designated initial state and ends in one of designated goal states
completeness: a search algorithm is complete if it guarantees
founding a sound solution if such exists
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Search in Transition Systems
Solution Quality

Two different problems:
satificing planning: any plan is a solution (in benchmarks we prefer
cheaper solutions)
optimal planning: only the cheapest plan is a solution (cheapest =
shortest for unit cost planning)

Search algorithms can be used for both types, however:
the differences are non-trivial and often domain (or even problem)
specific
some planning domains/problems are P for satisficing planning, but
NP for optimal
almost no overlap between good techniques for satisficing planning
and good techniques for optimal planning (search algorithms, search
node to state(s) mapping, heuristics, ...)
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Search in Transition Systems
Example

Two different problems:
satificing planning: any plan is a solution (in benchmarks we prefer
cheaper solutions)
optimal planning: only the cheapest plan is a solution (cheapest =
shortest for unit cost planning)
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Search Space Representation
Principles
The search nodes does not necessarily correspond to the states one-to-one:

states are defined in the context of the transition system
search can visit a state repeatedly (with different path costs)
search form a tree (repeated visits of the same state are different
search nodes!)
search node is typically a more rich structure then a state (state
information, cost to the search node, heuristic value, reference to the
parent node, ...)

A search node can relate to:
one state
set of states – compact representation of set of states (actions applied
to sets of states directly)

▶ BDDs (Binary Decision Diagrams),
▶ ADDs (Algebraic Decision Diagrams) ⇝ FDR Symbolic Search

(SymBA* planner)
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Search Space Representation
BDDs/ADDs Intuition

BDD example (left: Boolean function, right: corresponding BDD):

⇝
BDDs vs. ADDs are analogical to STRIPS vs. FDR.
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Search Direction
Principles

The direction is defined in the context of the initial state and goal
state(s):

forward search (progression): search from the initial state towards the
goal(s)
backwars search (regression): search from the goal state(s) towards
the init
bidirectional search: search simultaneously from the intial state
towards the goal(s) and vice versa while searching where the searches
meet
sampling search: syntatic generation of states and multi-parallel
search (multiple bidirectional searches in parallel)
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Search Direction
Forward search vs. backward search

A planning problem is not symmetric from perspective of forward and
backward searches:

forward search starts from a single initial state; backward search starts
from a set of goal states
recap.: action application function appa(s) is non-injective (more
actions can end up in the same state), but deterministic (the outcome
of appa(s) is always the same)

forward application induces a tree of individual states
backward application induces a tree of sets of states
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Search Informativeness
Intuition

To improve efficiency of the search we can extract structural information
from the domain and/or problem definition.
The extraction can be done on various levels:

(rarely) from the lifted form (PDDL)
from STRIPS/FDR representation (FDR contains structural
information in the variable domains per se!) ⇝ most of the
domain-independent heuristics
from expert knowledge (domain-specific heuristics – Manhattan
distance, Euclidean distance, ...)
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Search Informativeness
Structural Information for Navigation in Transition System

How to decide which state to consider next (structural information for
navigating the search):

uninfromed search:
▶ depth-first search (DFS)
▶ breadth-first search (BFS)
▶ iterative deepening (depth-first) search (IDS/IDDFS)
▶ ...

heuristic (informed) search:
▶ hill-climbing
▶ simulated annealing
▶ beam search
▶ greedy best-first search (GBFS)
▶ A*
▶ Weighted A* (WA*)
▶ iterative deepening A* (IDA*)
▶ ...
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Search Informativeness
Structural Information for Elimination in Transition System
Using the extracted structural information for pruning:

invariants (e.g., always at least one block on the table, never more
then three blocks on each other)
mutexes (e.g., if red block is on the blue block, blue block cannot be
on the red block – cf. STRIPS representation, if one fact is true
another fact cannot be true as well, Boolean formulas)
symmetry elimination (see below left)
initially prune other then helpful actions (see below right)
...

