bR /\I
/ m T I

CENTER

Planning and Acting In
Dynamic Environments

Lukas Chrpa



Intelligent Acting

* Intelligent entities (agents) reason about how to act
to achieve their goals
* Reactive acting
- Rule based, Reinforcement Learning
- Fast
- Aims for short-term goals (rewards)

* Deliberative acting
- Planning

- Slow
- Aims for longer-term goals



Automated Planning

We have Domain Definition languages (e.g. PDDL)

We have Planning Engines (e.g., FF, LAMA, LPG,
FDSS, BFWS,...)

So, we can generate Plans (quite easily)

But what about their execution



Task Planning for AUVs

* Necessity to control multiple heterogeneous AUVs
for fulfilling user-defined tasks (e.g. sampling an
object of interest)

* System has to be flexible (e.g. a user can add a new
task) and robust (e.g. handling vehicles’ failures)

- Automatized response on task changes by user and/or
exceptional circumstances during plan execution



“One shot” planning Modular Architecture

[Chrpa et al., 2015]

* User specifies tasks in
NEPTUS (the control
system developed in LSTS,
Univ. of Porto)

* NEPTUS generates a
planning problem and
sends it to the LPG-td
planning engine

 LPG-td returns a plan to
NEPTUS

* NEPTUS distributes the
plan to each of the vehicles

User Interaction

v

Problem

Mission

specification

Domain
Model
(PDDL)

|

“~_Plan_—"

Planning
engine

(LPG-TD)




Domain Specification (sketch)

* The user specifies tasks by

- Locations/areas of interest

- Required payloads (e.g. camera, sidescan)
* The vehicle can perform the following actions

- Move (moving between locations)

- Sample/Survey (sampling the location/surveying the
area of interest by a required payload)

- Communicate (communicate task data with control
center while being in its “depot”)



Experimental Settings

Evaluated in Leixdes
Harbour, Porto

Mine-hunting scenario was
used

3 light AUVs, 2 carried
sidescan, one carried
camera

In phase one, areas of
Interest were surveyed

In phase two, contacts
identified in phase one
sampled to identify them as
mines or false nositives



Planned vs. Execution time

* The plans were

executable

High discrepancies,
especially for move and
survey actions

Rough time

predictions that were
done only on distance
and type of vehicle

Vehicle Action Time Difference (s)
move 47.80 + 49.11
: survey 23.15 + 23.26
N lus-1
optilus-1 | ample 1.33 + 0.58
communicate 0.16 £ 0.17
move 39.57 + 35.66
. survey 107.88 + 141.10
Noptilus-2 sample N/A
communicate 0.25 + 0.07
move 59.90 + 57.05
: survey 24.00 = 0.00
Noptilus-3
P sample 9.57 £ 13.64
communicate 0.11 +0.16




Additional Requirements [Chrpa et al.,
2017]

1) Users can add, remove or modify tasks during the
mission
* Plans have to by (dynamically) amended

2) Vehicles might fail to execute an action
* Tasks have to be (dynamically) reallocated to another AUV

3) Communication with the control center is possible
only when a vehicle is in its “depot”

* The user defines a maximum “away” time for
each vehicle (the vehicle has to return to its
“depot” in that time)



Execution

Preprocessing
- Splitting large surveillance areas into smaller ones

Planning

- NEPTUS generates a problem specification in PDDL, runs LPG-td, then
processes and distributes the plan among the vehicles

Execution
— Each vehicle is responsible for executing its actions

— Move actions are translate into timed-waypoints for mitigating the differences
between planned and actual times

- When in depots vehicles communicate status of completed tasks
(success/failure) — failed tasks are “re-inserted”
Replanning

