
Planning for Artificial Intelligence

Lukáš Chrpa and Stefan Edelkamp

Before we start ….
● Lectures and Tutorials will be conducted in person

– very likely for the whole semester

● Two lecturers

– Lukáš Chrpa (first 7 lectures)

– Stefan Edelkamp (last 6 lectures)

● Two tutors

– Michaela Urbanovská (first 10 weeks)

– Jan Mrkos (last 4 weeks)

Before we start ….
● Assignment (zápočet)

– Two courseworks (classical planning and probabilistic
planning)

– Get at least 25 out of 50 points

● Exam

– Written exam (onsite if possible)

– Get at least 25 out of 50 points

Before we start ….

● Course website

– https://cw.fel.cvut.cz/b212/courses/be4m36pui/start

● Course forum

– https://cw.felk.cvut.cz/forum/forum-1778.html

● Don’t hesitate to contact us if you need anything

What is AI ?
● “The science concerned with understanding intelligent

behavior by attempting to create it in artificial” (T. Smithers)

● Intelligent behavior can be considered as an ability to solve
problems on which the machine has no knowledge of a
suitable algorithm

What is Automated Planning ?

“Planning is reasoning about acting”
[Ghallab, Nau, Traverso]

An actor finds and executes a sequence of actions in order
to achieve its goals

What is Automated Planning?

● Artificial Intelligence (sub-field)

– (general) problem solving

● Decision Theory meets Computer Science

– sequential decision making

– various forms of combinatorial optimization problems

● Three approaches in AI to the problems of action selection or control

– Learning: learn control from experience

– Programming: specify control by hand

– Planning: specify problem by hand, derive control automatically

BlocksWorld Example

A

B

B

A

Initial stateInitial state Goal

BlocksWorld Example

A

B

B

A

A

B

A B B

A
unstack(B,A) pickup(A) stack(A,B)putdown(B)

Logistics Example

A

B
C

A

B
C

Initial state Goal

Logistics Example

A

B
C

A

B
C

A

B
C

drive(A,B) load(B)

drive(B,C)
A

B
C

unload(C)
A

B
C

Sokoban Example

Initial state Goal

Sokoban Example

Classical Planning Elements
● States

– Initial state

– Goal states
● Actions

Classical Planning Elements

● States

– Initial state

– Goal states
● Actions

move-player1-C3-B3 push-player1-C3-D3

move-player1-B3-C3

Real-World Environment is not that simple ...
● Static vs Dynamic Environment

– Environment cannot/can change without actor’s consent

● Full vs Partial Observability

● Deterministic vs Non-deterministic action effects

● Discretized vs Continuous environment representation

● Instantaneous vs Durative and/or continuous action effects

● Classical Planning (~7 lectures)

● Temporal Planning (1 lecture)

● Planning under uncertainty (~4 lectures)

Domains
puzzles; computer, board, card games;
production planning and logistics;
humanitarian and military missions;
various-scale robotics; space missions

Task Planning for AUVs [Chrpa et al., 2015]

● Necessity to control multiple heterogeneous Autonomous
Underwater Vehicles (AUVs)

● An operator (human) specifies high-level tasks (e.g.
“sample an object with ctd camera”)

● Task assignment to each AUV should be automatized

How task assignment can be automatized ?

● Each task has specific requirements

● Each vehicle has specific capabilities

● For completing tasks AUVs have to perform certain sequences
of actions

● Hence, we need to find a plan that if executed, the AUVs will
complete all given tasks

Available “Machinery”

● In LSTS, AUVs are controlled via NEPTUS (a decision support
tool with GUI) and DUNE (onboard vehicle control) → “low-
level” control

● Domain-independent AI planning (i.e., finding a sequence of
actions that achieves a defined goal) → “high-level” task
planning

– PDDL, a language for specifying planning domain models
and problem instances

– LPG-td, a planning engine accepting domain and problem
descriptions in PDDL and returning a plan (if exists)

Integrating Planning and Control
● User specifies tasks in

NEPTUS
● NEPTUS generates a

planning problem and
sends it to LPG-td

● LPG-td returns a plan to
NEPTUS

● NEPTUS distributes the
plan to each of the vehicles

Why is Automated Planning useful ?
● NASA’s vision of space-exploratory systems

– Low cost control, low cost and rapid development

– Long-term autonomous operations

– Operations must guarantee success (under resource and time
constraints)

● Deep Space One (1998) and the Mars Rover mission (2004) are
some of the successes

● Other successes: Aircraft manufacturing (Boeing), Crisis
management (Schlumberger) and others !

Domain-independent and Domain-specific

Domain-independent:

● fundamental
● flexible
● reusable

Domain-specific:

● rigid
● efficient
● specialized

Domain-independent and Domain-specific

Domain-independent:

● fundamental
● flexible
● reusable

Domain-specific:

● rigid
● efficient
● specialized Until we get the fundamental principles ...

Domain-independent and Domain-specific

Domain-independent:

● fundamental
● flexible
● reusable

Domain-specific:

● rigid
● efficient
● specialized … we cannot be flexible and we cannot reuse ...

Domain-independent and Domain-specific

Domain-independent:

● fundamental
● flexible
● reusable

Domain-specific:

● rigid
● efficient
● specialized … we cannot optimize or ...

Domain-independent and Domain-specific

Domain-independent:

● fundamental
● flexible
● reusable

Domain-specific:

● rigid
● efficient
● specialized … specialize.

Let’s plan!