,
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Search Informativeness
Structural Information for Elimination in Transition System
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Search Orderliness
Systematic vs. Local Search

Scope of the search navigation can vary:
local search:

▶ does not keep information about the whole searched space
▶ can unnecessarily repeat work (search the same state repeatedly)
▶ usually does not provide complete search (it can miss a solution)
▶ usually more computationally efficient
▶ algorithms: random walk, hill-climbing, simulated annealing, beam

search, ...
systematic (global) search:

▶ keeps information about the searched space (e.g., OPEN, and/or
CLOSED lists, marking visited states, ...)

▶ complete search
▶ usually memory/computationally heavier
▶ algorithms: DFS, BFS, IDS, greedy best-first search, A*, Weighted A*

, IDA* , ...
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Heuristic Functions
Heuristic principles

What does it mean that h “estimates the goal distance”?
For most heuristic search algorithms, h does not need to have any
strong properties for the algorithm to work (be correct and complete).
However, the efficiency of the algorithm closely relates to how
accurately h reflects the actual goal distance.
For some algorithms, like A*, we can prove strong formal relationships
between properties of h and properties of the algorithm (optimality,
dominance, run-time for bounded error, ...)
For other search algorithms, “it works well in practice” is often as
good an analysis as one gets.
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Heuristic Functions
Perfect heuritic

Let’s assume a transition system Σ = ⟨N, E , L, c⟩ and a set of goal nodes
G ⊆ N, then a optimal/perfect heuristicfunction h∗(n) in it:

maps each node n to the lenght of a cheapest (shortest) path from n
to a goal state nG ∈ G
h∗(n) = ∞ iff no goal state is reachable from n (i.e., n is a dead-end)
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Heuristic Functions
Heuristic properties

Let’s assume a transition system Σ = ⟨N, E , L, c⟩ and a set of goal nodes
G ⊆ N, then a heuristic h is called:

safe: for all n ∈ N : (h(n) = ∞) =⇒ (h∗(n) = ∞)
goal-aware: for all ng ∈ G : h(ng) = 0
admissible for all n ∈ N : h(n) ≤ h∗(n)
consistent3 for all (n → n′) ∈ E : h(n) ≤ c(n → n′) + h(n′)

3Sometimes called monotonous, but what is really monotonic then?
Antonín Komenda (AIC, FEE, CTU) Heuristic Search for Classical Planning March 6, 2023 18 / 35
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Building blocks of search algorithms
Principles

Seach needs three operations in general transition system Σ = ⟨N, E , L, c⟩:

init() : ∅ → N generate the initial node
is-goal(n) : N → {⊤, ⊥} test if a given state s is a goal node
succ(n) : N → {⟨l , n′⟩)|nln′ ∈ E}: generate a set of successor nodes
of a node n, together with the applied transition label, which they
were reached with

These three operation form a search space (search nodes vs. transition
system nodes).
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Search algorithms for planning
Principles

Lets assume a planning problem in STRIPS Π = ⟨F , A, c, sI , G⟩ and
induced transition system Σ = ⟨N, E , L, c⟩, where
N = S = 2F , L = A, (n, n′) ∈ E |appa(n) = n′, then we define the search
operations as:

init() 7→ sI

is-goal(s) 7→
{

⊤ G ⊆ s
⊥ otherwise

succ(s) 7→ {⟨a, s ′⟩ |a ∈ A, s ′ = appa(s)}
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Heuristic search algorithms for planning
Principles
Heuristic seach needs four operations in general transition system
Σ = ⟨N, E , L, c⟩:

init() : ∅ → N generate the initial node
is-goal(n) : N → {⊤, ⊥} test if a given state s is a goal node
succ(n) : N → {⟨l , n′⟩)|nln′ ∈ E}: generate a set of successor nodes
of a node n, together with the applied transition label, which they
were reached with
h(n) : N → R0+ ∪ {∞}: the heuristic function (or just heuristic), the
value h(n) is called heuristic estimate or heurstic value of heuristic h
for node n; it estimates the distance from n to the nearest (cheapest)
goal node

