# **Planning for Artificial Intelligence**



Lukáš Chrpa



**Relaxation Heuristics** 



# Mutexes, Search, Heuristics (revision)



#### Mutual Exclusivity (Mutex)

- We say that atoms (or facts) p and q are mutually exclusive (or mutex) in a given planning task iff for each reachable state s, {p,q}⊈s
- We say that a set of atoms  $\{p_1, p_2, ..., p_n\}$  forms a **mutex group** in a given planning task iff for each reachable state s,  $|\{p_1, p_2, ..., p_n\} \cap s| \le 1$
- We say that a set of atoms {p<sub>1</sub>,p<sub>2</sub>,...,p<sub>n</sub>} forms a facts alternating mutex (FAM) group in a given planning task iff for each reachable state s, |{p<sub>1</sub>,p<sub>2</sub>,...,p<sub>n</sub>}∩s|=1
- FAM group is a special case of Mutex group
- Atoms in a mutex group are pairwise mutex



#### Mutex - examples

- Logistics
  - {at-truck-A, at-truck-B, at-truck-C} is a mutex group
  - at-package-A, in-truck-package are mutex
- BlocksWorld
  - {on-A-B,ontable-A,holding-A} is a mutex group
  - on-A-B and clear-B are mutex
- Sokoban
  - {at-box1-5-5,at-person-5-5-,free-5-5} is a mutex group
  - at-box1-5-5 and at-box1-6-6 are mutex



#### **Informed Search**

- Systematic (one-directional)
  - Greedy Best First Search (GBFS)
  - A\*
  - Weighted A\*
- Systematic bidirectional
- Local
  - (Enforced) Hill Climbing



#### **Heuristic Function**

- Let S be a set of states for a given planning task  $\Pi$ . A **heuristic** function (or heuristics) for  $\Pi$  is a function h:S $\rightarrow$ N<sub>0</sub>U{ $\infty$ }
- The value h(s) **estimates** distance from s to the nearest goal state
- h(s) is called **heuristic estimate** or **heuristic value** for s
- A **perfect** (or optimal) **heuristics**, denoted as h\*, maps each state to the length (or cost) of the optimal plan to the nearest goal state
  - If  $h^*(s) = \infty$  then no goal state is reachable from s



#### **Properties of Heuristic Function**

- Heuristic function h for  $\Pi$  (over S) is
  - **safe** if for each  $s \in S$  s.t.  $h(s) = \infty$  it holds that  $h^*(s) = \infty$
  - goal aware if  $h(s_G)=0$  for each goal state  $s_G$
  - **admissible** if for each s∈S it holds that  $h(s) \le h^*(s)$
  - consistent if goal aware and for each s,s'∈S s.t. s' is a successor of s it holds that h(s)≤h(s')+cost(s,s')



# **Towards Good Heuristics**



#### **Ideal Properties of Heuristics**

- **Easy to compute** (at most in linear time)
- Easy to implement
- Very informative (close to the perfect heuristic)

• These properties often go against each other



#### **Goal Count Heuristic**

- The Goal Count heuristic represents how many goal atoms have yet to be achieved
- $h_G(s) = |G \setminus s|$
- Easy to compute ?



#### **Goal Count Heuristic**

- The Goal Count heuristic represents how many goal atoms have yet to be achieved
- $h_G(s)=|G \setminus s|$
- Easy to compute ?
  - Yes
- Easy to implement ?



#### **Goal Count Heuristic**

- The Goal Count heuristic represents how many goal atoms have yet to be achieved
- $h_G(s)=|G \setminus s|$
- Easy to compute ?
  - Yes
- Easy to implement ?
  - Yes
- Informative ?



#### **Goal Count Heuristic - Issues**

- Some goals are achieved too early
  - Sussman anomaly (in BW)
- If the goal has only one atom
- It might take many steps to achieve one goal atom
  - e.g. Sokoban
- Not admissible
  - one action can achieve more goal atoms



#### The goal is to to build the A-B-C tower





# How to effectively compute reasonably informative heuristics ?

- **Relax** some problem constraints
- Abstract the problem
- Leverage some **structural information** 
  - Landmarks
  - Potentials
- •



# Relaxation



#### 8-puzzle example



- A tile can move from square A to B if A is adjacent to B and B is free  $\rightarrow$  h\*
- A tile can move from square A to B if A is adjacent to  $B \rightarrow h^{MD}$  (Manhattan distance)
- A tile can move from square A to  $B \rightarrow h^{MT}$  (Misplaced Tiles)

h\* ≥ h<sup>MD</sup> ≥ h<sup>MT</sup> (why?)



