B(E)4M36PUI – Artificial Intelligence Planning Solving universe-sized puzzles with human-sized patience

Antonín Komenda Artificial Intelligence Center (AIC)

Course Overview

- https://cw.fel.cvut.cz/wiki/courses/pui
- Lectures
 - 2 parts (Antonin Komenda and Stefan Edelkamp)
 - Invited lecture (Schlumberger practically used automated planning)
- Seminars
 - 2 parts (Michaela Urbanovská and Jan Mrkos)
 - Synchronized topics with lectures
 - Two assignment projects with multiple parts
- Exam
 - Primarily written form (theory + exercises)
 - Points from the seminars
 - Maximum 50 points
 - 25 points required for the credit (zápočet)

Lectures & Seminars Overview (Part 1)

- 1. Introduction
- 2. Representations (for Classical Planning)
- 3. Search (for Classical Planning)
- 4. Automated Planning in Practice (invited lecture from Schlumberger)
- 5. Heuristics (for Classical Planning) I Relaxations
- 6. Heuristics (for Classical Planning) II Landmarks & Potentials
- 7. Heuristics (for Classical Planning) III Abstractions

Assignments

- Classical planning
 - PDDL modeling (5 points) deadline: week 3
 - Grounding implementation (10 points) deadline: week 4
 - Search algorithm + heuristic implementation (15 points) deadline: week 8
 - 30 points total
- Probabilistic planning
 - Implementation of probabilistic planning algorithm (up to 20 points)

Both assignments have to be submitted.

50 points in total \rightarrow 25 required for the credit (zápočet)

Communication

- Email is the primary form of communication
- Ask at the lectures/tutorials!

Email addresses

- Classical Planning (Part 1)
 - Antonín Komenda <u>antonin.komenda@fel.cvut.cz</u>
 - Michaela Urbanovská urbanm30@fel.cvut.cz
- Stochastic Planning (Part 2)
 - Stefan Edelkamp
 - Jan Mrkos

Freshman's Sokoban Example

https://www.sokobanonline.com/play/community/experiment/127458_practice

Pondering Sokoban Example

[2 035 800]

- States
- Actions
- Initial state
- Goal states

- States
- Actions
- Initial state
- Goal states
- Problem:

• Solution: a plan

π=(move-player1-C3-B3, move-player1-B3-C3, push-player1-C3-D3, ...)

(under the regular Sokoban rules)

- States
- Actions
- Initial state
- Goal states

the initial state

an unreachable state

a dead-end state

(under the regular Sokoban rules)

What is Automated Planning?

- Artificial Intelligence (sub-field)
 - (general) problem solving
- Decision Theory meets Computer Science
 - sequential decision making
 - various forms of combinatorial optimization problems
- Three approaches in AI to the problems of action selection or control
 - Learning: learn control from experience
 - Programming: specify control by hand
 - Planning: specify problem by hand, derive control automatically

Automated Planning is Hard

- just search in the space of states using actions?
- **exponential** dependence on size of the problem
- exponentially long plans

- planning with "sane" length of plans is NP-complete
- classical planning is PSPACE-complete
- multi-agent variants are NEXP-complete

number of cells
n | configs for (n/2) boxes

2	2	
4	6	
6	20	
8	70	
10	252	
12	924	
14	3432	
16	12870	
18	48620	
20	184756	
22	705432	
24	2704156	~106
26	10400600	~107
28	40116600	~107
30	155117520	~108

. . .

Serious Sokoban Example

- $\sim 10^{34}$ configurations of boxes
- $\sim 10^{70}$ +colored boxes
- ~10⁸¹ +5 simultaneous players

estimated number of atoms in the observable universe: 10⁷⁸–10⁸², ups ;)

[90 596 769 259 248 050 560 796 925 567 405 729]

Automated Planning is Hard

- computational hardness tells us nothing about the complexity of **individual problem instances**
- what about a problem, where each box is next to its goal cell and the player is not blocked to get to all of them?
- what about the Serious Sokoban example? solving such a problem is not hopeless! (it needs only ~2.10⁷ states to search through)
- \rightarrow problem structure (P $\stackrel{\scriptscriptstyle 2}{=}$ NP)
- \rightarrow clever representations
- \rightarrow clever simplifications

puzzles; computer, board, card games; production planning offshore drilling, and logistics; humanitarian and military missions; various-scale robotics; space missions

KIVA PICKING

Domains

Domain-independent:

- fundamental
- flexible
- reusable

Domain-specific:

- rigid
- efficient
- specialized

Domain-independent:

- fundamental
- flexible
- reusable

Domain-specific:

- rigid
- efficient
- specialized

Until we get the fundamental principles ...

