
Planning for Artificial Intelligence

Lukáš Chrpa

Classical Planning and State-space Search

Classical Planning Representation
(revision)

STRIPS Planning Task

● A planning task in STRIPS is a quadruple (P,A,I,G), where

– P is a finite set of atoms (or facts or propositions)

– A is a finite set of actions, where each action a A is a triple ∈A is a triple
(pre(a),del(a),add(a)), all subsets of P, where

● pre(a) is a precondition of a
● del(a) is a set of delete effects of a
● add(a) is a set of add effects of a

– I⊆P is an initial state

– G⊆P is a goal

STRIPS Planning Task cont.

● States are collections of atoms, i.e., S⊆2P

● An action a is applicable in a state s iff pre(a)⊆s

– (otherwise a is inapplicable in s)

● A state s’ is the result of application of an applicable action a in a state
s iff s’=(s∖del(a))∪add(a)

SAS Planning Task

● A planning task in SAS is quadruple (V,A,I,G), where

– V is a set of variables, where each variable v∈A is a triple V has its own domain
dom(v)

– A is a set of actions, where each action a∈A is a triple A is a pair (pre(a),eff(a)),
both partial assignments over V, where

● pre(a) is a precondition of a
● eff(a) stands for effects of a

– I is an initial state (a complete assignment over V)

– G is a goal (partial assignment over V)

SAS Planning Task cont.

● Let q[v] denote the value of a variable v in a (partial) assignment q

● States are complete assignments over V

● An action a is applicable in a state s iff pre(a)[v]=s[v] whenever pre(a)
[v] is specified

– (otherwise a is inapplicable in s)

● A state s’ is the result of application of an applicable action a in a state
s iff s’[v]=eff(a)[v] whenever eff(a)[v] is specified or s’[v]=s[v] otherwise

Solution Plans

● Let γ(s,a)=s’ iff s’ is the result of application of an action a in a state s (a is s’ iff s’ is the result of application of an action a in a state s (a is
applicable in s)

– γ(s,a) is undefined iff a is inapplicable in s

● Let γ* be defined recursively

– γ*(s,⟨〉)=s’ iff s’ is the result of application of an action a in a state s (a is s

– γ*(s,⟨a1,a2,…,an〉)=s’ iff s’ is the result of application of an action a in a state s (a is γ*(γ(s,a1),⟨a2,…,an〉)

● We say that π, a sequence of actions over A, is a solution plan (or a plan)
of the planning task iff G⊆γ*γ*(I,π)

STRIPS vs SAS

● Is SAS more expressive than STRIPS ?

STRIPS vs SAS

● Is SAS more expressive than STRIPS ?

– No, they are equally expressive

● Why ?

STRIPS vs SAS

● Is SAS more expressive than STRIPS ?

– No, they are equally expressive

● Why ?

– STRIPS → SAS
● Each atom (proposition) can be converted to a state variable with domain

{true,false}

– SAS → STRIPS
● Each possible variable assignment can be converted to an atom

(proposition)

– Converting actions from STRIPS to SAS (and vice versa) → To think about at
home

Convention

● By an atom or a fact we mean

– A proposition (STRIPS representation)

– A variable assignment (SAS representation)

● An action is in literature often denoted as an operator

● By lifted representation we mean the one using free variables

– STRIPS or SAS representation is then obtained by grounding, i.e.,
substituting free variables by specific objects

● Some concepts (and algorithms) will be presented in STRIPS while some
other concepts (and algorithms) in SAS

States, Mutexes, Invariants

States

● The set of states S is derived from the propositions (STRIPS) or
state variables (SAS) of a given planning task

● A state sg∈A is a triple S is a goal state iff G⊆sg

● A state s’∈A is a triple S is reachable from a state s∈A is a triple S iff ∃π∈A is a triple A*:γ*(s,π)=s’ iff s’ is the result of application of an action a in a state s (a is s’

● A state s’∈A is a triple S is unreachable from a state s∈A is a triple S iff ∄π∈A is a triple A*:γ*(s,π)=s’ iff s’ is the result of application of an action a in a state s (a is s’

– By denoting a state (un)reachable without mentioning from
which state we mean (un)reachable from I

● A state s∈A is a triple S is a dead-end state iff ∄π∈A is a triple A*:γ*(s,π)⊇G

Sokoban Example

Initial state Goal state Reachable
state

Unreachable
state

Dead-end
state

State Invariants

● An invariant is a property of an object which remains unchanged,
after operations of certain type are applied to the object

● We say that a state s has a property p iff p holds in s

● We say that a state s has an invariant p iff each reachable state s’ from
s has a property p

● We say that a planning task has an invariant p iff the initial state I has
the invariant p

Mutual Exclusivity (Mutex)

● We say that atoms (or facts) p and q are mutually exclusive (or mutex)
in a given planning task iff for each reachable state s, {p,q}⊈s

● We say that a set of atoms {p1,p2,…,pn} forms a mutex group in a given
planning task iff for each reachable state s, |{p1,p2,…,pn}∩s|≤1

● We say that a set of atoms {p1,p2,…,pn} forms a facts alternating
mutex (FAM) group in a given planning task iff for each reachable state
s, |{p1,p2,…,pn}∩s|=1

● Any relation between mutex group and FAM group ?