#### Relaxation

- **Removing one or more constraints** from the problem
- Solution of the original problem is a solution of the relaxed problem
- If the relaxed problem is unsolvable, then the original problem is unsolvable too
- Solving the relaxed problem is at most as hard as solving the original problem



#### Relaxation in planning

- How to relax planning tasks ?
  - remove delete effects !
  - in SAS, don't remove variable assignment when its value changes (cumulate the values)
- We sometimes explicitly refer to such a relaxation as **delete-relaxation**



#### Relaxed Planning Tasks

- The (delete-)relaxation a+ of an action a=(pre(a),del(a),add(a)) is a+=(pre(a),add(a))
- The **result** of application of  $a^+$  in a state s (if possible) is s'=sUadd(a)
- Let  $\Pi$ =(P,A,I,G) be a planning task. The **relaxed planning task**  $\Pi$ <sup>+</sup> for  $\Pi$  is  $\Pi$ <sup>+</sup>=(P, {a+ | a \in A},I,G)
- If  $\pi^+$  is a plan for  $\Pi^+$ , then  $\pi^+$  is a **relaxed plan** for  $\Pi$

 A perfect (or optimal) relaxed heuristics, denoted as h<sup>+</sup>, maps each state to the length (or cost) of the optimal relaxed plan to the nearest goal state



#### h+

- h+is safe, goal aware, admissible and consistent
- Finding optimal (delete-)relaxed plans is NP-hard
  - Not very practical to use h+
- Any other idea ?



#### Greedy Algorithm for Relaxed Planning Tasks

s:=l π+:=〈〉

while G⊈s do

select any  $a^+ \in A^+$  s.t.  $a^+$  is applicable in s and add(a)  $\not\subseteq$  s if no such  $a^+$  exists **then return** no solution s:=sUadd(a)  $\pi^+$ := $\pi^+$ . $a^+$ 

return  $\pi^+$ 



#### Properties of the Algorithm

- sound
  - returned plan is a relaxed plan for the planning task
  - if "unsolvable" is returned, then no action can add an atom to the state and hence some goal atoms cannot be achieved
- complete
  - the algorithm always terminates
    - each action can be applied at most once
    - at least one atom is added in each iteration
- **linear** time complexity



#### Heuristic from the Greedy Algorithm

- The length or the cost of the relaxed plan (from the state s) is the heuristic value for s
- Such a heuristic is
  - safe
  - goal aware
- Often such relaxed plans are very suboptimal and such a heuristic is thus not very informative



#### Two possibilities how to calculate relaxed heuristics

- Do not generate relaxed plans but **estimate difficulty** of a relaxed planning task
  - h<sub>max</sub>
  - h<sub>add</sub>
- Generate "reasonable" relaxed plans
  - $-h_{FF}$



#### Optimistic and Pessimistic Assumptions of Task Difficulty

- The idea is to estimate cost of achieving an atom or apply an action
- For each **atom** we look for the **cheapest action** to achieve it
- For each **action** we consider (either)
  - sum of the costs of the atoms in its precondition  $(h_{add})$
  - **maximum** of the costs of the **atoms** in its precondition ( $h_{max}$ )
- It can be observed that
  - $h_{max}$  provides an **optimistic** assumption for the relaxed plan cost
  - $h_{add}$  provides a **pessimistic** assumption for the relaxed plan cost
  - $h_{max} \le h^+ \le h_{add}$



Heuristic  $h_{add}$ 

 $h_{add}(s) = h_{add}(G;s)$  $h_{add}(P;s) = \sum_{p \in P} h_{add}(p;s)$ 

$$\begin{split} h_{add}(p;s) &= 0, \text{ if } p \in s \\ &= a_p(s), \text{ otherwise} \\ a_p(s) &= \min_{a \in \{a' \mid p \in add(a')\}} h_{add}(a;s) \\ h_{add}(a;s) &= c(a) + h_{add}(pre(a);s) \end{split}$$

Note that s is a state, p an atom, a an action, G a goal and P a set of atoms



Heuristic  $h_{max}$ 

 $h_{max}(s) = h_{max}(G;s)$  $h_{max}(P;s) = \max_{p \in P} h_{max}(p;s)$ 

$$\begin{split} h_{max}(p;s) &= 0, \text{ if } p \in s \\ &= a_p(s), \text{ otherwise} \\ a_p(s) &= \min_{a \in \{a' \mid p \in \text{add}(a')\}} h_{max}(a;s) \\ h_{max}(a;s) &= c(a) + h_{max}(pre(a);s) \end{split}$$

Note that s is a state, p an atom, a an action, G a goal and P a set of atoms



#### Computation

- Basic idea value iteration
- Set values of initial atoms to 0, and  $\infty$  to other atoms and actions
- If a value of an atom changes, update the values of actions having it in precondition accordingly
- Label-correcting action selection method
  - select an **arbitrary** action to process (update the values of atoms in its add effects accordingly)
  - multiple updates per atom
- Dijkstra action selection method
  - select the cheapest action to process (update the values of atoms in its add effects accordingly)
  - single update per atom



#### Reachability graph

- Also known as relaxed planning graph
- Consists of alternating layers of atoms and actions P<sub>0</sub>,A<sub>0</sub>,P<sub>1</sub>,A<sub>1</sub>,...

