Planning for Artificial Intelligence

Lukáš Chrpa

Relaxation Heuristics

Search, Heuristics (revision)

Informed Search

- Systematic (one-directional)
 - Greedy Best First Search (GBFS)
 - A*
 - Weighted A*
- Systematic bidirectional
- Local
 - (Enforced) Hill Climbing

Heuristic Function

- Let S be a set of states for a given planning task Π . A **heuristic** function (or **heuristics**) for Π is a function h:S \rightarrow N₀ \cup { ∞ }
- The value h(s) **estimates** distance from s to the nearest goal state
- h(s) is called heuristic estimate or heuristic value for s
- A perfect (or optimal) heuristics, denoted as h*, maps each state to the length (or cost) of the optimal plan to the nearest goal state
 - If h*(s)=∞ then s is a dead-end state (no goal state is reachable from s)

Properties of Heuristic Function

- Heuristic function h for Π (over S) is
 - **safe** if for each s∈S s.t. $h(s)=\infty$ it holds that s is a dead-end state (i.e, $h^*(s)=\infty$)
 - **goal aware** if $h(s_G)=0$ for each goal state s_G
 - **admissible** if for each s∈S it holds that h(s)≤h*(s)
 - **consistent** if goal aware and for each s,s'∈S s.t. s' is a successor of s it holds that $h(s) \le h(s') + cost(s,s')$

Towards Good Heuristics

Ideal Properties of Heuristics

- Easy to compute (at most in linear time)
- Easy to implement
- Very informative (close to the perfect heuristic)

These properties often go against each other

We consider STRIPS representation throughout this lecture

Goal Count Heuristic

- The Goal Count heuristic represents how many goal atoms have yet to be achieved
- h_G(s)=|G\s|
- Easy to compute ?

Goal Count Heuristic

- The Goal Count heuristic represents how many goal atoms have yet to be achieved
- h_G(s)=|G\s|
- Easy to compute ?
 - Yes
- Easy to implement ?

Goal Count Heuristic

- The Goal Count heuristic represents how many goal atoms have yet to be achieved
- h_G(s)=|G\s|
- Easy to compute ?
 - Yes
- Easy to implement ?
 - Yes
- Informative ?

Goal Count Heuristic - Issues

- Some goals are achieved too early
 - Sussman anomaly (in BW)
- If the goal has only one atom
- It might take many steps to achieve one goal atom
 - e.g. Sokoban
- Not admissible
 - one action can achieve more goal atoms

The goal is to to build the A-B-C tower

How to effectively compute reasonably informative heuristics?

- Relax some problem constraints
- Abstract the problem
- Leverage some structural information
 - Landmarks
 - Potentials
- •

Relaxation

8-puzzle example

- A tile can move from square A to B if A is adjacent to B and B is free → h*
- A tile can move from square A to B if A is adjacent to B \rightarrow h^{MD} (Manhattan distance)
- A tile can move from square A to B \rightarrow h^{MT} (Misplaced Tiles)

h* ≥ h^{MD} ≥ h^{MT} (why?)

Relaxation

- Removing one or more constraints from the problem
- Solution of the original problem is a solution of the relaxed problem
- If the relaxed problem is unsolvable, then the original problem is unsolvable too
- Solving the relaxed problem is at most as hard as solving the original problem

Relaxation in planning

- How to relax planning tasks?
 - remove delete effects!
 - in SAS, we don't remove variable assignment when its value changes (accumulate the values)
- We sometimes explicitly refer to such a relaxation as delete-relaxation

Relaxed Planning Tasks

- The (delete-)relaxation a+ of an action a=(pre(a),del(a),add(a)) is a+=(pre(a),add(a))
- The **result** of application of a+ in a state s (if possible) is s'=sUadd(a)
- Let Π =(P,A,I,G) be a planning task. The **relaxed planning task** Π + for Π is Π +=(P, {a+ | a \in A},I,G)
- If Π^+ is a plan for Π^+ , then Π^+ is a **relaxed plan** for Π^-

• A **perfect** (or optimal) **relaxed heuristics**, denoted as h+, maps each state to the length (or cost) of the optimal relaxed plan to the nearest goal state

h⁺

- h+ is safe, goal aware, admissible and consistent
- Finding optimal (delete-)relaxed plans is NP-hard
 - Not very practical to use h+
- Any other idea ?

Greedy Algorithm for Relaxed Planning Tasks

```
s:=1
\pi+:=\langle \rangle
while G⊈s do
     select any a+\in A+ s.t. a+ is applicable in s and add(a+)\nsubseteqs
     if no such a+ exists then return no solution
     s:=suadd(a+)
     \pi^{+} = \pi^{+} \cdot a^{+}
return π+
```


Properties of the Algorithm

sound

- returned plan is a relaxed plan for the planning task
- if "unsolvable" is returned, then no action can add an atom to the state and hence some goal atoms cannot be achieved

complete

- the algorithm always terminates
 - each action can be applied at most once
 - at least one atom is added in each iteration
- linear time complexity

Heuristic from the Greedy Algorithm

- The length or the cost of the relaxed plan (from the state s) is the heuristic value for s
- Such a heuristic is
 - safe
 - goal aware
- Often such relaxed plans are very suboptimal and such a heuristic is thus not very informative

Two possibilities how to calculate relaxed heuristics

- Do not generate relaxed plans but estimate difficulty of a relaxed planning task
 - h_{max}
 - h_{add}
- Generate "reasonable" relaxed plans
 - h_{FF}