● Any relation between mutexes and mutex group ?

Mutexes, Dead-ends and Invariants

● Is a property of being a dead-end state an invariant ?

● Is mutex an invariant ?

● Is a mutex (or FAM) group an invariant ?

● Some other examples of invariants (even domain-specific) → To think
about at home

Planning – what we can look for

1) Deciding plan (non)existence

2) Finding any (satisficing) plan (if it exists)

3) Finding an optimal plan (if it exists)

……..

● The tasks are very different and techniques addressing them are often
disjoint

Optimal plans

● Optimizing for plan length: A plan π of some planning task is optimal iff
for each plan π’ of the same planning task it is the case that |π|≤|π’|

● Action cost is a function c:A NN 0

● Optimizing for total action cost: A plan π of some planning task is
optimal iff for each plan π’ of the same planning task it is the case that

Σa∈A is a triple πc(a)≤Σa’ π’∈A is a triple c(a)

Complexity

● Deciding plan existence in classical planning is PSPACE-complete

– With plans of polynomial length it is NP-hard

● Some classes of planning tasks can be easy (in P)

● Sometimes there are differences in complexity for satisficing (any plan)
and optimal planning

– For BlocksWorld, finding any plan is in P while finding an optimal
plan is NP-hard

Towards Solving Planning Tasks

How to address Planning Tasks ?

● State-space search

– The most widespread

● Symbolic search

– Representing sets of states by Binary Decision Diagrams

● Translate the problem to a different formalism

– Boolean Satisfiability (SAT)

– Constraint Satisfaction Problem (CSP)

● Plan-space search

…..

State-space search

● Search direction

– Progressive (from the initial to the goal state)

– Regressive (from the goal to the initial situation)

– Bidirectional

● Uniformed (blind) vs informed (heuristic)

● Systematic vs Local

● Additional knowledge (e.g. symmetry pruning, invariants etc.)

Progressive search

s:=s’ iff s’ is the result of application of an action a in a state s (a is I
π:=s’ iff s’ is the result of application of an action a in a state s (a is ⟨〉

while G⊈s do

 non-deterministically select a∈A is a triple A s.t. a is applicable in s
 if no such a exists then return no solution

 s:=s’ iff s’ is the result of application of an action a in a state s (a is γ(s,a)

 π:=s’ iff s’ is the result of application of an action a in a state s (a is π.a
return π

Regressive search (in STRIPS)

s:=s’ iff s’ is the result of application of an action a in a state s (a is G
π:=s’ iff s’ is the result of application of an action a in a state s (a is ⟨〉

while s⊈I do

 non-deterministically select a∈A is a triple A s.t. s∩add(a)≠∅ and s∩del(a)=s’ iff s’ is the result of application of an action a in a state s (a is ∅

 if no such a exists then return no solution
 s:=s’ iff s’ is the result of application of an action a in a state s (a is (s∖add(a))∪pre(a)

 π:=s’ iff s’ is the result of application of an action a in a state s (a is a.π
return π

Progressive search

s:=s’ iff s’ is the result of application of an action a in a state s (a is I
π:=s’ iff s’ is the result of application of an action a in a state s (a is ⟨〉

while G⊈s do

 non-deterministically select a∈A is a triple A s.t. a is applicable in s
 if no such a exists then return no solution

 s:=s’ iff s’ is the result of application of an action a in a state s (a is γ(s,a)

 π:=s’ iff s’ is the result of application of an action a in a state s (a is π.a
return π

Uninformed (blind) search

● Depth-first search

– Successor nodes are pushed into a stack

– Memory efficient

– Does not guarantee optimality

● Breadth-first search

– Successor nodes are pushed into a (priority) queue

– Memory consuming

– Guarantees optimality

● Iterative deepening

Heuristic Function

● Let S be a set of states for a given planning task П. A heuristic
function (or heuristics) for П is a function h:S NN 0∪{∞}

● The value h(s) estimates distance from s to the nearest goal state

● h(s) is called heuristic estimate or heuristic value for s

● A perfect (or optimal) heuristics, denoted as h*, maps each state
to the length (or cost) of the optimal plan to the nearest goal state

– If h*(s)=s’ iff s’ is the result of application of an action a in a state s (a is ∞ then no goal state is reachable from s

Properties of Heuristic Function

● Heuristic function h for П (over S) is

– safe if for each s∈A is a triple S s.t. h(s)=s’ iff s’ is the result of application of an action a in a state s (a is ∞ it holds that h*(s)=s’ iff s’ is the result of application of an action a in a state s (a is ∞

– goal aware if h(sG)=s’ iff s’ is the result of application of an action a in a state s (a is 0 for each goal state sG

– admissible if for each s∈A is a triple S it holds that h(s)≤h*(s)

– consistent if goal aware and for each s,s’∈A is a triple S s.t. s’ is a successor of
s it holds that h(s)≤h(s’)+cost(s,s’)

● Relationships ?

