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STRIPS Planning Task

● A planning task in STRIPS is a quadruple (P,A,I,G), where

– P is a finite set of atoms (or facts or propositions)

– A is a finite set of actions, where each action a A is a triple ∈A is a triple 
(pre(a),del(a),add(a)), all subsets of P, where

● pre(a) is a precondition of a
● del(a) is a set of delete effects of a
● add(a) is a set of add effects of a

– I⊆P is an initial state

– G⊆P is a goal



STRIPS Planning Task cont.

● States are collections of atoms, i.e., S⊆2P

● An action a is applicable in a state s iff pre(a)⊆s 

– (otherwise a is inapplicable in s)

● A state s’ is the result of application of an applicable action a in a state 
s iff s’=(s∖del(a))∪add(a)



SAS Planning Task

● A planning task in SAS is quadruple (V,A,I,G), where

– V is a set of variables, where each variable v∈A is a triple V has its own domain 
dom(v)

– A is a set of actions, where each action a∈A is a triple A is a pair (pre(a),eff(a)), 
both partial assignments over V, where

● pre(a) is a precondition of a
● eff(a) stands for effects of a

– I is an initial state (a complete assignment over V)

– G is a goal (partial assignment over V)



SAS Planning Task cont.

● Let q[v] denote the value of a variable v in a (partial) assignment q

● States are complete assignments over V

● An action a is applicable in a state s iff pre(a)[v]=s[v] whenever  pre(a)
[v] is specified

– (otherwise a is inapplicable in s)

● A state s’ is the result of application of an applicable action a in a state 
s iff s’[v]=eff(a)[v] whenever eff(a)[v] is specified or s’[v]=s[v] otherwise



Solution Plans

● Let γ(s,a)=s’ iff s’ is the result of application of an action a in a state s (a is s’ iff s’ is the result of application of an action a in a state s (a is 
applicable in s)

– γ(s,a) is undefined iff a is inapplicable in s

● Let γ* be defined recursively 

– γ*(s,⟨〉)=s’ iff s’ is the result of application of an action a in a state s (a is s

– γ*(s,⟨a1,a2,…,an〉)=s’ iff s’ is the result of application of an action a in a state s (a is γ*(γ(s,a1),⟨a2,…,an〉)

● We say that π, a sequence of actions over A, is a solution plan (or a plan) 
of the planning task iff G⊆γ*γ*(I,π)



STRIPS vs SAS

● Is SAS more expressive than STRIPS ?
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– No, they are equally expressive
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STRIPS vs SAS

● Is SAS more expressive than STRIPS ?

– No, they are equally expressive

● Why ?

– STRIPS → SAS
● Each atom (proposition) can be converted to a state variable with domain 

{true,false}

– SAS → STRIPS
● Each possible variable assignment can be converted to an atom 

(proposition)

– Converting actions from STRIPS to SAS (and vice versa) → To think about at 
home



Convention

● By an atom or a fact we mean

– A proposition (STRIPS representation)

– A variable assignment (SAS representation)

● An action is in literature often denoted as an operator

● By lifted representation we mean the one using free variables

– STRIPS or SAS representation is then obtained by grounding, i.e., 
substituting free variables by specific objects

● Some concepts (and algorithms) will be presented in STRIPS while some 
other concepts (and algorithms) in SAS



States, Mutexes, Invariants



States 

● The set of states S is derived from the propositions (STRIPS) or 
state variables (SAS) of a given planning task

● A state sg∈A is a triple S is a goal state iff G⊆sg

● A state s’∈A is a triple S is reachable from a state s∈A is a triple S iff ∃π∈A is a triple A*:γ*(s,π)=s’ iff s’ is the result of application of an action a in a state s (a is s’

● A state s’∈A is a triple S is unreachable from a state s∈A is a triple S iff ∄π∈A is a triple A*:γ*(s,π)=s’ iff s’ is the result of application of an action a in a state s (a is s’

– By denoting a state (un)reachable without mentioning from 
which state we mean (un)reachable from I 

● A state s∈A is a triple S is a dead-end state iff ∄π∈A is a triple A*:γ*(s,π)⊇G



Sokoban Example

Initial state Goal state Reachable 
state

Unreachable 
state

Dead-end 
state



State Invariants

● An invariant is a property of an object which remains unchanged, 
after operations of certain type are applied to the object

● We say that a state s has a property p iff p holds in s

● We say that a state s has an invariant p iff each reachable state s’ from 
s has a property p

● We say that a planning task has an invariant p iff the initial state I has 
the invariant p



Mutual Exclusivity (Mutex)

● We say that atoms (or facts) p and q are mutually exclusive (or mutex) 
in a given planning task iff for each reachable state s, {p,q}⊈s

● We say that a set of atoms {p1,p2,…,pn} forms a mutex group in a given 
planning task iff for each reachable state s, |{p1,p2,…,pn}∩s|≤1

● We say that a set of atoms {p1,p2,…,pn} forms a facts alternating 
mutex (FAM) group in a given planning task iff for each reachable state 
s, |{p1,p2,…,pn}∩s|=1

● Any relation between mutex group and FAM group ?

