Planning for Artificial Intelligence

/‘%,f{?/'g . Lukas Chrpa /\i

CENTER

Classical Planning and State-space Search

Classical Planning Representation
(revision)

/\I

] CENTER
STRIPS Planning Task
 Aplanning task in STRIPS is a quadruple (P,A,I,G), where
- P s afinite set of atoms (or facts or propositions)

- Ais a finite set of actions, where each action a&A is a triple
(pre(a),del(a),add(a)), all subsets of P, where

* pre(a) is a precondition of a

» del(a) is a set of delete effects of a

 add(a) is a set of add effects of a
- I€P is an initial state

- GcPis agoal

/\I

CENTER

STRIPS Planning Task cont.

 States are collections of atoms, i.e., SCc2r

* An action a is applicable in a state s iff pre(a)Ss

— (otherwise a is inapplicable in s)

 Astate s’ is the result of application of an applicable action a in a state
s iff s’=(s\del(a))uadd(a)

/\I

CENTER

SAS Planning Task

 Aplanning task in SAS is quadruple (V,A,l,G), where

- V Is a set of variables, where each variable v&V has its own domain
dom(v)

- As a set of actions, where each action a&€A is a pair (pre(a),eff(a)),
both partial assignments over V, where

e pre(a) is a precondition of a
» eff(a) stands for effects of a
- lis an initial state (a complete assignment over V)

- G is a goal (partial assignment over V)

/\I

CENTER

SAS Planning Task cont.

Let g[v] denote the value of a variable v in a (partial) assignment g

States are complete assignments over V

An action a is applicable in a state s iff pre(a)[v]=s[v] whenever pre(a)
[V] is specified

- (otherwise a is inapplicable in s)

A state s’ is the result of application of an applicable action a in a state
s iff s’[v]=eff(a)[v] whenever eff(a)[v] is specified or s’[v]=s[v] otherwise

/\I

CENTER

Solution Plans

* Lety(s,a)=s’iff s’ is the result of application of an action a in a state s (a is
applicable in s)

- y(s,a) is undefined iff a is inapplicable in s
* Lety”* be defined recursively

- Y*(s,0)=s

- y*(s,(a,,a,,...,a,))=y*(y(s,a,),(a,,...,a,))

* We say that n, a sequence of actions over A, is a solution plan (or a plan)
of the planning task iff GSy*(l,n)

/\I

CENTER

STRIPS vs SAS

* |Is SAS more expressive than STRIPS ?

/\I

CENTER

STRIPS vs SAS

* |s SAS more expressive than STRIPS ?
- No, they are equally expressive

e Why ?

/\I

CENTER

STRIPS vs SAS

* |Is SAS more expressive than STRIPS ?
- No, they are equally expressive

e Why ?
- STRIPS - SAS

 Each atom (proposition) can be converted to a state variable with domain
{true,false}

- SAS - STRIPS

* Each possible variable assignment can be converted to an atom
(proposition)

— Converting actions from STRIPS to SAS (and vice versa) — To think about at
home

/\I

. CENTER
Convention
* By an atom or a fact we mean
- A proposition (STRIPS representation)
- Avariable assignhment (SAS representation)

* An action is In literature often denoted as an operator

* By lifted representation we mean the one using free variables

- STRIPS or SAS representation is then obtained by grounding, i.e.,
substituting free variables by specific objects

 Some concepts (and algorithms) will be presented in STRIPS while some
other concepts (and algorithms) in SAS

States, Mutexes, Invariants

/\I

CENTER

States

The set of states S Is derived from the propositions (STRIPS) or
state variables (SAS) of a given planning task

A state s,&S Is a goal state iff GESs,

A state S’ES is reachable from a state s€S iff An€A*:y*(s,n)=s’

A state S’ES is unreachable from a state s€S iff AnEA*:y*(s,n)=s’

- By denoting a state (un)reachable without mentioning from
which state we mean (un)reachable from |