Domain-independent:

- fundamental
- flexible
- reusable

Domain-specific:

- rigid
- efficient
- specialized

... we cannot be flexible and we cannot reuse ...

Domain-independent:

- fundamental
- flexible
- reusable

Domain-specific:

- rigid
- efficient
- specialized

... we cannot optimize or ...

Domain-independent:

- fundamental
- flexible
- reusable

Domain-specific:

- rigid
- efficient
- specialized

... specialize.

Domain-independent:

- general structural properties and general algorithms
- automatically derived heuristics
- graph theory or probability theory, optimization theory, logic, algebra

Domain-specific:

- specific problems or specific structural families
- hand-crafted heuristics
- data structures, algorithmization, code efficiency

Wanna plan?

Representation \rightarrow Search + Heuristics

- Representation (Lecture 2)
 - structurally analyze and **compactly represent** the problem
 - **deduce information** helping with solution of the problem
- Search (Lecture 3)
 - do not enumerate all states and actions
 - **find path** through the **implicit graph**
- Heuristics (Lectures 5, 6, 7)
 - **navigate the search** using simplified variant of the problem
 - how? relaxation, abstraction, structural information (e.g., landmarks or potentials)
 - machine learned heuristics

Wanna plan?

Representation → Search + Heuristics

Representation \rightarrow Search + Heuristics

• factorized representation

{player1-at ∈ {A1, A2, ..., B1, B2, ...}, box1-at ∈ {A1, A2, ..., B1, B2, ...}, ...}

- compact representation (+grounding) move(who, from, to) → {move-player1-C3-B3, ...}
- grounding of actions usable in reachable states only
- grounding of actions not leading to dead-ends only
- structural reductions
- prepare usable information for the search and heuristics

Wanna plan?

Representation → **Search** + Heuristics

the initial state

the initial state

the initial state

Wanna plan?

Representation → Search + Heuristics

Heuristics are strategies using readily accessible, though loosely applicable, information to control problem solving in human beings and machines. (J. Pearl)

Representation \rightarrow Search + Heuristics

Representation \rightarrow Search + Heuristics

Abstraction

Not Enough?

Are you trying to understand fundamentals of solving toy problems and puzzles?

Not Enough?

Are you trying to understand fundamentals of solving toy problems and puzzles?

That's not enough for me!

Not Enough? Good.

- **domain-independent** ↔ domain-specific
- **off-line** \leftrightarrow on-line
- **deterministic** ↔ stochastic ↔ non-deterministic
- **fully-observable** ↔ partially-observable ↔ unobservable
- **instantaneous actions** ↔ durative actions
- **discrete** ↔ continuous fluents
- **linear** ↔ partially ordered/temporal
- hard goals ↔ soft goals
- **satisficing** (approximative) ↔ optimal
- **single-agent** ↔ multi-agent
- plan \leftrightarrow policy

Not Enough? Good.

- domain-independent ↔ domain-specific
- off-line \leftrightarrow **on-line**
- deterministic ↔ **stochastic** ↔ **non-deterministic**
- fully-observable ↔ partially-observable ↔ unobservable
- instantaneous actions \leftrightarrow **durative actions**
- discrete ↔ continuous fluents
- linear \leftrightarrow partially ordered/temporal
- hard goals ↔ **soft goals**
- satisficing (approximative) ↔ **optimal**
- single-agent ↔ multi-agent
- plan ↔ **policy**

Not Enough? Good. But Be Aware, Because ...

- domain-inde

- fully-observa
- discrete ↔ **c**
- linear ↔ pai
- hard goals +
- satisficing (a
- single-agent ↔ **multi-agent**
- plan \leftrightarrow **policy**

Automated Planning Elements (Recall)

- States
- Actions
- Initial state
- Goal states

- Agents
- States
- Observations
- Actions
- Transitions
- Costs

. . .

- Stochasticity
- Temporal, deontic, modal logics
- (Unknown) Initial state
- Common (Cumulative) Reward

- Agents
- States
- Observations
- Actions
- Transitions
- Costs
- Stochasticity
- Temporal, dec
- (Unknown) Ini
- Common (Culmulative) Reward
 - Challenge Accepted!