
Planning for Artificial Intelligence

Lukáš Chrpa

Landmarks and LM-Cut Heuristic

Landmarks

Landmarks

● In general, a landmark is a formula that must be true at some point for every
plan

● Landmarks can be (partially) ordered

● A fact landmark is a fact (or atom) that must be true at some point for every
plan

● An action landmark is an action that must occur in every plan

● A disjunctive fact (action) landmark stands for that at least one of the fact must
be true (at least one action must occur) in every plan

● A conjunctive fact landmark stands for that all the facts must be true at the
same time in every plan

Fact and Action Landmarks

● A fact landmark implies an action landmark if the action is the only one
achieving it

● An action landmark implies fact landmarks (action’s preconditions and
effects)

● Deciding fact or action landmark is PSPACE-complete

– The same as deciding whether a task without actions achieving the
fact landmark, or an action standing for an action landmark,
respectively, is solvable

● Subsets of fact or action landmarks can be identified easily

Landmark Orderings

● For landmarks p and q we define the following types of ordering

– Natural ordering p→q iff p is true some time before q

– Greedy necessary ordering p→gn q iff p is true one step before q
becomes true for the first time

– Necessary ordering p→n q iff p is always true one step before q
becomes true

● Deciding all types of orderings is PSPACE-complete

● Again, some landmark orderings can be identified easily

Landmark Graph

● Let LG=(V,E) be a directed graph, where V are landmarks and (vi,vj)∈E
if vi → vj (natural ordering between landmarks vi and vj). LG is a
landmark graph

● Note that landmark graphs are often partial (as we don’t know all the
landmarks as well as some of their orderings)

(Enhanced) Logistics Example of Landmark Graph

A

B
C

A

B
C

Initial
state

Goal

E
E

pkg-E

pkg-p at-p-E

pkg-C at-p-C

pkg-t at-t-C

pkg-B at-t-B

Towards (Fact) Landmark Discovery

● Let Π=(P,A,I,G) be a planning task and p∈P be a fact such that p∉I. We
denote Π-p a planning task, where Π-p=(P,A∖{a | p∈add(a)},I,G).

Theorem: p is a fact landmark iff Π-p is unsolvable

● It also holds that if the (delete-)relaxed task Π+
-p is unsolvable, then Π-p

is unsolvable

– Let’s find some (fact) landmarks by leveraging delete-relaxation !

Landmark Discovery by the Backchaining Method

● Let Π=(P,A,I,G) be a planning task, then

1) for each p∈G, it is the case that p is a fact landmark

2) if p is a fact landmark and p∉I, then for each

q∈∩a∈{a’|a’∈A, p∈add(a’)}pre(a) it is the case that q is a fact landmark
and q→n p

● q is in preconditions of all actions achieving p

● Can we improve ?

Concerning First Achievers

● An action is a first achiever of a fact (or atom) if it achieves (adds) it for the
first time

● For a planning task Π and a fact landmark p, we construct a reachability
graph for Π-p (p won’t be reachable unless p I∈)

– Any action applicable in this graph can possibly be applied before p
becomes true → possible first achievers

– The rule 2) of the backchaining method is enhanced by considering only
actions applicable in the last atom layer of the reachability graph

● we then get q→gn p

● also, more fact landmarks can be identified, why ?

(Enhanced) Logistics Example

A

B
C

A

B
C

Initial state Goal

E
E

(Enhanced) Logistics Example – Landmark Identification

Goal fact: pkg-E

– achieved only by unload-p-E

– pkg-p, at-p-E are preconditions of
unload-p-E and thus fact
landmarks

Landmark: pkg-p

– achieved by load-p-C and load-p-E

– no shared preconditions …

pkg-E

pkg-p at-p-E

(Enhanced) Logistics Example – Landmark Identification

Goal fact: pkg-E

– achieved only by unload-p-E

– pkg-p, at-p-E are preconditions of
unload-p-E and thus fact
landmarks

Landmark: pkg-p

– achieved by load-p-C and load-p-E

– pkg-C, at-p-C are preconditions of
load-p-C and thus fact landmarks

pkg-E

pkg-p at-p-E

pkg-C at-p-C

(Enhanced) Logistics Example – Landmark Identification

Goal fact: pkg-E

– achieved only by unload-p-E

– pkg-p, at-p-E are preconditions of
unload-p-E and thus fact landmarks

Landmark: pkg-p

– achieved by load-p-C and load-p-E

– pkg-C, at-p-C are preconditions of
load-p-C and thus fact landmarks

… to think about at home
pkg-E

pkg-p at-p-E

pkg-C at-p-C

pkg-t at-t-C

pkg-B at-t-B

Domain Transition Graph

● A Domain Transition Graph of a variable v (DTGv) represents how the
value of v can change

