Planning for Artificial Intelligence

Lukáš Chrpa

Relaxation Heuristics

Search, Heuristics (revision)

Informed Search

- Systematic (one-directional)
- Greedy Best First Search (GBFS)
- A^{*}
- Weighted A^{*}
- Systematic bidirectional
- Local
- (Enforced) Hill Climbing

Heuristic Function

- Let S be a set of states for a given planning task Π. A heuristic function (or heuristics) for Π is a function $h: S \rightarrow N_{0} \cup\{\infty\}$
- The value $h(s)$ estimates distance from s to the nearest goal state
- $h(s)$ is called heuristic estimate or heuristic value for s
- A perfect (or optimal) heuristics, denoted as h^{*}, maps each state to the length (or cost) of the optimal plan to the nearest goal state
- If $h *(s)=\infty$ then s is a dead-end state (no goal state is reachable from s)

Properties of Heuristic Function

- Heuristic function h for Π (over S) is
- safe if for each $s \in S$ s.t. $h(s)=\infty$ it holds that s is a dead-end state (i.e, $h^{*}(\mathrm{~s})=\infty$)
- goal aware if $h\left(\mathrm{~s}_{\mathrm{G}}\right)=0$ for each goal state s_{G}
- admissible if for each $s \in S$ it holds that $h(s) \leq h *(s)$
- consistent if goal aware and for each $s, s^{\prime} \in S$ s.t. s^{\prime} is a successor of s it holds that $\mathrm{h}(\mathrm{s}) \leq \mathrm{h}\left(\mathrm{s}^{\prime}\right)+\operatorname{cost}\left(\mathrm{s}, \mathrm{s}^{\prime}\right)$

Towards Good Heuristics

Ideal Properties of Heuristics

- Easy to compute (at most in linear time)
- Easy to implement
- Very informative (close to the perfect heuristic)
- These properties often go against each other
- We consider STRIPS representation throughout this lecture

Goal Count Heuristic

- The Goal Count heuristic represents how many goal atoms have yet to be achieved
- $h_{G}(s)=|G \backslash s|$
- Easy to compute?

Goal Count Heuristic

- The Goal Count heuristic represents how many goal atoms have yet to be achieved
- $h_{G}(s)=|G \backslash s|$
- Easy to compute?
- Yes
- Easy to implement?

Goal Count Heuristic

- The Goal Count heuristic represents how many goal atoms have yet to be achieved
- $h_{G}(s)=|G \backslash s|$
- Easy to compute?
- Yes
- Easy to implement?
- Yes
- Informative?

Goal Count Heuristic - Issues

- Some goals are achieved too early
- Sussman anomaly (in BW)
- If the goal has only one atom
- It might take many steps to achieve one goal atom
- e.g. Sokoban
- Not admissible
- one action can achieve more goal atoms

The goal is to to build the A-B-C tower

How to effectively compute reasonably informative heuristics?

- Relax some problem constraints
- Abstract the problem
- Leverage some structural information
- Landmarks
- Potentials

Relaxation

8-puzzle example

7	2	4
5		6
7	3	1

- A tile can move from square A to B if A is adjacent to B and B is free $\rightarrow h^{\text {* }}$
- A tile can move from square A to B if A is adjacent to $B \rightarrow h^{M D}$ (Manhattan distance)
- A tile can move from square A to $B \rightarrow h^{\text {mт }}$ (Misplaced Tiles)
- $h^{*} \geq h$ MD $\geq h$ MT (why?)

Relaxation

- Removing one or more constraints from the problem
- Solution of the original problem is a solution of the relaxed problem
- If the relaxed problem is unsolvable, then the original problem is unsolvable too
- Solving the relaxed problem is at most as hard as solving the original problem

Relaxation in planning

- How to relax planning tasks?
- remove delete effects!
- in SAS, we don't remove variable assignment when its value changes (accumulate the values)
- We sometimes explicitly refer to such a relaxation as delete-relaxation

Relaxed Planning Tasks

- The (delete-)relaxation a^{+}of an action $\mathrm{a}=(\operatorname{pre}(\mathrm{a}), \mathrm{del}(\mathrm{a}), \operatorname{add}(\mathrm{a}))$ is $\mathrm{a}^{\mathrm{a}=(\text { pre(a) }) \text { add(a) }}$
- The result of application of a^{+}in a state s (if possible) is s'=suadd(a)
- Let $\Pi=(P, A, I, G)$ be a planning task. The relaxed planning task Π^{+}for Π is $\Pi^{+=}(P$, $\{a+\mid a \in A\}, I, G)$
- If Π^{+}is a plan for Π^{+}, then Π^{+}is a relaxed plan for Π
- A perfect (or optimal) relaxed heuristics, denoted as h^{+}, maps each state to the length (or cost) of the optimal relaxed plan to the nearest goal state
- $\mathrm{h}+$ is safe, goal aware, admissible and consistent
- Finding optimal (delete-)relaxed plans is NP-hard
- Not very practical to use h^{+}
- Any other idea?