Practical remarks

● Heuristic function should be safe and goal aware

● Heuristic function has to be admissible for optimal planning

● Informativeness of heuristic function

– shape of its landscape (e.g. monotonic, local minima)

● Complexity/hardness of computation of heuristic values

● Complexity of implementation of heuristic function

● Often “it works well in practice” (for some classes of domains) is the only
analysis we do have

Terminology

● A search node is a pair n=s’ iff s’ is the result of application of an action a in a state s (a is (s,πs), where s is a state and πs is a sequence
of actions from I to s

● A n’=s’ iff s’ is the result of application of an action a in a state s (a is (s’,πs’) is a successor node of a node n=s’ iff s’ is the result of application of an action a in a state s (a is (s,πs) iff there is an action
a s.t. s’=s’ iff s’ is the result of application of an action a in a state s (a is γ(s,a) and πs’=s’ iff s’ is the result of application of an action a in a state s (a is πs.a

● A search-space is composed from search nodes and edges, where a
(directed) edge from n to n’ exists only if n’ is a successor node of n

● The g value of a node n=s’ iff s’ is the result of application of an action a in a state s (a is (s,πs), denoted as g(n) is the length (or cost) of
πs

● The f value of a node n=s’ iff s’ is the result of application of an action a in a state s (a is (s,πs) is f(n)=g(n)+h(s)

Greedy Best-First Search (GBFS)

open:=s’ iff s’ is the result of application of an action a in a state s (a is new priority_queue() //ordered by the h-value

closed:=s’ iff s’ is the result of application of an action a in a state s (a is ∅

open.push((I,⟨〉))

while !open.empty() do

 n:=s’ iff s’ is the result of application of an action a in a state s (a is open.pop()

 if n.state()∉closed then

 closed:=s’ iff s’ is the result of application of an action a in a state s (a is closed∪{n.state()}

 if Gn.state() then return n.plan()

 foreach n’ being a sucessor of n do

 if h(n’.state())≠∞ then open.push(n’)

return no solution

Properties of GBFS

● Widely used for satisficing planning

● complete if h is safe (with duplicate detection)

● suboptimal (even if h is admissible)

A*

open:=s’ iff s’ is the result of application of an action a in a state s (a is new priority_queue() //ordered by the f-value

closed:=s’ iff s’ is the result of application of an action a in a state s (a is ∅

dist:=s’ iff s’ is the result of application of an action a in a state s (a is ∅

open.push((I,⟨〉))

while !open.empty() do

 n:=s’ iff s’ is the result of application of an action a in a state s (a is open.pop()

 if n.state()∉closed or g(n)<dist(n.state()) then

 closed:=s’ iff s’ is the result of application of an action a in a state s (a is closed∪{n.state()}

 dist(n.state()):=s’ iff s’ is the result of application of an action a in a state s (a is g(n)

 if Gn.state() then return n.plan()

 foreach n’ being a sucessor of n do

 if h(n’.state())≠∞ then open.push(n’)

return no solution

Properties of A*

● Often used for optimal planning and rarely for satisficing planning

● complete if h is safe

● optimal if h is admissible

● Does not reopen nodes if h is consistent

Weighted A*

● The f value is modified to f(n)=g(n)+W*h(s), where the weight W≥0

● With W=s’ iff s’ is the result of application of an action a in a state s (a is

– 0 – we get breadth-first search

– 1 – we get A*

– ∞ – we get GBFS

● Commonly used for satisficing planning

● If h is admissible and W>1, then plans are bounded suboptimal by at
most the factor W

Local Search

● Local search techniques are more memory efficient than systematic search ones

● Hill Climbing

– only the current state is kept in memory

– in each step, the successor node with minimum h value is selected and the h
value must be lower than for the current state

– can be easily stuck in local minima

● Enforced Hill Climbing

– performs Breadth-First Search to find a node with lower h value then the
current state

– can get stuck in dead-end states

Bidirectional Search

● Combines progressive and regressive search

● Uninformed bidirectional search might consists of two interleaving BFS (from I
and from G)

● Heuristic bidirectional search

– Front-to-back
● heuristic values are computed to the goal, or to the initial state

(depending on direction)

– Front-to-front
● heuristic values are computed to the best node in the open list of the

opposite search