● For a planning task (V,A,I,G) and a variable v∈V, DTGv is defined as
follows:

– Nodes are D(v)

– (d,d’) is an edge iff
● d≠d’
● ∃a∈A:(v=d’)∈eff(a) and (v=d)∈pre(a), or a has no precondition

on v

Landmark Discovery via DTG

Having DTGv, where:

– I[v]=d0

– v=d is a fact landmark

– d’ is on every path from d0 to d in DTGv

then, v=d’ is a fact landmark and (v=d’) → (v=d)

(Enhanced) Logistics Example – Landmark Identification
from DTG

Let’s consider DTGv (where v represents a position of the package)

B t C

A

p E

(Enhanced) Logistics Example – Landmark Identification
from DTG

Let’s consider DTGv (where v represents a position of the package)

Initial state: v=B

Goal: v=E

B t C

A

p E

(Enhanced) Logistics Example – Landmark Identification
from DTG

Let’s consider DTGv (where v represents a position of the package)

Initial state: v=B

Goal: v=E

Identified landmarks: v=t, v=C, v=p

B t C

A

p E

How to use Landmarks ?

● Assume that we constructed a landmark graph in a preprocessing
phase

● Intuitively, landmarks can be used as subgoals (according to their
ordering)

– works well in the Logistic example

– recall Sussman anomaly (not so good)

– prone to dead-ends

● For heuristics

Landmark Heuristics

Landmark Heuristic

● The landmarks that have yet to be achieved after reaching a state s via
a sequence of actions π

L(s,π)=|(L∖Accepted(s,π))∪ReqAgain(s,π)|

● L is the set of all discovered (fact) landmarks

● Accepted(s,π)L is the set of accepted landmarks

● ReqAgain(s,π)Accepted(s,π) is the set of accepted landmarks that
have to be achieved again

Accepted Landmarks

● A landmark p is accepted wrt s and π if

– p becomes true in s

– all predecessors of p (in the landmark graph) have been accepted

● Once a landmark is accepted, it remains accepted

Required Again Landmarks

● A landmark p is required again wrt s and π if at least one of the following
holds

– p is false in s while being a goal (false goal)

– p is false in s while being a greedy-necessary predecessors of some
unaccepted landmark (open-prerequisite)

Multi-path Dependence

● Assume that a state s was achieved by two sequences of actions π1 and
 π2 such that

– π1 achieved a landmark p while π2 did not

– do we need to achieve p after s ?

Multi-path Dependence

● Assume that a state s was achieved by two sequences of actions π1 and
 π2 such that

– π1 achieved a landmark p while π2 did not

– do we need to achieve p after s ?
● Yes, because p has to become true at some point in all plans

(including those starting with π2)

Landmark Heuristic

● Introduced in the well known LAMA planner (LAMA won IPC 2008 and
2011)

– One component of LAMA

● Inadmissible

– because a single action can achieve multiple landmarks

● Can be very informative in some domains

– recall our Logistics example

LM-Cut Heuristic

i-g form of Relaxed Planning Tasks

● A relaxed planning task (P,A,i,g) is in i-g form if

– i,g∈P

– every action has at least one precondition

– convention: an i-g form action will be represented in form
a=(pre(a)→add(a))c(a)

● How “normal” relaxed planning tasks can be converted to i-g form ?

i-g form of Relaxed Planning Tasks

● A relaxed planning task (P,A,i,g) is in i-g form if

– i,g∈P

– every action has at least one precondition

– convention: an i-g form action will be represented in form
a=(pre(a)→add(a))c(a)

● How “normal” relaxed planning tasks can be converted to i-g form ?