Greedy Algorithm for Relaxed Planning Tasks

$\mathrm{s}:=1$
$\pi^{+}:=\langle \rangle$
while $G \nsubseteq$ s do
select any $a^{+} \in A^{+}$s.t. a^{+}is applicable in s and add $\left(a^{+}\right) \nsubseteq s$
if no such a^{+}exists then return no solution
$\mathrm{s}:=$ suadd(a^{+})
$\pi^{+}:=\pi^{+} . a^{+}$
return π^{+}

Properties of the Algorithm

- sound
- returned plan is a relaxed plan for the planning task
- if "unsolvable" is returned, then no action can add an atom to the state and hence some goal atoms cannot be achieved
- complete
- the algorithm always terminates
- each action can be applied at most once
- at least one atom is added in each iteration
- linear time complexity

Heuristic from the Greedy Algorithm

- The length or the cost of the relaxed plan (from the state s) is the heuristic value for s
- Such a heuristic is
- safe
- goal aware
- Often such relaxed plans are very suboptimal and such a heuristic is thus not very informative

Two possibilities how to calculate relaxed heuristics

- Do not generate relaxed plans but estimate difficulty of a relaxed planning task
- $\mathbf{h}_{\text {max }}$
- $\mathbf{h a d d}^{\text {ad }}$
- Generate "reasonable" relaxed plans
- $\mathbf{h}_{\text {FF }}$

Optimistic and Pessimistic Assumptions of Task Difficulty

- The idea is to estimate cost of achieving an atom or of applying an action
- For each atom we look for the cheapest action to achieve it
- For each action we consider (either)
- sum of the costs of the atoms in its precondition ($h_{\text {add }}$)
- maximum of the costs of the atoms in its precondition $\left(\mathrm{h}_{\max }\right)$
- It can be observed that
- $\mathbf{h}_{\text {max }}$ provides an optimistic assumption for the relaxed plan cost
- $\mathbf{h}_{\text {add }}$ provides a pessimistic assumption for the relaxed plan cost
$-\mathrm{h}_{\text {max }} \leq \mathrm{h}^{+} \leq \mathrm{h}_{\text {add }}$

Heuristic $h_{\text {add }}$

$$
\begin{gathered}
\mathrm{h}_{\mathrm{add}}(\mathrm{~s})=\mathrm{h}_{\mathrm{add}}(\mathrm{G} ; \mathrm{s}) \\
\mathrm{h}_{\mathrm{add}}(\mathrm{P} ; \mathrm{s})=\sum_{\mathrm{p} \in \mathrm{P}} \mathrm{~h}_{\mathrm{add}}(\mathrm{p} ; \mathrm{s})
\end{gathered}
$$

$$
\begin{aligned}
h_{\text {add }}(p ; s) & =0, \text { if } p \in s \\
& =a_{p}(s), \text { otherwise }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{p}}(\mathrm{~s})=\mathrm{min}_{\mathrm{a} \in\left\{\mathrm{a}^{\prime} \mid \mathrm{p} \in \operatorname{add}\left(\mathrm{a}^{\prime}\right\}\right\}} \mathrm{h}_{\mathrm{add}}(\mathrm{a} ; \mathrm{s}) \\
& \mathrm{h}_{\mathrm{add}}(\mathrm{a} ; \mathrm{s})=\mathrm{c}(\mathrm{a})+\mathrm{h}_{\text {add }}(\operatorname{pre}(\mathrm{a}) ; \mathrm{s})
\end{aligned}
$$

Note that s is a state, p is an atom, a is an action, G is a goal and P is a set of atoms

Heuristic $\mathrm{h}_{\max }$

$$
\begin{gathered}
\mathrm{h}_{\max }(\mathrm{s})=\mathrm{h}_{\max }(\mathrm{G} ; \mathrm{s}) \\
\mathrm{h}_{\max }(\mathrm{P} ; \mathrm{s})=\max _{\mathrm{p} \in \mathrm{p}} \mathrm{~h}_{\max }(\mathrm{p} ; \mathrm{s}) \\
\mathrm{h}_{\max }(\mathrm{p} ; \mathrm{s})=0, \text { if } \mathrm{p} \in \mathrm{~s} \\
=\mathrm{a}_{\mathrm{p}}(\mathrm{~s}), \text { otherwise } \\
\mathrm{a}_{\mathrm{p}}(\mathrm{~s})=\min _{\mathrm{a} \in\left\{a^{\prime} \mid \mathrm{p} \in \operatorname{add}\left(\mathrm{a}^{\prime}\right\}\right.} \mathrm{h}_{\max }(\mathrm{a} ; \mathrm{s}) \\
\mathrm{h}_{\max }(\mathrm{a} ; \mathrm{s})=\mathrm{c}(\mathrm{a})+\mathrm{h}_{\max }(\mathrm{pre}(\mathrm{a}) ; \mathrm{s})
\end{gathered}
$$

