Planning for Artificial Intelligence

»2(CESKE o A m
Jg f%':“ Lukas Chrpa I

CENTER

Relaxation Heuristics

Search, Heuristics
(revision)

/\I

CENTER

Informed Search

e Systematic (one-directional)
- Greedy Best First Search (GBFS)
— A*
- Weighted A*

e Systematic bidirectional

* Local
— (Enforced) Hill Climbing

/\I

CENTER

Heuristic Function

* Let S be a set of states for a given planning task I1. A heuristic
function (or heuristics) for I1is a function h:S—NjU{oo}

* The value h(s) estimates distance from s to the nearest goal state
* h(s) is called heuristic estimate or heuristic value for s

* A perfect (or optimal) heuristics, denoted as h*, maps each state
to the length (or cost) of the optimal plan to the nearest goal state

- If h*(s)=w then s is a dead-end state (no goal state is
reachable from s)

/\I

CENTER

Properties of Heuristic Function

* Heuristic function h for I (over S) is

- safe if for each s&S s.t. h(s)=c it holds that s Is a dead-end state
(i.e, h*(s)=x)

- goal aware if h(s;)=0 for each goal state sg
- admissible if for each s&S it holds that h(s)<h*(s)

- consistent if goal aware and for each s,5'&€S s.t. s’ Is a successor of
S it holds that h(s)<h(s’)+cost(s,s’)

Towards Good Heuristics

/\I

CENTER

Ideal Properties of Heuristics

 Easy to compute (at most in linear time)

Easy to implement

Very informative (close to the perfect heuristic)

These properties often go against each other

We consider STRIPS representation throughout this lecture

/\I

CENTER

Goal Count Heuristic

 The Goal Count heuristic represents how many goal atoms have yet to
be achieved

* hg(s)=|G\s|

* Easy to compute ?

/\I

CENTER

Goal Count Heuristic

 The Goal Count heuristic represents how many goal atoms have yet to
be achieved

* hg(s)=|G\s|
* Easy to compute ?
- Yes

* Easy to implement ?

/\I

CENTER

Goal Count Heuristic

 The Goal Count heuristic represents how many goal atoms have yet to
be achieved

* hg(s)=|G\s|
* Easy to compute ?
- Yes

* Easy to implement ?
- Yes

* [nformative ?

Goal Count Heuristic - Issues

* Some goals are achieved too early

- Sussman anomaly (in BW)
* If the goal has only one atom

* |t might take many steps to achieve
one goal atom

- e.g. Sokoban

 Not admissible

— one action can achieve more
goal atoms

A B

=

/\I

CENTER

The goal is to to build the A-B-C tower

. . | AN
How to effectively compute reasonably informative CENTER

heuristics ?

Relax some problem constraints

Abstract the problem

Leverage some structural information
- Landmarks

- Potentials

Relaxation

/\I

CENTER

8-puzzle example

7 2 4 1 2 3
5 o || > [4] 5] e
8 3 1 7 8

A tile can move from square Ato B if Ais adjacentto B and B is free - h*

A tile can move from square Ato B if Ais adjacent to B — hvmp (Manhattan distance)

A tile can move from square Ato B — hvt (Misplaced Tiles)

h* > hvo > hvT (why?)

/\I

CENTER

Relaxation

« Removing one or more constraints from the problem
e Solution of the original problem is a solution of the relaxed problem

* |f the relaxed problem is unsolvable, then the original problem is
unsolvable too

* Solving the relaxed problem is at most as hard as solving the original
problem

/\I

CENTER

Relaxation in planning

 How to relax planning tasks ?
- remove delete effects !

- In SAS, we don’t remove variable assignment when its value
changes (accumulate the values)

* We sometimes explicitly refer to such a relaxation as delete-relaxation

/\I

CENTER

Relaxed Planning Tasks

* The (delete-)relaxation a+of an action a=(pre(a),del(a),add(a)) is
a+=(pre(a),add(a))

* The result of application of a+ in a state s (if possible) is s’=suadd(a)

* Let N=(P,A,l,G) be a planning task. The relaxed planning task I+ for [1is [M+=(P,
{ar | a€A}1,G)

* If n+is a plan for I+, then n+ is a relaxed plan for 1

* A perfect (or optimal) relaxed heuristics, denoted as h+, maps each state
to the length (or cost) of the optimal relaxed plan to the nearest goal state

/\I

CENTER

h+
* h+is safe, goal aware, admissible and consistent

* Finding optimal (delete-)relaxed plans is NP-hard
— Not very practical to use h+

* Any other idea ?

/\I

CENTER

Greedy Algorithm for Relaxed Planning Tasks

s:=l

=)

while G¢Zs do
select any a*€A+ s.t. a+ Is applicable in s and add(a+)Zs
If no such a+ exists then return no solution
s:=suadd(a+)
T+ =TT+.a+

return 71+

/\I

. . CENTER
Properties of the Algorithm
* sound
— returned plan is a relaxed plan for the planning task

- if “unsolvable” is returned, then no action can add an atom to the state
and hence some goal atoms cannot be achieved

« complete

- the algorithm always terminates
e each action can be applied at most once
» atleast one atom is added in each iteration

* linear time complexity

/\I

CENTER

Heuristic from the Greedy Algorithm

* The length or the cost of the relaxed plan (from the state s) is the
heuristic value for s

e Such a heuristic is
- safe

- goal aware

e Often such relaxed plans are very suboptimal and such a heuristic is
thus not very informative