● Introducing initial and goal actions, i.e., aI=(i→I)0 and aG=(G→g)0

● Actions with empty preconditions will get i into their preconditions

Justification Graph

● A precondition choice function (pcf) X:A→P for a relaxed planning
task in i-g form (P,A,i,g) maps each action to one of its preconditions,
i.e., X(a)∈pre(a) for each a∈A

● Let X be pcf for (P,A,i,g). The justification graph for X is the directed
edge-labeled graph J=(V,E), where

– V=P (vertices are atoms from P)

– For each a∈A and p∈add(a), (X(a),a,p)∈E

Example

a1=(i→x,y)3

a2=(i→x,z)4

a3=(i→y,z)5

a4=(x,y,z→g)0

Example – Justification Graph

a1=(i→x,y)3

a2=(i→x,z)4

a3=(i→y,z)5

a4=(x,y,z→g)0

pcf in red

i

x

y

z

g

a
1

a
2

a
1

a
3

a
2

a
3

a
4

Cuts

● A cut C in a justification graph is a subset of its edges such that all
paths from i to g contain an edge from C

i

x

y

z

g

a
1

a
2

a
1

a
3

a
2

a
3

a
4

Disjunctive Action Landmarks

Theorem: Let C be a cut in the justification graph for pcf X. The set of
edge-labels from C is a disjunctive action landmark

● Note that the justification graph represents a simpler problem (only one
action precondition is considered)

● Cuts are disjunctive action landmarks for the simplified problem and
thus also for the original problem

● With all “cut landmarks” we can compute the value of h+

– However, the number of pcfs is exponential

LM-Cut

● Set hLM-Cut(I)=0, then iterate

1) Compute hmax for all atoms. If hmax(g)=0, terminate

2) Let X be a pcf choosing preconditions with maximal hmax value

3) Compute the justification graph for X

4) Compute a cut L such that cost(L)>0 (details on the next slide)

5) hLM-Cut(I)+=cost(L)

6) For each action a∈L, c(a)=c(a) - cost(L)

LM-Cut

● Compute a cut L such that cost(L)>0 as follows

– The goal zone Vg of the justification graph consists of all vertices
having a path to g with all edges (on that path) having zero-cost
actions

– The cut contains all edges (v,a,v’) such that v∉Vg and v’∈Vg and v
can be reached from I without traversing a goal zone node

– cost(L)=mina∈Lc(a)

Example – Computing LM-cut

a1=(i→x,y)3

a2=(i→x,z)4

a3=(i→y,z)5

a4=(x,y,z→g)0

pcf in red

i: 0

x: 3

y: 3

z: 4

g: 4

a
1

a
2

a
1

a
3

a
2

a
3

a
4

Example – Computing LM-cut

a1=(i→x,y)3

a2=(i→x,z)4

a3=(i→y,z)5

a4=(x,y,z→g)0

pcf in red

i: 0

x: 3

y: 3

z: 4

g: 4

a
1

a
2

a
1

a
3

a
2

a
3

a
4

L={a
2
,a

3
}

cost(L)=4
hLM-cut(I)=4

Example – Computing LM-cut

a1=(i→x,y)3

a2=(i→x,z)0

a3=(i→y,z)1

a4=(x,y,z→g)0

pcf in red

i: 0

x: 3

y: 3

z: 4

g: 4

a
1

a
2

a
1

a
3

a
2

a
3

a
4

L={a
2
,a

3
}

cost(L)=4
hLM-cut(I)=4

Example – Computing LM-cut

a1=(i→x,y)3

a2=(i→x,z)0

a3=(i→y,z)1

a4=(x,y,z→g)0

pcf in red

i: 0

x: 0

y: 1

z: 0

g: 1

a
1

a
2

a
1

a
3

a
2

a
3

a
4

L={a
1
,a

3
}

cost(L)=1
hLM-cut(I)=5

Example – Computing LM-cut

a1=(i→x,y)2

a2=(i→x,z)0

a3=(i→y,z)0

a4=(x,y,z→g)0

pcf in red

i: 0

x: 0

y: 0

z: 0

g: 0

a
1

a
2

a
1

a
3

a
2

a
3

a
4

hmax(g)=0 → done !

hLM-cut(I)=5

LM-cut – Final Remarks

● LM-cut finds (some) disjunctive action landmarks

● It can be proven that hLM-cut≤h+

● LM-cut heuristic is thus admissible

● LM-cut heuristic extracts landmarks for each (visited) state

● Other methods extracts landmarks once and then propagate them over
the course of the search