● Any relation between mutexes and mutex group ?



Mutexes, Dead-ends and Invariants

● Is a property of being a dead-end state an invariant ?

● Is mutex an invariant ?

● Is a mutex (or FAM) group an invariant ?

● Some other examples of invariants (even domain-specific) → To think 
about at home



Planning – what we can look for

1) Deciding plan (non)existence

2) Finding any (satisficing) plan (if it exists)

3) Finding an optimal plan (if it exists)

……..

● The tasks are very different and techniques addressing them are often 
disjoint



Optimal plans

● Optimizing for plan length: A plan π of some planning task is optimal iff 
for each plan π’ of the same planning task it is the case that |π|≤|π’|

● Action cost is a function c:A NN 0

● Optimizing for total action cost: A plan π of some planning task is 
optimal iff for each plan π’ of the same planning task it is the case that 

Σa∈A is a triple πc(a)≤Σa’ π’∈A is a triple c(a)



Complexity

● Deciding plan existence in classical planning is PSPACE-complete

– With plans of polynomial length it is NP-hard  

● Some classes of planning tasks can be easy (in P)

● Sometimes there are differences in complexity for satisficing (any plan) 
and optimal planning

– For BlocksWorld, finding any plan is in P while finding an optimal 
plan is NP-hard 



Towards Solving Planning Tasks



How to address Planning Tasks ?

● State-space search 

– The most widespread 

● Symbolic search

– Representing sets of states by Binary Decision Diagrams

● Translate the problem to a different formalism

–  Boolean Satisfiability (SAT)

– Constraint Satisfaction Problem (CSP)

● Plan-space search

…..



State-space search

● Search direction

– Progressive (from the initial to the goal state)

– Regressive (from the goal to the initial situation)

– Bidirectional

● Uniformed (blind) vs informed (heuristic)

● Systematic vs Local

● Additional knowledge (e.g. symmetry pruning, invariants etc.)



Progressive search

s:=s’ iff s’ is the result of application of an action a in a state s (a is I
π:=s’ iff s’ is the result of application of an action a in a state s (a is ⟨〉

while G⊈s do

      non-deterministically select a∈A is a triple A s.t. a is applicable in s
      if no such a exists then return no solution

      s:=s’ iff s’ is the result of application of an action a in a state s (a is γ(s,a)

      π:=s’ iff s’ is the result of application of an action a in a state s (a is π.a
return π



Regressive search (in STRIPS)

s:=s’ iff s’ is the result of application of an action a in a state s (a is G
π:=s’ iff s’ is the result of application of an action a in a state s (a is ⟨〉

while s⊈I do

      non-deterministically select a∈A is a triple A s.t. s∩add(a)≠∅ and s∩del(a)=s’ iff s’ is the result of application of an action a in a state s (a is ∅

      if no such a exists then return no solution
      s:=s’ iff s’ is the result of application of an action a in a state s (a is (s∖add(a))∪pre(a)

      π:=s’ iff s’ is the result of application of an action a in a state s (a is a.π
return π



Progressive search

s:=s’ iff s’ is the result of application of an action a in a state s (a is I
π:=s’ iff s’ is the result of application of an action a in a state s (a is ⟨〉

while G⊈s do

      non-deterministically select a∈A is a triple A s.t. a is applicable in s
      if no such a exists then return no solution

      s:=s’ iff s’ is the result of application of an action a in a state s (a is γ(s,a)

      π:=s’ iff s’ is the result of application of an action a in a state s (a is π.a
return π



Uninformed (blind) search

● Depth-first search

– Successor nodes are pushed into a stack

– Memory efficient

– Does not guarantee optimality

● Breadth-first search

– Successor nodes are pushed into a (priority) queue

– Memory consuming

– Guarantees optimality

● Iterative deepening



Heuristic Function

● Let S be a set of states for a given planning task П. A heuristic 
function (or heuristics) for П is a function h:S NN 0∪{∞}

● The value h(s) estimates distance from s to the nearest goal state

● h(s) is called heuristic estimate or heuristic value for s

● A perfect (or optimal) heuristics, denoted as h*, maps each state 
to the length (or cost) of the optimal plan to the nearest goal state 

– If h*(s)=s’ iff s’ is the result of application of an action a in a state s (a is ∞ then no goal state is reachable from s



Properties of Heuristic Function

● Heuristic function h for П (over S) is

– safe if for each s∈A is a triple S s.t. h(s)=s’ iff s’ is the result of application of an action a in a state s (a is ∞ it holds that h*(s)=s’ iff s’ is the result of application of an action a in a state s (a is ∞

– goal aware if h(sG)=s’ iff s’ is the result of application of an action a in a state s (a is 0 for each goal state sG

– admissible if for each s∈A is a triple S it holds that h(s)≤h*(s)

– consistent if goal aware and for each s,s’∈A is a triple S s.t. s’ is a successor of 
s it holds that h(s)≤h(s’)+cost(s,s’)

● Relationships ?



