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Mutexes, Search, Heuristics
(revision)



Mutual Exclusivity (Mutex)

● We say that atoms (or facts) p and q are mutually exclusive (or mutex) 
in a given planning task iff for each reachable state s, {p,q}⊈s

● We say that a set of atoms {p1,p2,…,pn} forms a mutex group in a given 
planning task iff for each reachable state s, |{p1,p2,…,pn}∩s|≤1

● We say that a set of atoms {p1,p2,…,pn} forms a facts alternating 
mutex (FAM) group in a given planning task iff for each reachable state 
s, |{p1,p2,…,pn}∩s|=1

● FAM group is a special case of Mutex group

● Atoms in a mutex group are pairwise mutex



Mutex - examples

● Logistics

– {at-truck-A, at-truck-B, at-truck-C} is a mutex group

– at-package-A, in-truck-package are mutex

● BlocksWorld

– {on-A-B,ontable-A,holding-A} is a mutex group

– on-A-B and clear-B are mutex

● Sokoban

– {at-box1-5-5,at-person-5-5-,free-5-5} is a mutex group

– at-box1-5-5 and at-box1-6-6 are mutex



Informed Search

● Systematic (one-directional)

– Greedy Best First Search (GBFS)

– A*

– Weighted A*

● Systematic bidirectional

● Local

– (Enforced) Hill Climbing



Heuristic Function

● Let S be a set of states for a given planning task П. A heuristic 
function (or heuristics) for П is a function h:S NN 0∪{∞}

● The value h(s) estimates distance from s to the nearest goal state

● h(s) is called heuristic estimate or heuristic value for s

● A perfect (or optimal) heuristics, denoted as h*, maps each state 
to the length (or cost) of the optimal plan to the nearest goal state 

– If h*(s)=∞ then no goal state is reachable from s



Properties of Heuristic Function

● Heuristic function h for П (over S) is

– safe if for each s∈S s.t. h(s)=∞ it holds that h*(s)=∞

– goal aware if h(sG)=0 for each goal state sG

– admissible if for each s∈S it holds that h(s)≤h*(s)

– consistent if goal aware and for each s,s’∈S s.t. s’ is a successor of 
s it holds that h(s)≤h(s’)+cost(s,s’)



Towards Good Heuristics



Ideal Properties of Heuristics

● Easy to compute (at most in linear time) 

● Easy to implement

● Very informative (close to the perfect heuristic)

● These properties often go against each other



Goal Count Heuristic

● The Goal Count heuristic represents how many goal atoms have yet to 
be achieved

● hG(s)=|G∖s|

● Easy to compute ?
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Goal Count Heuristic

● The Goal Count heuristic represents how many goal atoms have yet to 
be achieved

● hG(s)=|G∖s|

● Easy to compute ?

– Yes

● Easy to implement ?

– Yes

● Informative ?



Goal Count Heuristic - Issues

● Some goals are achieved too early

– Sussman anomaly (in BW)

● If the goal has only one atom

● It might take many steps to achieve 
one goal atom

– e.g. Sokoban

● Not admissible

– one action can achieve more 
goal atoms

A

C

 B A

C

 B

The goal is to to build the A-B-C tower 



How to effectively compute reasonably informative 
heuristics ?

● Relax some problem constraints

● Abstract the problem

● Leverage some structural information

– Landmarks

– Potentials

● ….



Relaxation



8-puzzle example

● A tile can move from square A to B if A is adjacent to B and B is free → h*

● A tile can move from square A to B if A is adjacent to B → hMD (Manhattan distance)

● A tile can move from square A to B → hMT (Misplaced Tiles)

● h* ≥ hMD ≥ hMT (why?)



Relaxation

● Removing one or more constraints from the problem

● Solution of the original problem is a solution of the relaxed problem

● If the relaxed problem is unsolvable, then the original problem is 
unsolvable too

● Solving the relaxed problem is at most as hard as solving the original 
problem



Relaxation in planning

● How to relax planning tasks ?

– remove delete effects !

– in SAS, don’t remove variable assignment when its value changes 
(cumulate the values)

● We sometimes explicitly refer to such a relaxation as delete-relaxation



Relaxed Planning Tasks

● The (delete-)relaxation a+ of an action a=(pre(a),del(a),add(a)) is 
a+=(pre(a),add(a))

● The result of application of a+ in a state s (if possible) is s’=s∪add(a)

● Let Π=(P,A,I,G) be a planning task. The relaxed planning task Π+ for Π is  Π+=(P,
{a+ | a∈A},I,G)

● If π+ is a plan for Π+, then π+ is a relaxed plan for Π

● A perfect (or optimal) relaxed heuristics, denoted as h+, maps each state 
to the length (or cost) of the optimal relaxed plan to the nearest goal state 



h+

● h+ is safe, goal aware, admissible and consistent

● Finding optimal (delete-)relaxed plans is NP-hard
– Not very practical to use h+

● Any other idea ?