Optimistic and Pessimistic Assumptions of Task Difficulty

- The idea is to estimate cost of achieving an atom or of applying an action
- For each atom we look for the cheapest action to achieve it
- For each action we consider (either)
 - **sum** of the costs of the **atoms** in its precondition (h_{add})
 - maximum of the costs of the atoms in its precondition (h_{max})
- It can be observed that
 - h_{max} provides an **optimistic** assumption for the relaxed plan cost
 - h_{add} provides a **pessimistic** assumption for the relaxed plan cost
 - $-h_{\text{max}} \leq h^+ \leq h_{\text{add}}$

Heuristic h_{add}

$$h_{add}(s)=h_{add}(G;s)$$

$$h_{add}(P;s) = \sum_{p \in P} h_{add}(p;s)$$

$$h_{add}(p;s) = 0$$
, if $p \in s$
= $a_p(s)$, otherwise

$$a_p(s)=min_{a\in\{a'|p\in add(a')\}}h_{add}(a;s)$$

$$h_{add}(a;s)=c(a)+h_{add}(pre(a);s)$$

Note that s is a state, p is an atom, a is an action, G is a goal and P is a set of atoms

Heuristic h_{max}

$$h_{max}(s)=h_{max}(G;s)$$

$$h_{max}(P;s)=\max_{p\in P}h_{max}(p;s)$$

$$h_{max}(p;s) = 0$$
, if $p \in s$
 $= a_p(s)$, otherwise
 $a_p(s) = \min_{a \in \{a' \mid p \in add(a')\}} h_{max}(a;s)$
 $h_{max}(a;s) = c(a) + h_{max}(pre(a);s)$

Note that s is a state, p is an atom, a is an action, G is a goal and P is a set of atoms

Computation

- Basic idea value iteration
- Set values of initial atoms to 0, and to ∞ for other atoms and actions
- If a value of an atom changes, update the values of actions having it in precondition accordingly
- Label-correcting action selection method
 - select an **arbitrary** action to process (update the values of atoms in its add effects accordingly)
 - multiple updates per atom
- Dijkstra action selection method
 - select the cheapest action to process (update the values of atoms in its add effects accordingly)
 - single update per atom

Reachability graph

- Also known as relaxed planning graph
- Consists of alternating layers of atoms and actions P₀,A₀,P₁,A₁,...

$$P_0=I$$

$$A_i = \{a \mid pre(a) \subseteq P_i\}$$

$$P_{i+1}=P_i \cup U_{a \in A_i} add(a)$$

Terminate when G⊆P_i or P_{i+1}=P_i

Running Example (relaxed planning task)

```
P = \{a,b,c,d,e,f,g,h\}
I = \{a\}
G = \{c,d,e,f,g\}
a_1 = (\{a\}, \{b,c\})
a_2 = (\{a,c\},\{d\})
a_3 = (\{b,c\},\{e\})
a_4 = (\{b\}, \{f\})
a_5 = (\{d\}, \{e,f\})
a_6 = (\{d\}, \{g\})
```

Running Example: Reachability Graph

a

))

Running Example: Reachability Graph

Running Example: Reachability Graph

Using Reachability Graph for computing h_{max} and h_{add}

- For uniform cost planning tasks we can leverage reachability graph
 - It's a special case of the **Dijkstra action selection method**
- Initially, the reachability graph is constructed from I (or any state s)
 - If a fixed point is reached, i.e., $P_{i+1}=P_i$, then $h_{max}(I)=h_{add}(I)=\infty$
- Then actions are processed layer by layer (from A₀, A₁, ...) until G is reached
 - The value in G is the value of the heuristic for I (or s)

Running Example: h_{max}

Running Example: h_{max}

Running Example: h_{max}

Running Example: h_{max}

Remarks

- h_{max} is sometimes too optimistic as it assumes that some (parallel) actions count as one
 - e.g. loading and unloading multiple packages into/from the truck
- h_{add} is sometimes too pessimistic as it assumes that each atom is achieved by a separate process
 - e.g. moving a block from a tower can both place the block in the right place and clears the block underneath
- Generally, h_{add} is more informative than h_{max} albeit being inadmissible

$\mathsf{h}_{{}_{\mathsf{FF}}}$

- Generates whole relaxed plans (suboptimal but often reasonable)
- Reachability graph is initially generated and the goal node is marked
 - If, however, a fixed point is reached, i.e., $P_{i+1}=P_i$, then $h_{FF}(I)=\infty$
- Each action or atom node can be either marked or unmarked
- A marked action node is justified if all its predecessors (atom nodes) are marked
- A marked atom node is justified if at least one of its predecessors is marked

$\mathsf{h}_{{}_{\mathsf{FF}}}$

- Starting with marked goal node, apply the following rules layer by layer until all marked nodes are justified
- 1) Mark all immediate predecessors of a marked unjustified action node
- 2) Mark the immediate predecessor of a marked unjustified atom node with only one immediate predecessor
- 3) Mark an immediate predecessor of a marked unjustified atom node connected via an idle arc (to the same atom in the previous layer)
- 4) Mark any immediate predecessor of a marked unjustified atom node
- The rules are applied in a priority order (earlier first if applicable)
- The number (or the total cost) of marked action nodes is the her value

h_{FF} Remarks

- h_{FF} is not well defined as tie-breaking might lead to different values
- $h_{max} \le h^+ \le h_{FF} \le h_{add}$

FF planner won the second IPC (in 2000)

 Note that delete-relaxation has some drawbacks (e.g. some nondetected dead-ends)