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Intelligent Acting

● Intelligent entities (agents) reason about how to act 
to achieve their goals 

● Reactive acting
– Rule based, Reinforcement Learning
– Fast
– Aims for short-term goals (rewards)

● Deliberative acting
– Planning
– Slow
– Aims for longer-term goals



  

Automated Planning

● We have Domain Definition languages (e.g. PDDL)
● We have Planning Engines (e.g., FF, LAMA, LPG, 

FDSS, BFWS,...)
● So, we can generate Plans (quite easily)

● But what about their execution



  

Task Planning for AUVs

● Necessity to control multiple heterogeneous AUVs 
for fulfilling user-defined tasks (e.g. sampling an 
object of interest)

● System has to be flexible (e.g. a user can add a new 
task) and robust (e.g. handling vehicles’ failures)
– Automatized response on task changes by user and/or 

exceptional circumstances during plan execution



  

“One shot” planning Modular Architecture 
[Chrpa et al., 2015]

● User specifies tasks in 
NEPTUS (the control 
system developed in LSTS, 
Univ. of Porto)

● NEPTUS generates a 
planning problem and 
sends it to the LPG-td 
planning engine

● LPG-td returns a plan to 
NEPTUS

● NEPTUS distributes the 
plan to each of the vehicles



  

Domain Specification (sketch)
● The user specifies tasks by

– Locations/areas of interest
– Required payloads (e.g. camera, sidescan)

● The vehicle can perform the following actions
– Move (moving between locations)
– Sample/Survey (sampling the location/surveying the 

area of interest by a required payload)
– Communicate (communicate task data with control 

center while being in its “depot”)



  

Experimental Settings

● Evaluated in Leixões 
Harbour, Porto

● Mine-hunting scenario was 
used

● 3  light AUVs, 2 carried 
sidescan, one carried 
camera

● In phase one, areas of 
interest were surveyed

● In phase two, contacts 
identified in phase one 
sampled to identify them as 
mines, or false positives



  

Planned vs. Execution time

● The plans were 
executable

● High discrepancies, 
especially for move and 
survey actions

● Rough time 
predictions that were 
done only on distance 
and type of vehicle

Vehicle Action Time Difference (s)

Noptilus-1

move
survey
sample
communicate

Noptilus-2

move
survey
sample N/A
communicate

Noptilus-3

move
survey
sample
communicate

47.80 ± 49.11
23.15 ± 23.26

1.33 ± 0.58
0.16 ± 0.17

39.57 ± 35.66
107.88 ± 141.10

0.25 ± 0.07
59.90 ± 57.05
24.00 ± 0.00
9.57 ± 13.64
0.11 ± 0.16



  

Additional Requirements [Chrpa et al., 
2017] 

1) Users can add, remove or modify tasks during the 
mission

● Plans have to by (dynamically) amended

2) Vehicles might fail to execute an action
● Tasks have to be (dynamically) reallocated to another AUV 

3) Communication with the control center is possible 
only when a vehicle is in its “depot”

● The user defines a maximum “away” time for 
each vehicle (the vehicle has to return to its 
“depot” in that time)



  

Execution
● Preprocessing

– Splitting large surveillance areas into smaller ones

● Planning

– NEPTUS generates a problem specification in PDDL, runs LPG-td, then 
processes and distributes the plan among the vehicles

● Execution

– Each vehicle is responsible for executing its actions

– Move actions are translate into timed-waypoints for mitigating the differences 
between planned and actual times

– When in depots vehicles communicate status of completed tasks 
(success/failure) – failed tasks are “re-inserted”

● Replanning

– If a new planning request comes (e.g. a user added a new task), vehicles 
continue to execute their current plans until they come back to their depots, then 
they receive new plans 



  

Results of the Field Experiment

● Plans were successfully 
executed

● During one of the 
executions one AUV 
(Noptilus 3) failed 
(depth sensor fault) – 
tasks were 
automatically re-
inserted and allocated 
to a different AUV, 
which completed them

Most planned/actual differences are 
quite small (less than 3 seconds).

Around time 1000 a noticeable 
difference occurred (vehicle had to 
ascend during the survey). The 
delay was eliminated by accelerating 
during the following move action.



  

Executing Plans

● In theory (static environment)
– Actions in a plan are always applicable (one by one)
– After all actions are executed the goal is reached

● In practice (dynamic environment)
– Actions might become inapplicable (at some point) 

because of external factors
– Goal might not be reached even if all the actions were 

executed
– The agent might “fall” into a dead-end state



  

Planning vs Execution 
(the AUV case)

● Issues we considered (to some extent)
– User intervention (e.g. adding tasks)
– Task failures
– Vehicles delays
– Lack of communication

● Issues we didn’t consider
– Ships passing the area (or other non-deterministic events)
– Currents, obstacles
– …….