- If a new planning request comes (e.g. a user added a new task), vehicles
continue to execute their current plans until they come back to their depots, then

they receive new plans



Results of the Field Experiment

lllllllllllllllllllllll

* Plans were successfully

executed \\P /\W \Wm \

« During one of the M MW”
executions one AUV |
(Noptilus 3) failed ; B
(depth sensor fault) — =T
tasks were Most planned/actual differences are
automatically re- quite small (less than 3 seconds).
Inserted and allocated Around time 1000 a noticeable
to a different AUV, difference occurred (vehicle had to

ascend during the survey). The
delay was eliminated by accelerating
during the following move action.

which completed them



Executing Plans

* In theory (static environment)
- Actions in a plan are always applicable (one by one)
— After all actions are executed the goal is reached

* In practice (dynamic environment)

— Actions might become inapplicable (at some point)
because of external factors

- Goal might not be reached even if all the actions were
executed

- The agent might “fall” into a dead-end state



Planning vs Execution
(the AUV case)

* Issues we considered (to some extent)
- User intervention (e.g. adding tasks)
- Task failures
- Vehicles delays
- Lack of communication

* |ssues we didn’t consider
— Ships passing the area (or other non-deterministic events)
— Currents, obstacles



Non-deterministic events

* Events are encoded similarly to actions — they have
preconditions, add and delete effects

* A non-deterministic event can occur If its precondition
IS met (but doesn’t necessarily have to)

* We assume, for simplification, a “two-player” like
scenario
— The controller applies an action (including “noop”)

- The environment applies a set of independent events
(including “noop”)



Planning with non-deterministic Events

» Generate “strong plans” (handling all non-deterministic
alternatives)

— computationally very expensive

* Naive Planning and Replanning
- relax the non-determinism
- replan if something is “wrong”
— prone to dead-ends

* Enhancing (classical) planning techniques by reasoning
with safe or “dangerous” states



The AUV Domain

 An AUV moves and collects
resources in a grid-like

environment

* Ships can move in certain grid cells

* Ships are not controlled by the

agent

e If a ship runs over the AUV, the

AUV is destroyed %

 The movement of ships is

represented by non-deterministic
events




Navigating between Safe States
[Chrpa et al., AAAI 2020]

A safe state is a state in which no sequence of events lead
to dead-end

A robust plan is a plan that can always be applied and goal
reached despite event occurrence

A reference plan is the initially generated plan such that the
number of consecutive “unsafe” actions is minimized as safe
states should be “reasonably close” to each other

The idea is that planning and acting consists of generation
and execution of robust plans between safe states



Robust Plans

* We approximate robust plan generation by
pessimistic assumption of action applicability and
optimistic assumption of event applicability

- p+ — atoms that could have been added by events (but not
deleted by actions)

- p- — atoms that could have been deleted by
events (but not added by actions)

— event applicablility pre(e)Ssup+
- action applicability pre(a)<s \p-



Safe State Reasoning in Planning and

Acting

* Try to generate a robust plan (if possible, just execute
it !)

* Try to generate a reference plan with increasing
unsafeness limit (if it fails, stop)

* Iterate until the goal is reached

ldentify k actions forming a robust plan and finishing in a safe
state

If k>0, apply the k actions

If k=0, try to generate a robust plan to the next safe state, if it
exists, execute it, otherwise walit



Example
&

v

e
$

- af e} =}

|
|

v
v
v
v
v
$ v

| s ———a

v

A reference plan (with the unsafeness limit of
1)



Example
&

v

-+ - = -

!
|

v
v
v
v
v
v

L,—,—,—,—,—,—,* &
Y

The maximum length robust plan from the
reference plan




Example

:
|
v

1. >
%" 15
SR
o
;
¥
;

A robust plan around the ship (to the next
safe state)



Observations

* The approach guarantees not “falling” into
dead-ends.