 $P_0 = I$ 

 $A_i = \{a \mid pre(a) \subseteq P_i\}$ 

 $P_{i+1}=P_i \cup U_{a \in A_i} add(a)$ 

• Terminate when  $G \subseteq P_i$  or  $P_{i+1} = P_i$ 



#### Running Example (relaxed planning task)

- $\mathsf{P} = \{a, b, c, d, e, f, g, h\}$
- $I = \{a\}$
- $G = \{c,d,e,f,g\}$
- $a_1=(\{a\},\{b,c\})$
- $a_2=(\{a,c\},\{d\})$
- $a_3=(\{b,c\},\{e\})$
- $a_4=(\{b\},\{f\})$
- $a_5=(\{d\},\{e,f\})$
- $a_6=(\{d\},\{g\})$

#### Running Example: Reachability Graph





#### Running Example: Reachability Graph

CEN



#### Running Example: Reachability Graph







#### Using Reachability Graph for computing $h_{max}$ and $h_{add}$

- For **uniform cost** planning tasks we can leverage reachability graph
  - It's a special case of the Dijkstra action selection method
- Initially, the reachability graph is constructed from I (or any state s)
  - If a fixed point is reached, i.e.,  $P_{i+1}=P_i$ , then  $h_{max}(I)=h_{add}(I)=\infty$
- Then actions are processes layer by layer (from  $A_0, A_1, \ldots$ ) until G is reached
  - The value in G is the value of the heuristic for I (or s)

## Running Example: h<sub>max</sub>





Running Example: h<sub>max</sub>





Running Example: h<sub>max</sub> 0 1  $a_2$  $a_2$ 1 1  $a_{3}$  $a_3$ d d  $a_4$  $a_4$ G е е  $a_{5}$ f  $a_{6}$ g  $\mathsf{P}_0$  $\mathsf{P}_1$  $P_2$ A  $A_1$  $\mathsf{P}_3$ A





## Running Example: h<sub>add</sub>







#### Remarks

- h<sub>max</sub> is sometimes too optimistic as it assumes that some (parallel) actions count as one
  - e.g. loading and unloading multiple packages into/from the truck
- h<sub>add</sub> is sometimes too pessimistic as it assumes that each atom is achieved by a separate process
  - e.g. moving a block from a tower can both place the block in the right place and clears the block underneath
- Generally,  $h_{add}$  is more informative than  $h_{max}$  albeit being inadmissible



#### $\mathsf{h}_{\mathsf{FF}}$

- Generates whole relaxed plans (suboptimal but often reasonable)
- Reachability graph is initially generated and the **goal node is marked** 
  - If, however, a fixed point is reached, i.e.,  $P_{i+1}=P_i$ , then  $h_{FF}(I)=\infty$
- Each action or atom node can be either **marked** or **unmarked**
- A marked action node is justified if all its predecessors (atom nodes) are marked
- A marked atom node is justified if at least one of its predecessors is marked



#### h<sub>FF</sub>

- Starting with a marked goal node, apply the following rules until all marked nodes are justified
- 1) Mark all immediate predecessors of a marked unjustified action node
- 2) Mark the immediate predecessor of a marked unjustified atom node with only one immediate predecessor
- 3) Mark an immediate predecessor of a marked unjustified atom node connected via an idle arc (to the same atom in the previous layer)
- 4) Mark any immediate predecessor of a marked unjustified atom node
- The rules are applied in a **priority order** (earlier first if applicable)
- The number (or the total cost) of marked action nodes is the  $h_{FF}$  value

Running Example:  $h_{FF}$ 







#### h<sub>FF</sub> (layer by layer)

- Starting with marked goal node, apply the following rules layer by layer until all marked nodes are justified
- 1) Mark all immediate predecessors of a marked unjustified action node
- 2) Mark the immediate predecessor of a marked unjustified atom node with only one immediate predecessor
- 3) Mark an immediate predecessor of a marked unjustified atom node connected via an idle arc (to the same atom in the previous layer)
- 4) Mark any immediate predecessor of a marked unjustified atom node
- The rules are applied in a **priority order** (earlier first if applicable)
- The number (or the total cost) of marked action nodes is the h<sub>FF</sub> value

#### Running Example: h<sub>FF</sub> (layer by layer)



























#### $h_{FF}$ Remarks

- $h_{FF}$  is not well defined as tie-breaking might lead to different values
- $h_{max} \le h^+ \le h_{FF} \le h_{add}$

• FF planner won the second IPC (in 2000)

• Note that delete-relaxation has some drawbacks (e.g. some nondetected dead-ends)