A state s€S is a dead-end state iff ANEA*:v*(s,n)2G

/\I

CENTER

Sokoban Example

Initial state Goal state Reachable Unreachable Dead-end
state State State

/\I

CENTER

State Invariants

An invariant is a property of an object which remains unchanged,
after operations of certain type are applied to the object

We say that a state s has a property p iff p holds in s

We say that a state s has an invariant p iff each reachable state s’ from
s has a property p

We say that a planning task has an invariant p iff the initial state | has
the invariant p

/\I

CENTER

Mutual Exclusivity (Mutex)

We say that atoms (or facts) p and g are mutually exclusive (or mutex)
In a given planning task iff for each reachable state s, {p,q}£Zs

We say that a set of atoms {p,,p,,...,p,} forms a mutex group in a given
planning task iff for each reachable state s, [{pP.;,P2;---,Pn}NS|=<1

We say that a set of atoms {p,,p.,...,p,} forms a facts alternating
mutex (FAM) group in a given planning task iff for each reachable state

S, {PwuP2s---Pu}NS|=1

Any relation between mutex group and FAM group ?

Any relation between mutexes and mutex group ?

/\I

CENTER

Mutexes, Dead-ends and Invariants

Is a property of being a dead-end state an invariant ?

Is mutex an invariant ?

Is a mutex (or FAM) group an invariant ?

Some other examples of invariants (even domain-specific) — To think
about at home

/\I

CENTER

Planning — what we can look for

1) Deciding plan (non)existence
2) Finding any (satisficing) plan (if it exists)
3) Finding an optimal plan (if it exists)

* The tasks are very different and techniques addressing them are often
disjoint

/\I

CENTER

Optimal plans

* Optimizing for plan length: A plan n of some planning task is optimal iff
for each plan n’ of the same planning task it is the case that |n|<|n’|

« Action cost is a function c:A—N,

* Optimizing for total action cost: A plan n of some planning task is
optimal iff for each plan n’ of the same planning task it is the case that

2 cnC(a)<2,crC(a)

/\I

. CENTER
Complexity
* Deciding plan existence in classical planning is PSPACE-complete
- With plans of polynomial length it is NP-hard

* Some classes of planning tasks can be easy (in P)

* Sometimes there are differences in complexity for satisficing (any plan)
and optimal planning

- For BlocksWorld, finding any plan is in P while finding an optimal
plan is NP-hard

Towards Solving Planning Tasks

/\I

CENTER

How to address Planning Tasks ?

e State-space search

- The most widespread

e Symbolic search

- Representing sets of states by Binary Decision Diagrams

* Translate the problem to a different formalism
— Boolean Satisfiability (SAT)
- Constraint Satisfaction Problem (CSP)

* Plan-space search

/\I

CENTER

State-space search

e Search direction
- Progressive (from the initial to the goal state)
- Regressive (from the goal to the initial situation)

— Bidirectional
* Uniformed (blind) vs informed (heuristic)
e Systematic vs Local

* Additional knowledge (e.g. symmetry pruning, invariants etc.)

/\I

CENTER

Progressive search

S:=l
T=()
while G¢Zs do

non-deterministically select a&A s.t. ais applicable in s
If no such a exists then return no solution
s:=y(s,a)
TI.=TL.Q
return 1

/\I

CENTER

Regressive search (in STRIPS)

S:=G
TC=()
while sZ| do
non-deterministically select a€A s.t. snadd(a)Z0 and sndel(a)=4
If no such a exists then return no solution
s:=(s\add(a))upre(a)
T.=a.Tl
return Tt

/\I

CENTER

Progressive search

S:=l
T:=()
while G¢Zs do

non-deterministically select a&€A s.t. a is applicable in s
If no such a exists then return no solution
s:=y(s,a)
T.=Tl.a
return Tt

/\I

CENTER

Uninformed (blind) search

* Depth-first search
— Successor nodes are pushed into a stack
- Memory efficient
— Does not guarantee optimality
* Breadth-first search
— Successor nodes are pushed into a (priority) queue
- Memory consuming

- Guarantees optimality

* lIterative deepening

/\I

CENTER

Heuristic Function

* Let S be a set of states for a given planning task I1. A heuristic
function (or heuristics) for I1is a function h:S—NjU{oo}