Note that s is a state, p is an atom, a is an action, G is a goal and P is a set of atoms

Computation

- Basic idea - value iteration
- Set values of initial atoms to 0 , and to ∞ for other atoms and actions
- If a value of an atom changes, update the values of actions having it in precondition accordingly
- Label-correcting action selection method
- select an arbitrary action to process (update the values of atoms in its add effects accordingly)
- multiple updates per atom
- Dijkstra action selection method
- select the cheapest action to process (update the values of atoms in its add effects accordingly)
- single update per atom

Reachability graph

- Also known as relaxed planning graph
- Consists of alternating layers of atoms and actions $\mathrm{P}_{0}, \mathrm{~A}_{0}, \mathrm{P}_{1}, \mathrm{~A}_{1}, \ldots$

$$
P_{0}=1
$$

$$
\begin{gathered}
\mathrm{A}_{\mathrm{i}}=\left\{\mathrm{a} \mid \operatorname{pre}(\mathrm{a}) \subseteq \mathrm{P}_{\mathrm{i}}\right\} \\
\mathrm{P}_{\mathrm{i}+1}=\mathrm{P}_{\mathrm{i}} \cup \mathrm{U}_{\mathrm{a} \in \mathrm{~A}_{\mathrm{i}}} \operatorname{add}(\mathrm{a})
\end{gathered}
$$

- Terminate when $G \subseteq P_{i}$ or $P_{i+1}=P_{i}$

Running Example (relaxed planning task)

$$
\begin{aligned}
& P=\{a, b, c, d, e, f, g, h\} \\
& I=\{a\} \\
& G=\{c, d, e, f, g\} \\
& a_{1}=(\{a\},\{b, c\}) \\
& a_{2}=(\{a, c\},\{d\}) \\
& a_{3}=(\{b, c\},\{e\}) \\
& a_{4}=(\{b\},\{f\}) \\
& a_{5}=(\{d\},\{e, f\}) \\
& a_{6}=(\{d\},\{g\})
\end{aligned}
$$

Running Example: Reachability Graph
a

Running Example: Reachability Graph

Running Example: Reachability Graph

Using Reachability Graph for computing $h_{\max }$ and $h_{\text {add }}$

- For uniform cost planning tasks we can leverage reachability graph
- It's a special case of the Dijkstra action selection method
- Initially, the reachability graph is constructed from I (or any state s)
- If a fixed point is reached, i.e., $P_{i+1}=P_{i}$, then $h_{\max }(I)=h_{\text {add }}(I)=\infty$
- Then actions are processed layer by layer (from A_{0}, A_{1}, \ldots) until G is reached
- The value in G is the value of the heuristic for I (or s)

Running Example: $\mathrm{h}_{\max }$

Running Example: $\mathrm{h}_{\max }$

Running Example: $\mathrm{h}_{\max }$

Running Example: $\mathrm{h}_{\max }$

Running Example: $h_{\text {add }}$

Remarks

- $h_{\text {max }}$ is sometimes too optimistic as it assumes that some (parallel) actions count as one
- e.g. loading and unloading multiple packages into/from the truck
- $h_{\text {add }}$ is sometimes too pessimistic as it assumes that each atom is achieved by a separate process
- e.g. moving a block from a tower can both place the block in the right place and clears the block underneath
- Generally, $\mathrm{h}_{\text {add }}$ is more informative than $\mathrm{h}_{\text {max }}$ albeit being inadmissible
$h_{\text {FF }}$
- Generates whole relaxed plans (suboptimal but often reasonable)
- Reachability graph is initially generated and the goal node is marked
- If, however, a fixed point is reached, i.e., $P_{i+1}=P_{i}$, then $h_{F F}(I)=\infty$
- Each action or atom node can be either marked or unmarked
- A marked action node is justified if all its predecessors (atom nodes) are marked
- A marked atom node is justified if at least one of its predecessors is marked
$h_{\text {FF }}$
- Starting with marked goal node, apply the following rules layer by layer until all marked nodes are justified

1) Mark all immediate predecessors of a marked unjustified action node
2) Mark the immediate predecessor of a marked unjustified atom node with only one immediate predecessor
3) Mark an immediate predecessor of a marked unjustified atom node connected via an idle arc (to the same atom in the previous layer)
4) Mark any immediate predecessor of a marked unjustified atom node

- The rules are applied in a priority order (earlier first if applicable)
- The number (or the total cost) of marked action nodes is the $\mathbf{h}_{\text {FF }}$ value

Running Example: $h_{F F}$

h_{FF} Remarks

- $h_{\text {FF }}$ is not well defined as tie-breaking might lead to different values
- $\mathrm{h}_{\text {max }} \leq \mathrm{h}+\leq \mathrm{h}_{\mathrm{FF}} \leq \mathrm{h}_{\text {add }}$
- FF planner won the second IPC (in 2000)
- Note that delete-relaxation has some drawbacks (e.g. some nondetected dead-ends)