Greedy Algorithm for Relaxed Planning Tasks

s:=I
π+:=⟨〉

while G⊈s do

      select any a+∈A+ s.t. a+ is applicable in s and add(a)⊈s
      if no such a+ exists then return no solution

      s:=s∪add(a)
      π+:=π+.a+

return π+



Properties of the Algorithm

● sound

– returned plan is a relaxed plan for the planning task

– if “unsolvable” is returned, then no action can add an atom to the state 
and hence some goal atoms cannot be achieved

● complete

– the algorithm always terminates 
● each action can be applied at most once
● at least one atom is added in each iteration

● linear time complexity



Heuristic from the Greedy Algorithm

● The length or the cost of the relaxed plan (from the state s) is the 
heuristic value for s

● Such a heuristic is

– safe

– goal aware

● Often such relaxed plans are very suboptimal and such a heuristic is 
thus not very informative



Two possibilities how to calculate relaxed heuristics

● Do not generate relaxed plans but estimate difficulty of a relaxed 
planning task

– hmax

– hadd

● Generate “reasonable” relaxed plans

– hFF 



Optimistic and Pessimistic Assumptions of Task Difficulty

● The idea is to estimate cost of achieving an atom or apply an action

● For each atom we look for the cheapest action to achieve it

● For each action we consider (either)

– sum of the costs of the atoms in its precondition (hadd)

– maximum of the costs of the atoms in its precondition (hmax)

● It can be observed that

– hmax provides an optimistic assumption for the relaxed plan cost

– hadd provides a pessimistic assumption for the relaxed plan cost

– hmax ≤ h+ ≤ hadd



Heuristic h
add

hadd(s)=hadd(G;s)

hadd(P;s) = Σp∈P hadd(p;s)

hadd(p;s) = 0, if p∈s

                        = ap(s), otherwise

ap(s)=mina∈{a’|p add∈ (a’)}hadd(a;s)

hadd(a;s)=c(a)+hadd(pre(a);s)

Note that s is a state, p an atom, a an action, G a goal and P a set of atoms



Heuristic h
max

hmax(s)=hmax(G;s)

hmax(P;s) = maxp∈P hmax(p;s)

hmax(p;s) = 0, if p∈s

                        = ap(s), otherwise

ap(s)=mina∈{a’|p add∈ (a’)}hmax(a;s)

hmax(a;s)=c(a)+hmax(pre(a);s)

Note that s is a state, p an atom, a an action, G a goal and P a set of atoms



Computation
● Basic idea – value iteration

● Set values of initial atoms to 0, and ∞ to other atoms and actions 

● If a value of an atom changes, update the values of actions having it in precondition accordingly

● Label-correcting action selection method

– select an arbitrary action to process (update the values of atoms in its add effects 
accordingly)

– multiple updates per atom

● Dijkstra action selection method

– select the cheapest action to process (update the values of atoms in its add effects 
accordingly)

– single update per atom



Reachability graph

● Also known as relaxed planning graph

● Consists of alternating layers of atoms and actions P0,A0,P1,A1,…

P0=I

Ai={a | pre(a)Pi}

Pi+1=Pi∪ ∪a∈Aiadd(a)

● Terminate when GPi
 or Pi+1=Pi



Running Example (relaxed planning task)

P = {a,b,c,d,e,f,g,h}

I  = {a}

G= {c,d,e,f,g}

a1=({a},{b,c})

a2=({a,c},{d})

a3=({b,c},{e})

a4=({b},{f})

a5=({d},{e,f})

a6=({d},{g})



Running Example: Reachability Graph
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Using Reachability Graph for computing h
max

 and h
add

● For uniform cost planning tasks we can leverage reachability graph

– It’s a special case of the Dijkstra action selection method

● Initially, the reachability graph is constructed from I (or any state s)

– If a fixed point is reached, i.e., Pi+1=Pi, then hmax(I)=hadd(I)=∞

● Then actions are processes layer by layer (from A0, A1, …) until G is 
reached

– The value in G is the value of the heuristic for I (or s)



Running Example: h
max
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Running Example: h
max
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Running Example: h
max
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Running Example: h
max
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Running Example: h
add
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Running Example: h
add
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Running Example: h
add
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Running Example: h
add
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Running Example: h
add
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Remarks

● hmax is sometimes too optimistic as it assumes that some (parallel) 
actions count as one

– e.g. loading and unloading multiple packages into/from the truck

● hadd is sometimes too pessimistic as it assumes that each atom is 
achieved by a separate process

– e.g. moving a block from a tower can both place the block in the right 
place and clears the block underneath

● Generally, hadd is more informative than hmax albeit being inadmissible 



h
FF

● Generates whole relaxed plans (suboptimal but often reasonable)

● Reachability graph is initially generated and the goal node is marked

– If, however, a fixed point is reached, i.e., Pi+1=Pi, then hFF(I)=∞

● Each action or atom node can be either marked or unmarked

● A marked action node is justified if all its predecessors (atom nodes) 
are marked

● A marked atom node is justified if at least one of its predecessors is 
marked



h
FF

● Starting with a marked goal node, apply the following rules until all marked nodes 
are justified

1) Mark all immediate predecessors of a marked unjustified action node 

2) Mark the immediate predecessor of a marked unjustified atom node with only one 
immediate predecessor

3) Mark an immediate predecessor of a marked unjustified atom node connected via an 
idle arc (to the same atom in the previous layer)

4) Mark any immediate predecessor of a marked unjustified atom node 

● The rules are applied in a priority order (earlier first if applicable)

● The number (or the total cost) of marked action nodes is the hFF value



Running Example: h
FF
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h
FF 

(layer by layer)

● Starting with marked goal node, apply the following rules layer by layer until all 
marked nodes are justified

1) Mark all immediate predecessors of a marked unjustified action node 

2) Mark the immediate predecessor of a marked unjustified atom node with only one 
immediate predecessor

3) Mark an immediate predecessor of a marked unjustified atom node connected via an 
idle arc (to the same atom in the previous layer)

4) Mark any immediate predecessor of a marked unjustified atom node 

● The rules are applied in a priority order (earlier first if applicable)

● The number (or the total cost) of marked action nodes is the hFF value



Running Example: h
FF 
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Running Example: h
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(layer by layer)
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h
FF

 Remarks

● hFF is not well defined as tie-breaking might lead to different values

● hmax ≤ h+ ≤ hFF ≤ hadd

● FF planner won the second IPC (in 2000)

● Note that delete-relaxation has some drawbacks (e.g. some non-
detected dead-ends)