* The value h(s) estimates distance from s to the nearest goal state
* h(s) is called heuristic estimate or heuristic value for s

* A perfect (or optimal) heuristics, denoted as h*, maps each state
to the length (or cost) of the optimal plan to the nearest goal state

- If h*(s)=w then no goal state is reachable from s

/\I

CENTER

Properties of Heuristic Function

* Heuristic function h for I (over S) is
- safe if for each s&S s.t. h(s)= it holds that h*(s)=c0
- goal aware if h(s;)=0 for each goal state sg
- admissible if for each s&S it holds that h(s)<h*(s)

- consistent if goal aware and for each s,s’&€S s.t. s’ is a successor of
s it holds that h(s)<h(s’)+cost(s,s’)

* Relationships ?

/\I

CENTER

Practical remarks

e Heuristic function should be safe and goal aware
* Heuristic function has to be admissible for optimal planning

* Informativeness of heuristic function

- shape of its landscape (e.g. monotonic, local minima)
 Complexity/hardness of computation of heuristic values
 Complexity of implementation of heuristic function

« Often “it works well in practice” (for some classes of domains) is the only
analysis we do have

/\I

CENTER

Terminology

A search node is a pair n=(s,n,), where s is a state and n is a sequence
of actions from [to s

A n’=(s’,n,) is a successor node of a node n=(s,n,) iff there is an action
a s.t. s'=y(s,a) and ny=n..a

A search-space is composed from search nodes and edges, where a
(directed) edge from n to n’ exists only if N’ is a successor node of n

The g value of a node n=(s,n,), denoted as g(n) is the length (or cost) of
I-IS

The f value of a node n=(s,n.,) is f(n)=g(n)+h(s)

/\I

CENTER

Greedy Best-First Search (GBFS)

open:=new priority queue()
closed:=0
open.push((1,()))
while 'open.empty() do
n:=open.pop()
if n.state()&closed then
closed:=closedu{n.state()}
if GSn.state() then return n.plan()
foreach n’ being a sucessor of n do
iIf h(n’.state())#c then open.push(n’)
return no solution

/\I

CENTER

Properties of GBFS

* Widely used for satisficing planning
 complete if h is safe (with duplicate detection)

 suboptimal (even if h is admissible)

A*

open:=new priority _queue()
closed:=@
dist:=0
open.push((1,()))
while !open.empty() do
n:=open.pop()
if n.state()&closed or g(n)<dist(n.state()) then
closed:=closedu{n.state()}
dist(n.state()):=g(n)
if GSn.state() then return n.plan()
foreach n’ being a sucessor of n do
if h(n’.state())#c then open.push(n’)
return no solution

/\I

CENTER

/\I

CENTER

Properties of A*

« Often used for optimal planning and rarely for satisficing planning
« complete if h is safe
« optimal if h is admissible

* Does not reopen nodes if h is consistent

/\I

CENTER

Weighted A*

* The f value is modified to f(n)=g(n)+W#*h(s), where the weight W=0
e With W=

- 0 — we get breadth-first search

- 1-—we get A*

- oo —we get GBFS

 Commonly used for satisficing planning

e If his admissible and W>1, then plans are bounded suboptimal by at
most the factor W

/\I

CENTER

Local Search

» Local search techniques are more memory efficient than systematic search ones
* Hill Climbing
— only the current state is kept in memory

— in each step, the successor node with minimum h value is selected and the h
value must be lower than for the current state

— can be easily stuck in local minima

« Enforced Hill Climbing

- performs Breadth-First Search to find a node with lower h value then the
current state

— can get stuck in dead-end states

/\Ii
CENTER

Bidirectional Search

 Combines progressive and regressive search

* Uninformed bidirectional search might consists of two interleaving BFS (from |
and from G)

* Heuristic bidirectional search
- Front-to-back

* heuristic values are computed to the goal, or to the initial state
(depending on direction)

- Front-to-front

 heuristic values are computed to the best node in the open list of the
opposite search