● Models for defining, classifying, and understanding problems

– what is a planning problem

– what is a solution (plan), and

– what is an optimal solution

● Languages for representing problems (e.g. PDDL)

● Algorithms for solving them

● Executing the plans

Possible MSc Thesis Topics (not an exhaustive list)

● Modeling and Reformulation in non-classical planning

– Numerical and Temporal Planning

– Non-deterministic Planning

– Continuous Planning

● Learning Domain Control Knowledge

● Reasoning with Agent Planning Programs

● Planning and acting in dynamic environments

● Contact Lukas Chrpa (chrpaluk@fel.cvut.cz) or Stefan Edelkamp (
stefan.edelkamp@gmail.com) if interested

mailto:chrpaluk@fel.cvut.cz
mailto:stefan.edelkamp@gmail.com

Classical Planning

State Model for Classical Planning
● Let S be a set of states

● Let A be a set of actions

● Let γ:SAS be a transition function

● Let γ*:SA*S be a generalized transition function

● Let sI∈S be an initial state

● Let SG⊆S be a set of goal states

● A sequence of actions π is a solution plan iff γ*(sI,π)∈ SG

Transition systems
● A transition system is a 5-tuple T=(S,L,T,I,G), where

– S is a finite set of states

– L is a finite set of labels

– T⊆SLS is a transition relation

– I⊆S is a set of initial states

– G⊆S is a set of goal states

● We say that T has a transition (s,l,s’) iff (s,l,s’)∈T

Transition systems for Classical Planning State Model

● Sets of states correspond to each other

● A set of labels correspond to the set of actions

● A transition system has a transition (s,a,s’) iff γ(s,a)=s’

● There is a single initial state

● Sets of goal states correspond to each other

Planning in Transition Systems
● A transition system is a directed graph

● To solve a planning problem, one has to find a path from an
initial state to any of the goal states

● Dijkstra’s algorithm can do the job in O(|S|log(|S|)+|T|)

● So are we done here ??

Planning in Transition Systems
● A transition system is a directed graph

● To solve a planning problem, one has to find a path from an
initial state to any of the goal states

● Dijkstra’s algorithm can do the job in O(|S|log(|S|)+|T|)

● So are we done here ??

● Not really …..

Let’s count
● Blocksworld (simplified)

– A block can be on table or stacked on another block

– Let g(n,k) be a function, where n and k stand for ungrounded and grouded towers
respectively, g(0,k)=1 and g(n+1,k)=g(n,k+1)+(n+k)g(n,k)

– Then, |S|=g(n,0) (e.g. for n=30, |S|~2*1035)

● Logistics

– Each truck can be at some location, each package can be at some location or in
some truck

– |S|=lt*(l+t)p, where t,l,p is the number of trucks, locations and packages respectively

– With t=10, l=100, p=100, we get |S|>10200

What now ?
● Such large state spaces cannot be enumerated

● Yet solving such problems is not hopeless !

● We need compact representation !

How to represent a state of the environment in
Classical Planning

● By propositions

– e.g. on-A-B, at-truck-A, in-package-truck

– A state is a set of propositions such that a proposition
belonging to a state is considered as being true while a
proposition not belonging to a state is considered as being
false

● By state variables

– e.g. on-A=B, at-truck=A, loc-package=truck

– A state is a set of assignments of all variables

STRIPS Planning Task
● A planning task in STRIPS is a quadruple (P,A,I,G), where

– P is a finite set of atoms (or facts or propositions)

– A is a finite set of actions, where each action a A is a triple ∈
(pre(a),del(a),add(a)), all subsets of P, where

● pre(a) is a precondition of a
● del(a) is a set of delete effects of a
● add(a) is a set of add effects of a

– I⊆P is an initial state

– G⊆P is a goal

STRIPS Planning Task cont.
● States are collections of atoms, i.e., S⊆2P

● An action a is applicable in a state s iff pre(a)⊆s

– (otherwise a is inapplicable in s)

● A state s’ is the result of application of an applicable action a in a
state s iff s’=(s∖del(a))∪add(a)

SAS Planning Task
● A planning task in SAS is quadruple (V,A,I,G), where

– V is a set of variables, where each variable v∈V has its own
domain dom(v)

– A is a set of actions, where each action a∈A is a pair
(pre(a),eff(a)), both partial assignments over V, where

● pre(a) is a precondition of a
● eff(a) stands for effects of a

– I is an initial state (a complete assignment over V)

– G is a goal (partial assignment over V)

SAS Planning Task cont.
● Let q[v] denote the value of a variable v in a (partial) assignment q

● States are complete assignments over V

● An action a is applicable in a state s iff pre(a)[v]=s[v] whenever
pre(a)[v] is specified

– (otherwise a is inapplicable in s)

● A state s’ is the result of application of an applicable action a in a
state s iff s’[v]=eff(a)[v] whenever eff(a)[v] is specified or
s’[v]=s[v] otherwise

Solution Plans
● Let γ(s,a)=s’ iff s’ is the result of application of an action a in a state s (a is

applicable in s)

– γ(s,a) is undefined iff a is inapplicable in s

● Let γ* be defined recursively

– γ*(s,⟨〉)=s

– γ*(s,⟨a1,a2,…,an〉)=γ*(γ(s,a1),⟨a2,…,an〉)

● We say that π, a sequence of actions over A, is a solution plan (or a plan)
of the planning task iff γ*(I,π) |= G (G⊆γ*γ*(I,π) for STRIPS)

