Planning for Artificial Intelligence

Lukáš Chrpa

Planning Portfolios

Domain-independent Planning

- Heuristic search
 - delete-relaxation
 - landmarks
 - potentials
 - abstractions
 - ...
- Planning as SAT or CSP
-
- No planner rules them all !
 - as demonstrated by the results of IPCs

Spanner Domain

(:action walk :parameters (?start - location ?end - location ?m - man) :precondition (and (at ?m ?start)(link ?start ?end)) :effect (and (not (at ?m ?start)) (at ?m ?end)))
(:action pickup_spanner :parameters (?l - location ?s - spanner ?m - man) :precondition (and (at ?m ?l)(at ?s ?l)) :effect (and (not (at ?s ?l))(carrying ?m ?s)))
<pre>(:action tighten_nut :parameters (?l - location ?s - spanner ?m - man ?n - nut) :precondition (and (at ?m ?l)(at ?n ?l)(carrying ?m ?s)(useable ?s</pre>

Issues of the Spanner Domain

- Can be solved in polynomial time
- Deep dead-ends for delete-relaxed heuristics
 - Delete-relaxed heuristics assume that one spanner can be used to tighten all nuts
 - and it takes a long time to figure out all spanners have to be picked up
- Unnecessary symmetries
 - It does not matter which spanner is used for tightening a nut
 - Problematic for landmark generation
- SAT-based planners work reasonably

Selecting the Best Planner

- Manually
 - Try the planners on a number planning tasks and pick up the best one
 - As a rule of thumb we can assume that a planner has a consistent performance on tasks from the same domain (not always true)
- Automatically
 - The **algorithm selection** problem
 - Learning a predictive model of planners' performance based of planning task features

Planning Portfolios

- Leveraging multiple (orthogonal) techniques for solving the task
 - SAT solving, ASP, Argumentation ...
- Planning Portfolios
 - Collection of different planning techniques running sequentially or in parallel (or combination of both)

Types of Planning Portfolios

- **Dynamic** portfolios
 - Configured specifically for a given domain
 - PbP (winner of the learning track of IPC 2008 and 2011)
- Static portfolios
 - Configured once for all (possible) domains
 - IBACOP (winner of the satisficing track of IPC 2014)
 - FDSS (winner of the satisficing track of IPC 2018)
 - Delfi (winner of the optimal track of IPC 2018)