
Planning for Artificial Intelligence

Lukáš Chrpa

Relaxation Heuristics

Search, Heuristics
(revision)

Informed Search

● Systematic (one-directional)

– Greedy Best First Search (GBFS)

– A*

– Weighted A*

● Systematic bidirectional

● Local

– (Enforced) Hill Climbing

Heuristic Function

● Let S be a set of states for a given planning task П. A heuristic
function (or heuristics) for П is a function h:S NN 0∪{∞}

● The value h(s) estimates distance from s to the nearest goal state

● h(s) is called heuristic estimate or heuristic value for s

● A perfect (or optimal) heuristics, denoted as h*, maps each state
to the length (or cost) of the optimal plan to the nearest goal state

– If h*(s)=∞ then s is a dead-end state (no goal state is
reachable from s)

Properties of Heuristic Function

● Heuristic function h for П (over S) is

– safe if for each s∈S s.t. h(s)=∞ it holds that s is a dead-end state
(i.e, h*(s)=∞)

– goal aware if h(sG)=0 for each goal state sG

– admissible if for each s∈S it holds that h(s)≤h*(s)

– consistent if goal aware and for each s,s’∈S s.t. s’ is a successor of
s it holds that h(s)≤h(s’)+cost(s,s’)

Towards Good Heuristics

Ideal Properties of Heuristics

● Easy to compute (at most in linear time)

● Easy to implement

● Very informative (close to the perfect heuristic)

● These properties often go against each other

● We consider STRIPS representation throughout this lecture

Goal Count Heuristic

● The Goal Count heuristic represents how many goal atoms have yet to
be achieved

● hG(s)=|G∖s|

● Easy to compute ?

Goal Count Heuristic

● The Goal Count heuristic represents how many goal atoms have yet to
be achieved

● hG(s)=|G∖s|

● Easy to compute ?

– Yes

● Easy to implement ?

Goal Count Heuristic

● The Goal Count heuristic represents how many goal atoms have yet to
be achieved

● hG(s)=|G∖s|

● Easy to compute ?

– Yes

● Easy to implement ?

– Yes

● Informative ?

Goal Count Heuristic - Issues

● Some goals are achieved too early

– Sussman anomaly (in BW)

● If the goal has only one atom

● It might take many steps to achieve
one goal atom

– e.g. Sokoban

● Not admissible

– one action can achieve more
goal atoms

A

C

 B A

C

 B

The goal is to to build the A-B-C tower

How to effectively compute reasonably informative
heuristics ?

● Relax some problem constraints

● Abstract the problem

● Leverage some structural information

– Landmarks

– Potentials

● ….

Relaxation

8-puzzle example

● A tile can move from square A to B if A is adjacent to B and B is free → h*

● A tile can move from square A to B if A is adjacent to B → hMD (Manhattan distance)

● A tile can move from square A to B → hMT (Misplaced Tiles)

● h* ≥ hMD ≥ hMT (why?)

Relaxation

● Removing one or more constraints from the problem

● Solution of the original problem is a solution of the relaxed problem

● If the relaxed problem is unsolvable, then the original problem is
unsolvable too

● Solving the relaxed problem is at most as hard as solving the original
problem

Relaxation in planning

● How to relax planning tasks ?

– remove delete effects !

– in SAS, we don’t remove variable assignment when its value
changes (accumulate the values)

● We sometimes explicitly refer to such a relaxation as delete-relaxation

Relaxed Planning Tasks

● The (delete-)relaxation a+ of an action a=(pre(a),del(a),add(a)) is
a+=(pre(a),add(a))

● The result of application of a+ in a state s (if possible) is s’=s∪add(a)

● Let Π=(P,A,I,G) be a planning task. The relaxed planning task Π+ for Π is Π+=(P,
{a+ | a∈A},I,G)

● If π+ is a plan for Π+, then π+ is a relaxed plan for Π

● A perfect (or optimal) relaxed heuristics, denoted as h+, maps each state
to the length (or cost) of the optimal relaxed plan to the nearest goal state

h+

● h+ is safe, goal aware, admissible and consistent

● Finding optimal (delete-)relaxed plans is NP-hard
– Not very practical to use h+

● Any other idea ?