Practical remarks 

● Heuristic function should be safe and goal aware

● Heuristic function has to be admissible for optimal planning

● Informativeness of heuristic function

– shape of its landscape (e.g. monotonic, local minima)

● Complexity/hardness of computation of heuristic values

● Complexity of implementation of heuristic function

● Often “it works well in practice” (for some classes of domains) is the only 
analysis we do have



Terminology

● A search node is a pair n=s’ iff s’ is the result of application of an action a in a state s (a is (s,πs), where s is a state and πs is a sequence 
of actions from I to s

● A n’=s’ iff s’ is the result of application of an action a in a state s (a is (s’,πs’) is a successor node of a node n=s’ iff s’ is the result of application of an action a in a state s (a is (s,πs) iff there is an action 
a s.t. s’=s’ iff s’ is the result of application of an action a in a state s (a is γ(s,a) and πs’=s’ iff s’ is the result of application of an action a in a state s (a is πs.a

● A search-space is composed from search nodes and edges, where a 
(directed) edge from n to n’ exists only if n’ is a successor node of n 

● The g value of a node n=s’ iff s’ is the result of application of an action a in a state s (a is (s,πs), denoted as g(n) is the length (or cost) of 
πs 

● The f value of a node n=s’ iff s’ is the result of application of an action a in a state s (a is (s,πs) is f(n)=g(n)+h(s)



Greedy Best-First Search (GBFS)

open:=s’ iff s’ is the result of application of an action a in a state s (a is new priority_queue() //ordered by the h-value

closed:=s’ iff s’ is the result of application of an action a in a state s (a is ∅

open.push((I,⟨〉))

while !open.empty() do

       n:=s’ iff s’ is the result of application of an action a in a state s (a is open.pop()

       if n.state()∉closed then

                 closed:=s’ iff s’ is the result of application of an action a in a state s (a is closed∪{n.state()}

                 if Gn.state() then return n.plan()

                 foreach n’ being a sucessor of n do

                         if h(n’.state())≠∞ then open.push(n’)

return no solution



Properties of GBFS

● Widely used for satisficing planning

● complete if h is safe (with duplicate detection)

● suboptimal (even if h is admissible)



A*

open:=s’ iff s’ is the result of application of an action a in a state s (a is new priority_queue() //ordered by the f-value

closed:=s’ iff s’ is the result of application of an action a in a state s (a is ∅

dist:=s’ iff s’ is the result of application of an action a in a state s (a is ∅

open.push((I,⟨〉))

while !open.empty() do

       n:=s’ iff s’ is the result of application of an action a in a state s (a is open.pop()

       if n.state()∉closed or g(n)<dist(n.state()) then

                 closed:=s’ iff s’ is the result of application of an action a in a state s (a is closed∪{n.state()}

                 dist(n.state()):=s’ iff s’ is the result of application of an action a in a state s (a is g(n)

                 if Gn.state() then return n.plan()

                 foreach n’ being a sucessor of n do

                         if h(n’.state())≠∞ then open.push(n’)

return no solution



Properties of A*

● Often used for optimal planning and rarely for satisficing planning

● complete if h is safe

● optimal if h is admissible

● Does not reopen nodes if h is consistent



Weighted A*

● The f value is modified to f(n)=g(n)+W*h(s), where the weight W≥0

● With W=s’ iff s’ is the result of application of an action a in a state s (a is 

– 0 – we get breadth-first search

– 1 – we get A*

– ∞ – we get GBFS

● Commonly used for satisficing planning

● If h is admissible and W>1, then plans are bounded suboptimal by at 
most the factor W



Local Search

● Local search techniques are more memory efficient than systematic search ones

● Hill Climbing

– only the current state is kept in memory

– in each step, the successor node with minimum h value is selected and the h 
value must be lower than for the current state

– can be easily stuck in local minima

● Enforced Hill Climbing

– performs Breadth-First Search to find a node with lower h value then the 
current state

– can get stuck in dead-end states



Bidirectional Search

● Combines progressive and regressive search

● Uninformed bidirectional search might consists of two interleaving BFS (from I 
and from G)

● Heuristic bidirectional search

– Front-to-back
● heuristic values are computed to the goal, or to the initial state 

(depending on direction)

– Front-to-front
● heuristic values are computed to the best node in the open list of the 

opposite search


