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LP-based Heuristics



Linear Programming
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Linear Program

 ALinear Program (LP) consists of
- Afinite set of real-valued variables V
- Afinite set of linear inequalities over variables V

- An objective function being a linear combination over V, which
should be either maximized or minimized

* An Integer Program (IP) is the same except integer-valued variables
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Complexity of LP

* An LP problem can be solved in polynomial time

e Solving IP is NP-complete

* Approximate IP solutions by corresponding LP ones (LP relaxation)
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LP for Shortest Path in State Space

e Variables
- Dist, for each state s

- GoalDist
* Maximize GoalDist
e Subjectto
- Dist;=0
- Dist,. < Dist, +c(a) for each y(s,a)=s’

- GoalDist < Dist; for each goal state s;



Cost Partitioning
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Observations

 Enumerating the state space is not a feasible option
* One option Is to somehow split a problem into small subproblems

— cost partitioning (action cost is divided into these subproblems)
* How ?

- by abstractions (will be taught in a few weeks ...)

- DTG is a sort of abstraction
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((more) Enhanced) Logistics Example — DTGs
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Cost Partitioning

Create copies I1,,...,I1, of a planning task I1

Each copy has a different action cost function c;(=0)

For each action, c,(a)+...+c,(a) < c(a)

We can derive that

h,*+...+h * < h*
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Optimal Cost Partitioning with LP

* Use variables for costs of each action in each task copy
e Express heuristic values with linear constraints (inequalities)

 Maximize the sum of these heuristic values (subject to the constraints)
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LP for Optimal Cost Partitioning for Abstractions

* Variables

- For each abstraction o
» Diste for each state s (in o)

* co(a) for each action a
* GoalDist«

* Maximize ZaGoalDista
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LP for Optimal Cost Partitioning for Abstractions cont.

* Subjectto

- for each action a
* c«a) =20 (for each a)
* ZaCa(a) < c(a)
- for each abstraction a
e Disty =0
e Diste, < Diste, +c«(a) for each y«(s,a)=s’

» GoalDist« < Diste for each abstract goal state s,



Operator Counting
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Operator (action) Counting

* Reasoning about (solution) plans for deriving heuristics

* Linear constraints over variables representing the number of action
(operator) occurrence in every plan

* For example

- Yy, +Y,,+Y,;21-—mustapply a,, a, or a; at least once (recall
disjunctive action landmarks)

* A package has to be loaded to some truck
- Y., — Y, <0 - cannot use a, more often than a;

* A package cannot be unloaded more often than loaded
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Operator-counting Heuristics

* Y, represents the number of occurrences of a

 Hence, for each actionaY,=0

* Minimize ZaYac(a)

- this is also the value of the heuristic

« Additional constraints (inequalities) over Y _variables can be considered

- e.g. those in the previous slide
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Properties of Operator-counting Heuristics

» Operator-counting heuristics are admissible

e Operator-counting heuristics can be calculated in polynomial time
(solving LP)

* Adding more constraints makes operator-counting heuristics more
informed
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State-Equation Heuristic (SEQ)

* Facts (variable assignments) can be produced and consumed by actions

* Number of producing and consuming actions must be balanced for each fact
(depends on the current state and the goal)

- e.g in the Logistic example, let pkg=B be true in the current state and pkg=E

be the goal
* pkg=B has to be consumed (i.e., there has to be one more consumer of
pkg=B)
* pkg=E has to be produced (i.e., there has to be one more producer of
pkg=E)

» for pkg=X (X#B,E), there has to be the same number of producers and
consumers
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State-Equation Heuristic (SEQ)

* The set of actions producing f, prod(f)={a | fEeff(a),f& pre(a)}

* The set of actions consuming f, cons(f)={a | vars(f) nvars(pre(a)) nvars(eff(a))z .0, fc pre(a),

feteff(a) }

* For each fact (variable assignment) over variables mentioned in G:

G(f) B S(f) = ZaEprod(DYa_ ZaEcons(DYa
 Note that we assume that variables mentioned in the effects of all actions are also mentioned in

the preconditions of these actions

— can be adapted for cases in which it doesn’t hold

* Note that s(f)=1 if fis true in s, otherwise s(f)=0, and G(f)=1 if f is part of the goal, otherwise
G(H=0



Potential Heuristics
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Potential Heuristics

A state feature is a function :S - IR

« A potential heuristic for a set of state features f,,f,,...,f, IS a heuristic
function h defined as a linear combination of the state features

h(s) = wify(S) + Wfy(s) + ... + w,fi(s)

with real-valued weights (potentials) w;
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Obtaining Ingredients for Potential Heuristics

 Computing state features should be fast (i.e. in constant time)

e Determining potentials
- LP torescue!

- lIdeally, potentials are computed only once (not in every visited
state as e.g. SEQ)

 Potential heuristic should be
- admissible

— consistent
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Atomic Potential Heuristics

 An atomic state feature tests if an atom (fact) is true in a given state

« Let X=y be an atom (fact) and s be a state. The atomic feature f,_(s) is
defined as:

fxy(S) = 1, If (X=y)E s
fx=,(s) = O, otherwise

 We take into account all the atomic features

 Complexity ?
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Atomic Potential Heuristics

 An atomic state feature tests if an atom (fact) is true in a given state

« Let X=y be an atom (fact) and s be a state. The atomic feature f,_(s) is
defined as:

fyoy(S) =1, 1f X=y € s
fx-,(S) = 0, otherwise

 We take into account all the atomic features

 Complexity ?

— Constant
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Computing Potentials

e Constraints on potentials characterize admissible and consistent atomic
potential heuristics

« Goal awareness (for each goal state s;)
ZfEsGWf: 0
» Consistency (for each action a)
Zprre(a)Wf —2 oW < C(Q)

* Again, we assume that variables mentioned in preconditions and effects of all
actions are the same
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Are we missing something ?
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Are we missing something ? Objective function

* Well informed heuristics should be close to the perfect one

 Some examples of objective functions
- maximize heuristic value of the initial state
- maximize average heuristic value of all states

- maximize average heuristic value of sample states
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A Little Bit of Theory

* Let hmaxwot(s) represent the maximum value across all admissible and
consistent atomic potential heuristics in s

* Let hseQ(s) represent the state-equation heuristic value in s (in literature
the SEQ heuristic is also called the flow heuristic)

* Let hoocr(s) represent the optimal general cost partitioning (omits non-
negativity cost constraints) of atomic projections (similar to DTGS)

e Theorem

hmaxpot(s) = hSEQ(S) = thCP(S)