/\I

CENTER

Two possibilities how to calculate relaxed heuristics

* Do not generate relaxed plans but estimate difficulty of a relaxed
planning task

- hmax

- hadd

* Generate “reasonable” relaxed plans
B hFF

/\I

CENTER

Optimistic and Pessimistic Assumptions of Task Difficulty

The idea is to estimate cost of achieving an atom or of applying an action

For each atom we look for the cheapest action to achieve it

For each action we consider (either)
- sum of the costs of the atoms in its precondition (h,4,)

- maximum of the costs of the atoms in its precondition (h,,,,)

It can be observed that

- h,..provides an optimistic assumption for the relaxed plan cost
- h_4qprovides a pessimistic assumption for the relaxed plan cost

- hmax <h+< hadd

[]
/\I
CENTER

Heuristic h__

N,aa(S)=,aa(G;S)

Naga(P;S) = zpep Naga(P;S)

h,.4(P;S) =0, If pEs
= a,(s), otherwise
ap(s):minae{a’|p€add(a’)}hadd(a;S)

h.aa(@;8)=c(a)*+h,gq(Pre(a);s)

Note that s is a state, p iIs an atom, a is an action, G is a goal and P is a set of atoms

[]
/\I
CENTER

Heuristic h_

hmax(S): hmax(G ’S)

hmax(P;S) - rnaxpEP hmax(p’S)

Nie(P;S) = 0, If pEs
= a,(s), otherwise
a,(S)=MiNaeajpeaddanmax(@;S)
Nyax(@;8)=C(a)+ha(pre(a);s)

Note that s is a state, p is an atom, a is an action, G is a goal and P is a set of atoms

/\I

CENTER

Computation

 Basic idea — value iteration
e Set values of initial atoms to 0, and to « for other atoms and actions
* If a value of an atom changes, update the values of actions having it in precondition accordingly

* Label-correcting action selection method

— select an arbitrary action to process (update the values of atoms in its add effects
accordingly)

- multiple updates per atom

* Dijkstra action selection method

- select the cheapest action to process (update the values of atoms in its add effects
accordingly)

- single update per atom

/\Ii
CENTER

Reachabllity graph

* Also known as relaxed planning graph

« Consists of alternating layers of atoms and actions Py, A, P,A4,...
Po=I
A={a | pre(a)=P}

P..=P,U U c,add(a)

« Terminate when GEP;or P,,,=P;

/\I

Running Example (relaxed planning task) o
P ={a,b,c,d,e,f,g,h}

| ={a}

G={c,d,e f,g}

a,=({a}.{b,c})

a,=({a,c},{d})

a;=({b,c}.{e})

a,=({b}.{f})

as=({d},{e,f})

as=({d}.{g})

Running Example: Reachability Graph c{ép!
@ |

Running Example:

()
)

kO

Reachability Graph

/\I

CENTER

Running Example:

Reachability Graph

T

y

dErrra

EEEEEE

/\Ii
CENTER

Using Reachability Graph for computing h __ and h__.

* For uniform cost planning tasks we can leverage reachability graph

- It’s a special case of the Dijkstra action selection method
 [|nitially, the reachability graph is constructed from | (or any state s)
- If a fixed point is reached, i.e., P,.;=P;, then h__()=h_4(1)=

 Then actions are processed layer by layer (from A,, A, ...) until G is
reached

- The value in G is the value of the heuristic for | (or s)

/\Ii
CENTER

/\Ii
CENTER

[]
/\I
CENTER

[]
/\I
CENTER

/\Ii
CENTER

/\Ii
CENTER

[]
/\I
CENTER

[]
/\I
CENTER

Running Example: h_.

[]
/\I
CENTER

/\I

CENTER

Remarks
* h,.. IS sometimes too optimistic as it assumes that some (parallel)
actions count as one

- e.g. loading and unloading multiple packages into/from the truck

* h, IS SOmetimes too pessimistic as it assumes that each atom is
achieved by a separate process

- e.g. moving a block from a tower can both place the block in the right
place and clears the block underneath

 Generally, h_44 Is more informative than h.,, albeit being inadmissible

/\I

CENTER

FF
Generates whole relaxed plans (suboptimal but often reasonable)
Reachability graph is initially generated and the goal node is marked

- If, however, a fixed point is reached, i.e., P,,;=P;, then h(I)=c
Each action or atom node can be either marked or unmarked

A marked action node is justified if all its predecessors (atom nodes)
are marked

A marked atom node is justified if at least one of its predecessors is
marked

/\I

CENTER

h

FF

« Starting with marked goal node, apply the following rules layer by layer until all
marked nodes are justified

1) Mark all immediate predecessors of a marked unjustified action node

2) Mark the immediate predecessor of a marked unjustified atom node with only one
Immediate predecessor

3) Mark an immediate predecessor of a marked unjustified atom node connected via an
idle arc (to the same atom in the previous layer)

4) Mark any immediate predecessor of a marked unjustified atom node
* The rules are applied in a priority order (earlier first if applicable)

* The number (or the total cost) of marked action nodes is the hg: value

/\Ii
CENTER

/\Ii
CENTER

/\Ii
CENTER

/\Ii
CENTER

[]
/\I
CENTER

[]
/\I
CENTER

/\I

CENTER

h.. Remarks

* hge IS not well defined as tie-breaking might lead to different values

hmax = h+ = hFF = hadd
* FF planner won the second IPC (in 2000)

* Note that delete-relaxation has some drawbacks (e.g. some non-
detected dead-ends)