A complement function to h(n) is:
gP(n) : N → R0+: the distance function (or just distance when in
context of a state), the value gP(n) is the accumulated cost of the
transitions over a path P from the initial node n0 to n, i.e.,
gP(n) 7→

∑k
i=0 c(ni → ni+1)|P = no l1n1l2n2...lk , nk = n
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Search algorithms for planning
Algorithm classification

uninformed search vs. heuristic search:
uninformed search algorithms only use the basic ingredients for
general search algorithms
heuristic search algorithms additionally use heuristic functions which
estimate how close a node is to the goal

systematic search vs. local search:
systematic algorithms consider a large number of search nodes
simultaneously
local search algorithms work with one (or a few) candidate solutions
(search nodes) at a time
not a black-and-white distinction; there are crossbreeds (e. g.,
enforced hill-climbing)
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Search algorithms for planning
Search algorithms in the context of planning

uninformed vs. heuristic search:
For satisficing planning, heuristic search vastly outperforms
uninformed algorithms on most domains.
For optimal planning, the difference is less pronounced. An efficiently
implemented uninformed algorithm is not easy to beat in most
planning domains.

systematic search vs. local search:
For satisficing planning, the most successful algorithms are
somewhere between the two extremes.
For optimal planning, systematic algorithms are required.
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Search algorithms for planning
Search algorithms in the context of planning

Most common combination of the search properties for planning:
solution quality: satisficing vs. optimal
direction: forward, backward, bidirectional, sampling, ...
informativeness: uninformed, informed (heuristic – weak to strong)
orderliness: local vs. global (systematic)
infromed (heuristic) vs. uninformed (one of the greatest achievements
of automated planning are automatically derived domain-independent
heuristics)
global (systematic) vs. local (completeness usually require systematic
search)
forward vs. backward (not so strict, but still prevalent)
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Search algorithms for planning
Search algorithms in the context of planning (systematic)

Most popular systematic heuristic forward search algorithms for planning:
greedy best-first search(FastForward planner)
A*(SymBA*)
weighted A*(LAMA planner)
IDA*
depth-first branch-and-bound search
breadth-first heuristic search
...
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Search algorithms for planning
Search algorithms in the context of planning (local)

Most popular local heuristic forward search algorithms for planning:
enforced hill-climbing4(FastForward planner)
hill-climbing
deep learning (technically local, as no strong guarantees)
beam search
tabu search
genetic algorithms
simulated annealing
...

4As hill-climbing, but uses BFS for tie breaking.
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Search algorithms for planning
Pseudocode (greedy best-first search (GBFS) with duplicate detection)

open := new empty min-heap ordered by f (σ.s) = h(σ.s)
open.insert(search-node(∅, ∅,init()))
closed := new empty set
while not open.empty():

σ = open.pop-min()
if σ.s ̸∈ closed:

closed.insert(σ)
if is-goal(σ.s):

return path(σ)
for each ⟨a, s ′⟩ ∈ succ(σ.s):

σ′ := search-node(σ, a, s ′)
if h(σ.s) < ∞:

open.insert(σ′)
return ⊥
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Search algorithms for planning
Properties (greedy best-first search (GBFS) with duplicate detection)

one of the three most commonly used algorithms for satisficing
planning
assuming STRIPS, therefore N = S,thus σ.s = σ.n (states and
transition system nodes are identical, i.e., the search works over the
induced transition system)
requires safe heuristic (if h(σ.s) < ∞)
complete for safe heuristics and due to duplicate detection
satisficing (suboptimal) unless h satisfies some very strong
assumptions (similar to being perfect)
invariant under all strictly monotonic transformations of h (e. g.,
scaling with a positive constant or adding a constant)
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Search algorithms for planning
Pseudocode (A* with duplicate detection and reopening)
open := new empty min-heap ordered by f (σ.s) = gσ(σ.s)+h(σ.s)
open.insert(search-node(∅, ∅,init()))
closed := new empty set
distance := new empty map (key, value)
while not open.empty():

σ = open.pop-min()
if σ.s ̸∈ closed or gσ(σ.s) < distance(σ.s):