Greedy Algorithm for Relaxed Planning Tasks

s:=I
π+:=⟨〉

while G⊈s do

 select any a+∈A+ s.t. a+ is applicable in s and add(a+)⊈s
 if no such a+ exists then return no solution

 s:=s∪add(a+)
 π+:=π+.a+

return π+

Properties of the Algorithm

● sound

– returned plan is a relaxed plan for the planning task

– if “unsolvable” is returned, then no action can add an atom to the state
and hence some goal atoms cannot be achieved

● complete

– the algorithm always terminates
● each action can be applied at most once
● at least one atom is added in each iteration

● linear time complexity

Heuristic from the Greedy Algorithm

● The length or the cost of the relaxed plan (from the state s) is the
heuristic value for s

● Such a heuristic is

– safe

– goal aware

● Often such relaxed plans are very suboptimal and such a heuristic is
thus not very informative

Two possibilities how to calculate relaxed heuristics

● Do not generate relaxed plans but estimate difficulty of a relaxed
planning task

– hmax

– hadd

● Generate “reasonable” relaxed plans

– hFF

Optimistic and Pessimistic Assumptions of Task Difficulty

● The idea is to estimate cost of achieving an atom or of applying an action

● For each atom we look for the cheapest action to achieve it

● For each action we consider (either)

– sum of the costs of the atoms in its precondition (hadd)

– maximum of the costs of the atoms in its precondition (hmax)

● It can be observed that

– hmax provides an optimistic assumption for the relaxed plan cost

– hadd provides a pessimistic assumption for the relaxed plan cost

– hmax ≤ h+ ≤ hadd

Heuristic h
add

hadd(s)=hadd(G;s)

hadd(P;s) = Σp∈P hadd(p;s)

hadd(p;s) = 0, if p∈s

 = ap(s), otherwise

ap(s)=mina∈{a’|p add∈ (a’)}hadd(a;s)

hadd(a;s)=c(a)+hadd(pre(a);s)

Note that s is a state, p is an atom, a is an action, G is a goal and P is a set of atoms

Heuristic h
max

hmax(s)=hmax(G;s)

hmax(P;s) = maxp∈P hmax(p;s)

hmax(p;s) = 0, if p∈s

 = ap(s), otherwise

ap(s)=mina∈{a’|p add∈ (a’)}hmax(a;s)

hmax(a;s)=c(a)+hmax(pre(a);s)

Note that s is a state, p is an atom, a is an action, G is a goal and P is a set of atoms

Computation
● Basic idea – value iteration

● Set values of initial atoms to 0, and to ∞ for other atoms and actions

● If a value of an atom changes, update the values of actions having it in precondition accordingly

● Label-correcting action selection method

– select an arbitrary action to process (update the values of atoms in its add effects
accordingly)

– multiple updates per atom

● Dijkstra action selection method

– select the cheapest action to process (update the values of atoms in its add effects
accordingly)

– single update per atom

Reachability graph

● Also known as relaxed planning graph

● Consists of alternating layers of atoms and actions P0,A0,P1,A1,…

P0=I

Ai={a | pre(a)Pi}

Pi+1=Pi∪ ∪a∈Aiadd(a)

● Terminate when GPi
 or Pi+1=Pi

Running Example (relaxed planning task)

P = {a,b,c,d,e,f,g,h}

I = {a}

G= {c,d,e,f,g}

a1=({a},{b,c})

a2=({a,c},{d})

a3=({b,c},{e})

a4=({b},{f})

a5=({d},{e,f})

a6=({d},{g})

Running Example: Reachability Graph

a

P
0

Running Example: Reachability Graph

a

P
0

a
1

a

b

c

A
0

P
1

Running Example: Reachability Graph

a

P
0

a
1

a

b

c

A
0

P
1

a
1

a
2

a
3

a
1

a
2

a
3

a
4

a
4

a
5

a
6

a

b

c

d

e

f

a

b

c

d

e

f

g

G

A
1

P
2 A

2
P

3

Using Reachability Graph for computing h
max

 and h
add

● For uniform cost planning tasks we can leverage reachability graph

– It’s a special case of the Dijkstra action selection method

● Initially, the reachability graph is constructed from I (or any state s)

– If a fixed point is reached, i.e., Pi+1=Pi, then hmax(I)=hadd(I)=∞

● Then actions are processed layer by layer (from A0, A1, …) until G is
reached

– The value in G is the value of the heuristic for I (or s)