* Planning time is very low (compared to e.g.
FOND planning)

* It might be the case that we might never find a
robust plan to connect given safe states and
hence the agent might get stuck



Dark Dungeon domain

The hero has to navigate through the dungeon full
of traps and monsters

The hero can use the sword (if s/he found it) to
eliminate monsters

The hero can disarm traps but must be empty
handed

Monsters can move (they cannot be in a room with a
trap or another monster) and eventually eliminate
empty handed hero



Reasoning about “dangerous”
states

* Considering all non-deterministic alternatives might
not be feasible and safe states are sparse

e However, the controller should still avoid dead-ends

* The controller needs to know If it IS in a dangerous
state, i.e., a state “close” to a dead-end state, so it
can avoid “falling” into it



Dangerous States

 Astate s
- 0-dangerous Iif it's a dead-end state

- n-dangerous if events (without controller’s actions) might
transform it to a dead-end state in n steps

- Safe (o-dangerous) otherwise
* The dang function determines how dangerous the

state can be (the worst case scenario) after executing
a given sequence of actions



An example of dangerousness

The initial state (1) is 4- 1 5
dangerous N -
dang(l, <right) )=2

dang(l, <right,up) )=0 sl T T
dang(l, <right,right) )= 2

dang(l, C|H S

Cright,right,pickup) ) =



Meta-reasoning on Dangerous states

* When in “dangerous” state (the value of dang less
than a given threshold) the controller:

- Reactively escapes the danger, i.e, executes actions
maximizing the value of dang

- Plans towards a safe state
- Plans towards eliminating the source of the danger
* After escaping the danger (the value of dang is

above the threshold), the controller plans towards
the goal



Considered Agents (baseline)

* R1 - behaves reactively according to given rules

* N1 - re-plans whenever an event changes the state
of the environment

* N2 - re-plans when the current action is inapplicable



Considered Agents (clever)

 C1 - if the current state Is “dangerous” (2-dangerous
or worse), then it plans to eliminate the source of
danger

* C2 - if the value of the dang function is small (2 or
less), then it plans to eliminate the source of danger

* C3 - if the current state is “dangerous” (2-dangerous
or worse), then it reactively moves to a safer state (3-
dangerous or better), and then it plans to eliminate
the source of danger



Results

A W L. 1Ay el 4 W W'l P P
M1 484 M6 15 ey 45.5 455 1365 L
M2 H1EH 512 E. 73 8.6 1.2 4.1 RNE
K1 495 »h2 I 343 LUGAT & 45.2 il (il (11Kl
1 1) 55 i IR 44.°F 15.2 36,1 L.
C2 5114 453 4 LAY | 16 I1.5 4.2 30E
C3 478D M {14 LES 533 15.6 LT )

Agents’ (W)ins, (L)osses, and time-outs (T/O); their success rate (SR), winning steps
(Ws, thousands) and wining time (Wt, seconds); number of planner calls and planner

fails (PC and PF, thousands)

* C1-C3 and N1 have good success rate (85% or

more)
* N2 and R1 have a small “winning” time but low
success rate (less than 75%)

* N1 has a high “winning” time and a lot planner calls
e C1 and C2 have success rate above 90% while



Results cont.

maovement proh. M1 M2 K1 1 2 3
.l (L99 LR L LA ] | LR Ly .94
.1 LY 16 n.7l4 L& 74 .92 LY9Xy . B
.2 (LESH .66 1 LLEHS . E5EE .49 U857
.5 W14 .54 U T i .rsT L8205 .75%

The success rate of the different types of agents in dungeons with different
monster movement probabilities

* N2’s success rate is reduced considerably with
Increasing “dynamicity”

* C1-C3’s success rates decrease “more slowly”
than for N1 and N2

* C2’s success rate is above 80% even for “more
dynamic” environments



Summary

* External factors (e.g., events) are often part of the
environment

* One can still (to some extent) leverage classical (or
deterministic) planning
- (PO)MDPs or FOND technigques usually don’t scale well

- MCTS might be less informative if not many alternatives
are “viable”

- Reinforcement Learning might not be efficient for
longer-term goals/rewards