# σ is an expanded node or reexpanded/reopened if σ.s ∈ closed
closed.insert(σ)
distance.insert(σ,gσ(σ.s))
if is-goal(σ.s):

return path(σ)
for each ⟨a, s ′⟩ ∈ succ(σ.s):

σ′ := search-node(σ, a, s ′)
if h(σ.s) < ∞:

open.insert(σ′) # σ′ is a generated node
return ⊥
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Search algorithms for planning
Properties (A* with duplicate detection and reopening)

the most commonly used algorithm for optimal planning
rarely used for satisficing planning
complete for safe heuristics (even without duplicate detection)
optimal if h is admissible and/or consistent (even without duplicate
detection)
never reopens nodes if h is consistent
slight abuse of notation, we assume gσ(σ.s) = gpath(σ)(σ.s)

Implementation notes:
in the heap-ordering procedure, it is considered a good idea to break
ties in favour of lower h values
can simplify algorithm if we know that we only have to deal with
consistent heuristics
common, hard to spot bug: test membership in closed at the wrong
time
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Search algorithms for planning
Pseudocode (Weighted A* with duplicate detection and reopening)

open := new empty min-heap ordered by f (σ.s) = gσ(σ.s) + h(σ.s)·W
open.insert(search-node(∅, ∅,init()))
closed := new empty set
distance := new empty map (key, value)
while not open.empty():

σ = open.pop-min()
if σ.s ̸∈ closed or gσ(σ.s) < distance(σ.s):

closed.insert(σ)
distance.insert(σ,gσ(σ.s))
if is-goal(σ.s):

return path(σ)
for each ⟨a, s ′⟩ ∈ succ(σ.s):

σ′ := search-node(σ, a, s ′)
if h(σ.s) < ∞:

open.insert(σ′)
return ⊥
Antonín Komenda (AIC, FEE, CTU) Heuristic Search for Classical Planning March 6, 2023 31 / 35
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Search algorithms for planning
Properties (Weighted A* with duplicate detection and reopening)

The weight W ∈ R0+ is a parameter of the algorithm
▶ for W = 0, behaves like breadth-first search (f (σ.s) = gσ(σ.s) + 0)
▶ for W = 1, behaves like A*
▶ for W → 1, behaves like greedy best-first search (f (σ.s) ∼ 0 + h(σ.s))

Properties:
▶ one of the three most commonly used algorithms for satisficing planning
▶ for W > 1, can prove similar properties to A* , replacing optimal with

bounded suboptimal: generated solutions are at most a factor W as
long as optimal ones
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Search algorithms for planning
Pseudocode (Hill-climbing)

σ = search-node(∅, ∅,init())
forever:

if is-goal(σ.s):
return path(σ)

Θ = {search-node(σ, a, s ′)| ⟨a, s ′⟩ ∈ succ(σ.s)}
σ := an element of Θ minimizing h(σ.s)

various tie breaking strategies
can easily get stuck in local minima where improvement of h(σ.s) is
not possible (by one action)
restarts
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Search algorithms for planning
Pseudocode (Enforced hill-climbing)
σo =search-node(∅, ∅,init()))
while not is-goal(σo.s):

queue := new fifo-queue
queue.push-back(σo)
closed := new empty set
while not queue.empty():

σ =queue.pop-front():
if σ.s ̸∈ closed:

closed.insert(σ)
if h(σ.s) < h(σo.s):

σo := σ; break
for each ⟨a, s ′⟩ ∈ succ(σ.s):

σ′ := search-node(σ, a, s ′)
queue.push-back(σ′)

else: return ⊥
return path(σ)
Antonín Komenda (AIC, FEE, CTU) Heuristic Search for Classical Planning March 6, 2023 34 / 35
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Search algorithms for planning
Properties (Enforced hill-climbing)

breadth-first search for more promising node than σo

one of the three most commonly used algorithms for satisficing
planning
can fail if procedure improve fails (when the goal is unreachable from
σo)
complete for undirected search spaces (where the successor relation is
symmetric) if h(σ.s) = 0 for all goal nodes and only for goal nodes
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