Running Example: h
max

a

P
0

a
1

a

b

c

A
0

P
1

a
1

a
2

a
3

a
1

a
2

a
3

a
4

a
4

a
5

a
6

a

b

c

d

e

f

a

b

c

d

e

f

g

G

A
1

P
2 A

2
P

3

Running Example: h
max

0

P
0

a
1

0

b

c

A
0

P
1

a
1

a
2

a
3

a
1

a
2

a
3

a
4

a
4

a
5

a
6

0

b

c

d

e

f

0

b

c

d

e

f

g

G

A
1

P
2 A

2
P

3

Running Example: h
max

0

P
0

1

0

1

1

A
0

P
1

1

a
2

a
3

1

a
2

a
3

a
4

a
4

a
5

a
6

0

1

1

d

e

f

0

1

1

d

e

f

g

G

A
1

P
2 A

2
P

3

Running Example: h
max

0

P
0

1

0

1

1

A
0

P
1

1

2

2

1

2

2

2 2

3

3

0

1

1

2

2

2

0

1

1

2

2

2

3

3

A
1

P
2 A

2
P

3

h
max

(I)=3

Running Example: h
add

a

P
0

a
1

a

b

c

A
0

P
1

a
1

a
2

a
3

a
1

a
2

a
3

a
4

a
4

a
5

a
6

a

b

c

d

e

f

a

b

c

d

e

f

g

G

A
1

P
2 A

2
P

3

Running Example: h
add

0

P
0

a
1

0

b

c

A
0

P
1

a
1

a
2

a
3

a
1

a
2

a
3

a
4

a
4

a
5

a
6

0

b

c

d

e

f

0

b

c

d

e

f

g

G

A
1

P
2 A

2
P

3

Running Example: h
add

0

P
0

1

0

1

1

A
0

P
1

1

a
2

a
3

1

a
2

a
3

a
4

a
4

a
5

a
6

0

1

1

d

e

f

0

1

1

d

e

f

g

G

A
1

P
2 A

2
P

3

Running Example: h
add

0

P
0

1

0

1

1

A
0

P
1

1

2

3

1

2

3

2 2

a
5

a
6

0

1

1

2

3

2

0

1

1

2

3

2

g

G

A
1

P
2 A

2
P

3

Running Example: h
add

0

P
0

1

0

1

1

A
0

P
1

1

2

3

1

2

3

2 2

3

3

0

1

1

2

3

2

0

1

1

2

3

2

3

11

A
1

P
2 A

2
P

3

h
add

(I)=11

Remarks

● hmax is sometimes too optimistic as it assumes that some (parallel)
actions count as one

– e.g. loading and unloading multiple packages into/from the truck

● hadd is sometimes too pessimistic as it assumes that each atom is
achieved by a separate process

– e.g. moving a block from a tower can both place the block in the right
place and clears the block underneath

● Generally, hadd is more informative than hmax albeit being inadmissible

h
FF

● Generates whole relaxed plans (suboptimal but often reasonable)

● Reachability graph is initially generated and the goal node is marked

– If, however, a fixed point is reached, i.e., Pi+1=Pi, then hFF(I)=∞

● Each action or atom node can be either marked or unmarked

● A marked action node is justified if all its predecessors (atom nodes)
are marked

● A marked atom node is justified if at least one of its predecessors is
marked

h
FF

● Starting with marked goal node, apply the following rules layer by layer until all
marked nodes are justified

1) Mark all immediate predecessors of a marked unjustified action node

2) Mark the immediate predecessor of a marked unjustified atom node with only one
immediate predecessor

3) Mark an immediate predecessor of a marked unjustified atom node connected via an
idle arc (to the same atom in the previous layer)

4) Mark any immediate predecessor of a marked unjustified atom node

● The rules are applied in a priority order (earlier first if applicable)

● The number (or the total cost) of marked action nodes is the hFF value

Running Example: h
FF

a

P
0

a
1

a

b

c

A
0

P
1

a
1

a
2

a
3

a
1

a
2

a
3

a
4

a
4

a
5

a
6

a

b

c

d

e

f

a

b

c

d

e

f

g

M

A
1

P
2 A

2
P

3

Running Example: h
FF

a

P
0

a
1

a

b

c

A
0

P
1

a
1

a
2

a
3

a
1

a
2

a
3

a
4

a
4

a
5

a
6

a

b

c

d

e

f

a

b

M

M

M

M

M

M

A
1

P
2 A

2
P

3

Running Example: h
FF

a

P
0

a
1

a

b

c

A
0

P
1

a
1

a
2

a
3

a
1

a
2

a
3

a
4

a
4

a
5

M

a

b

c

d

e

f

a

b

M

M

M

M

M

M

A
1

P
2 A

2
P

3

Running Example: h
FF

a

P
0

a
1

a

b

c

A
0

P
1

a
1

a
2

a
3

a
1

a
2

a
3

a
4

a
4

a
5

M

a

b

M

M

M

M

a

b

M

M

M

M

M

M

A
1

P
2 A

2
P

3

Running Example: h
FF

a

P
0

a
1

a

b

c

A
0

P
1

a
1

M

M

a
1

a
2

a
3

M a
4

a
5

M

a

b

M

M

M

M

a

b

M

M

M

M

M

M

A
1

P
2 A

2
P

3

Running Example: h
FF

M

P
0

M

M

M

M

A
0

P
1

a
1

M

M

a
1

a
2

a
3

M a
4

a
5

M

a

b

M

M

M

M

a

b

M

M

M

M

M

M

A
1

P
2 A

2
P

3

h
FF

(I)=5

h
FF

 Remarks

● hFF is not well defined as tie-breaking might lead to different values

● hmax ≤ h+ ≤ hFF ≤ hadd

● FF planner won the second IPC (in 2000)

● Note that delete-relaxation has some drawbacks (e.g. some non-
detected dead-ends)

