
Planning for Artificial Intelligence

Lukáš Chrpa

LP-based Heuristics

Linear Programming

Linear Program

● A Linear Program (LP) consists of

– A finite set of real-valued variables V

– A finite set of linear inequalities over variables V

– An objective function being a linear combination over V, which
should be either maximized or minimized

● An Integer Program (IP) is the same except integer-valued variables

Complexity of LP

● An LP problem can be solved in polynomial time

● Solving IP is NP-complete

● Approximate IP solutions by corresponding LP ones (LP relaxation)

LP for Shortest Path in State Space

● Variables

– Dists for each state s

– GoalDist

● Maximize GoalDist

● Subject to

– DistI = 0

– Dists’ ≤ Dists +c(a) for each γ(s,a)=s’

– GoalDist ≤ DistsG for each goal state sG

Cost Partitioning

Observations

● Enumerating the state space is not a feasible option

● One option is to somehow split a problem into small subproblems

– cost partitioning (action cost is divided into these subproblems)

● How ?

– by abstractions (will be taught in a few weeks …)

– DTG is a sort of abstraction

((more) Enhanced) Logistics Example

A

B
C

A

B
C

Initial state Goal

E
E

((more) Enhanced) Logistics Example – DTGs

DTGp1

DTGp2

B t C

A

p E

A t C

B

p E

Cost Partitioning

● Create copies Π1,…,Πn of a planning task Π

● Each copy has a different action cost function ci (≥0)

● For each action, c1(a)+...+cn(a) ≤ c(a)

● We can derive that

h1*+...+hn* ≤ h*

Optimal Cost Partitioning with LP

● Use variables for costs of each action in each task copy

● Express heuristic values with linear constraints (inequalities)

● Maximize the sum of these heuristic values (subject to the constraints)

LP for Optimal Cost Partitioning for Abstractions

● Variables

– For each abstraction α
● Distαs for each state s (in α)

● cα(a) for each action a
● GoalDistα

● Maximize ΣαGoalDistα

LP for Optimal Cost Partitioning for Abstractions cont.

● Subject to

– for each action a
● cα(a) ≥ 0 (for each α)

● Σαcα(a) ≤ c(a)

– for each abstraction α
● DistαI = 0

● Distαs’ ≤ Distαs +cα(a) for each γα(s,a)=s’

● GoalDistα ≤ DistαsG for each abstract goal state sG

Operator Counting

Operator (action) Counting

● Reasoning about (solution) plans for deriving heuristics

● Linear constraints over variables representing the number of action
(operator) occurrence in every plan

● For example

– Ya1 + Ya2 + Ya3 ≥ 1 – must apply a1, a2 or a3 at least once (recall
disjunctive action landmarks)

● A package has to be loaded to some truck

– Ya4 – Ya5 ≤ 0 – cannot use a4 more often than a5

● A package cannot be unloaded more often than loaded

Operator-counting Heuristics

● Ya represents the number of occurrences of a

● Hence, for each action a Ya ≥ 0

● Minimize ΣaYac(a)

– this is also the value of the heuristic

● Additional constraints (inequalities) over Ya variables can be considered

– e.g. those in the previous slide

Properties of Operator-counting Heuristics

● Operator-counting heuristics are admissible

● Operator-counting heuristics can be calculated in polynomial time
(solving LP)

● Adding more constraints makes operator-counting heuristics more
informed

State-Equation Heuristic (SEQ)

● Facts (variable assignments) can be produced and consumed by actions

● Number of producing and consuming actions must be balanced for each fact
(depends on the current state and the goal)

– e.g in the Logistic example, let pkg=B be true in the current state and pkg=E
be the goal

● pkg=B has to be consumed (i.e., there has to be one more consumer of
pkg=B)

● pkg=E has to be produced (i.e., there has to be one more producer of
pkg=E)

● for pkg=X (X≠B,E), there has to be the same number of producers and
consumers

State-Equation Heuristic (SEQ)
● The set of actions producing f, prod(f)={a | f∈eff(a),f pre∉pre (a)}

● The set of actions consuming f, cons(f)={a | vars(f)∩vars(pre(a))∩vars(eff(a))≠∅, f pre∈ (a),
f∉preeff(a) }

● For each fact (variable assignment) over variables mentioned in G:

G(f) - s(f) ≤ Σa prod∈ (f)Ya – Σa cons∈ (f)Ya

● Note that we assume that variables mentioned in the effects of all actions are also mentioned in
the preconditions of these actions

– can be adapted for cases in which it doesn’t hold

● Note that s(f)=1 if f is true in s, otherwise s(f)=0, and G(f)=1 if f is part of the goal, otherwise
G(f)=0

Potential Heuristics

Potential Heuristics

● A state feature is a function f:S→ℝ

● A potential heuristic for a set of state features f1,f2,…,fn is a heuristic
function h defined as a linear combination of the state features

h(s) = w1f1(s) + w2f2(s) + … + wnfn(s)

 with real-valued weights (potentials) wi

Obtaining Ingredients for Potential Heuristics

● Computing state features should be fast (i.e. in constant time)

● Determining potentials

– LP to rescue !

– Ideally, potentials are computed only once (not in every visited
state as e.g. SEQ)

● Potential heuristic should be

– admissible

– consistent

Atomic Potential Heuristics

● An atomic state feature tests if an atom (fact) is true in a given state

● Let X=y be an atom (fact) and s be a state. The atomic feature fX=y(s) is
defined as:

 fX=y(s) = 1, if (X=y)∈ s

fX=y(s) = 0, otherwise

● We take into account all the atomic features

● Complexity ?

Atomic Potential Heuristics

● An atomic state feature tests if an atom (fact) is true in a given state

● Let X=y be an atom (fact) and s be a state. The atomic feature fX=y(s) is
defined as:

 fX=y(s) = 1, if X=y ∈ s

fX=y(s) = 0, otherwise

● We take into account all the atomic features

● Complexity ?

– Constant

Computing Potentials
● Constraints on potentials characterize admissible and consistent atomic

potential heuristics

● Goal awareness (for each goal state sG)

Σf sG∈ wf = 0
● Consistency (for each action a)

Σf pre∈ (a)wf – Σf eff∈ (a)wf ≤ c(a)

● Again, we assume that variables mentioned in preconditions and effects of all
actions are the same

Are we missing something ?

Are we missing something ? Objective function

● Well informed heuristics should be close to the perfect one

● Some examples of objective functions

– maximize heuristic value of the initial state

– maximize average heuristic value of all states

– maximize average heuristic value of sample states

– ….

A Little Bit of Theory

● Let hmaxpot(s) represent the maximum value across all admissible and
consistent atomic potential heuristics in s

● Let hSEQ(s) represent the state-equation heuristic value in s (in literature
the SEQ heuristic is also called the flow heuristic)

● Let hgOCP(s) represent the optimal general cost partitioning (omits non-
negativity cost constraints) of atomic projections (similar to DTGs)

● Theorem

hmaxpot(s) = hSEQ(s) = hgOCP(s)