  

Non-deterministic events

● Events are encoded similarly to actions – they have 
preconditions, add and delete effects

● A non-deterministic event can occur if its precondition 
is met (but doesn’t necessarily have to)

● We assume, for simplification, a “two-player” like 
scenario
– The controller applies an action (including “noop”)
– The environment applies a set of independent events 

(including “noop”)



  

Planning with non-deterministic Events

● Generate “strong plans” (handling all non-deterministic 
alternatives)
– computationally very expensive

● Naive Planning and Replanning
– relax the non-determinism
– replan if something is “wrong”
– prone to dead-ends

● Enhancing (classical) planning techniques by reasoning 
with safe or “dangerous” states



The AUV Domain

● An AUV moves and collects 
resources in a grid-like 
environment

● Ships can move in certain grid cells
● Ships are not controlled by the 

agent
● If a ship runs over the AUV, the 

AUV is destroyed
● The movement of ships is 

represented by non-deterministic 
events



Navigating between Safe States
[Chrpa et al., AAAI 2020]

● A safe state is a state in which no sequence of events lead 
to dead-end

● A robust plan is a plan that can always be applied and goal 
reached despite event occurrence

● A reference plan is the initially generated plan such that the 
number of consecutive “unsafe” actions is minimized as safe 
states should be “reasonably close” to each other

● The idea is that planning and acting consists of generation 
and execution of robust plans between safe states 



Robust Plans

● We approximate robust plan generation by 
pessimistic assumption of action applicability and 
optimistic assumption of event applicability
– p+ – atoms that could have been added by events (but not 

deleted by actions)

– p- – atoms that could have been deleted by 
events (but not added by actions)

– event applicability pre(e)s∪p+
– action applicability pre(a)s∖p-



Safe State Reasoning in Planning and 
Acting

● Try to generate a robust plan (if possible, just execute 
it !)

● Try to generate a reference plan with increasing 
unsafeness limit (if it fails, stop)

● Iterate until the goal is reached
– Identify k actions forming a robust plan and finishing in a safe 

state
– If k>0, apply the k actions
– If k=0, try to generate a robust plan to the next safe state, if it 

exists, execute it, otherwise wait



Example 

A reference plan (with the unsafeness limit of 
1)



  

Example 

The maximum length robust plan from the 
reference plan



  

Example

A robust plan around the ship (to the next 
safe state)



  

Observations

● The approach guarantees not “falling” into 
dead-ends.

● Planning time is very low (compared to e.g. 
FOND planning)

● It might be the case that we might never find a 
robust plan to connect given safe states and 
hence the agent might get stuck



  

Dark Dungeon domain

● The hero has to navigate through the dungeon full 
of traps and monsters

● The hero can use the sword (if s/he found it) to 
eliminate monsters

● The hero can disarm traps but must be empty 
handed

● Monsters can move (they cannot be in a room with a 
trap or another monster) and eventually eliminate 
empty handed hero 



  

Reasoning about “dangerous” 
states [Chrpa et al., 2017,202?]

● Considering all non-deterministic alternatives might 
not be feasible and safe states are sparse

● However, the controller should still avoid dead-ends
● The controller needs to know if it is in a dangerous 

state, i.e., a state “close” to a dead-end state, so it 
can avoid “falling” into it



  

Dangerous States

● A state is
– 0-dangerous if it’s a dead-end state
– n-dangerous if events (without controller’s actions) might 

transform it to a dead-end state in n steps
– Safe (∞-dangerous) otherwise

● The dang function determines how dangerous the 
state can be (the worst case scenario) after executing 
a given sequence of actions



  

An example of dangerousness

● The initial state (I) is 4-
dangerous

● dang(I,〈right〉) = 2
● dang(I,〈right,up〉) = 0
● dang(I,〈right,right〉) = 2
● dang(I,〈right,right,pickup〉) =∞



  

Meta-reasoning on Dangerous states

● When in “dangerous” state (the value of dang less 
than a given threshold) the controller:
– Reactively escapes the danger, i.e, executes actions 

maximizing the value of dang
– Plans towards a safe state
– Plans towards eliminating the source of the danger

● After escaping the danger (the value of dang is 
above the threshold), the controller plans towards 
the goal



  

Considered Agents (baseline)

● R1 – behaves reactively according to given rules
● N1 – re-plans whenever an event changes the state 

of the environment
● N2 – re-plans when the current action is inapplicable



  

Considered Agents (clever)

● C1 – if the current state is “dangerous” (2-dangerous 
or worse), then it plans to eliminate the source of 
danger

● C2 - if the value of the dang function is small (2 or 
less), then it plans to eliminate the source of danger

● C3 - if the current state is “dangerous” (2-dangerous 
or worse), then it reactively moves to a safer state (3-
dangerous or better), and then it plans to eliminate 
the source of danger



  

Results

Agents’ (W)ins, (L)osses, and time-outs (T/O); their success rate (SR), winning steps 
(Ws, thousands) and wining time (Wt, seconds); number of planner calls and planner 
fails (PC and PF, thousands)

● C1-C3 and N1 have good success rate (85% or 
more)

● N2 and R1 have a small “winning” time but low 
success rate (less than 75%)

● N1 has a high “winning” time and a lot planner calls
● C1 and C2 have success rate above 90% while 

keeping “winning” time in reasonable bounds



  

Results cont.

The success rate of the different types of agents in dungeons with different 
monster movement probabilities

● N2’s success rate is reduced considerably with 
increasing “dynamicity”

● C1-C3’s success rates decrease “more slowly” 
than for N1 and N2

● C2’s success rate is above 80% even for “more 
dynamic” environments  



  

Summary

● External factors (e.g., events) are often part of the 
environment

● One can still (to some extent) leverage classical (or 
deterministic) planning
– (PO)MDPs or FOND techniques usually don’t scale well
– MCTS might be less informative if not many alternatives 

are “viable”
– Reinforcement Learning might not be efficient for 

longer-term goals/rewards 


