B(E)4M36PUI - Artificial Intelligence Planning

Solving universe-sized puzzles with human-sized patience

Course Overview

- https://cw.fel.cvut.cz/wiki/courses/pui
- Lectures
- 2 parts (Antonin Komenda and Stefan Edelkamp)
- Invited lecture (Schlumberger - practically used automated planning)
- Seminars
- 2 parts (Michaela Urbanovská and Jan Mrkos)
- Synchronized topics with lectures
- Two assignment projects with multiple parts
- Exam
- Primarily written form (theory + exercises)
- Points from the seminars
- Maximum 50 points
- 25 points required for the credit (zápočet)

Lectures \& Seminars Overview (Part 1)

1. Introduction
2. Representations (for Classical Planning)
3. Search (for Classical Planning)
4. Automated Planning in Practice (invited lecture from Schlumberger)
5. Heuristics (for Classical Planning) I - Relaxations
6. Heuristics (for Classical Planning) II - Landmarks \& Potentials
7. Heuristics (for Classical Planning) III - Abstractions FEE CTU

Assignments

- Classical planning
- PDDL modeling (5 points) deadline: week 3
- Grounding implementation (10 points) deadline: week 4
- Search algorithm + heuristic implementation (15 points) deadline: week 8
- 30 points total
- Probabilistic planning
- Implementation of probabilistic planning algorithm (up to 20 points)

Both assignments have to be submitted.
50 points in total $\rightarrow 25$ required for the credit (zápočet)

Communication

- Email is the primary form of communication
- Ask at the lectures/tutorials!

Email addresses

- Classical Planning (Part 1)
- Antonín Komenda antonin.komenda@fel.cvut.cz
- Michaela Urbanovská urbanm30@fel.cvut.cz
- Stochastic Planning (Part 2)
- Stefan Edelkamp
- Jan Mrkos

Freshman's Sokoban Example

https://www.sokobanonline.com/play/community/experiment/127458_practice

Pondering Sokoban Example

Classical Planning Elements

- States
- Actions
- Initial state
- Goal states

Classical Planning Elements

- States
- Actions
- Initial state
- Goal states

Classical Planning Elements

- States
- Actions
- Initial state
- Goal states
- Problem:
the initial state

a goal state

- Solution: a plan

п=(move-player1-C3-B3, move-player1-B3-C3, push-player1-C3-D3, ...)

Classical Planning Elements

- States
- Actions
- Initial state
- Goal states
the initial state

an unreachable state

a dead-end state

What is Automated Planning?

- Artificial Intelligence (sub-field)
- (general) problem solving
- Decision Theory meets Computer Science
- sequential decision making
- various forms of combinatorial optimization problems
- Three approaches in AI to the problems of action selection or control
- Learning: learn control from experience
- Programming: specify control by hand
- Planning: specify problem by hand, derive control automatically

Automated Planning is Hard

- just search in the space of states using actions?
- exponential dependence on size of the problem
- exponentially long plans
- planning with "sane" length of plans is NP-complete
- classical planning is PSPACE-complete
- multi-agent variants are NEXP-complete
number of cells
n | configs for ($n / 2$) boxes

2	2	
4	6	
6	20	
8	70	
10	252	
12	924	
14	3432	
16	12870	
18	48620	
20	184756	
22	705432	
24	2704156	$\sim 10^{6}$
26	10400600	$\sim 10^{7}$
28	40116600	$\sim 10^{7}$
30	155117520	$\sim 10^{8}$

Serious Sokoban Example

$\sim 10^{34}$ configurations of boxes
$\sim 10^{70}+$ colored boxes
$\sim 10^{81}+5$ simultaneous players
estimated number of atoms in the observable universe:
$10^{78}-10^{82}$, ups ;)

Automated Planning is Hard

- computational hardness tells us nothing about the complexity of individual problem instances
- what about a problem, where each box is next to its goal cell and the player is not blocked to get to all of them?
- what about the Serious Sokoban example?
solving such a problem is not hopeless!
(it needs only $\sim 2 \cdot 10^{7}$ states to search through)
- $\quad \rightarrow$ problem structure ($\mathrm{P} \stackrel{?}{ } \mathrm{NP}$)
- \rightarrow clever representations
- \rightarrow clever simplifications

Domains

puzzles; computer, board, card games; production planning offshore drilling, and logistics; humanitarian and military missions; various-scale robotics; space missions

Domain-independent and Domain-specific

Domain-independent:

- fundamental
- flexible
- reusable

Domain-specific:

- rigid
- efficient
- specialized

Domain-independent and Domain-specific

Domain-independent:

- fundamental
- flexible
- reusable

Domain-specific:

- rigid
- efficient
- specialized

Until we get the fundamental principles ...

Domain-independent and Domain-specific

Domain-independent:

- fundamental
- flexible
- reusable

Domain-specific:

- rigid
- efficient
- specialized

... we cannot be flexible and we cannot reuse ...

Domain-independent and Domain-specific

Domain-independent:

- fundamental
- flexible
- reusable

Domain-specific:

- rigid
- efficient
- specialized

... we cannot optimize or ..

AI CENTER FEE CTU

Domain-independent and Domain-specific

Domain-independent:

- fundamental
- flexible
- reusable

Domain-specific:

- rigid
- efficient
- specialized

... specialize.

Domain-independent and Domain-specific

Domain-independent:

- general structural properties and general algorithms
- automatically derived heuristics
- graph theory or probability theory, optimization theory, logic, algebra

Domain-specific:

- specific problems or specific structural families
- hand-crafted heuristics
- data structures, algorithmization, code efficiency

Wanna plan?

Representation \rightarrow Search + Heuristics

- Representation (Lecture 2)
- structurally analyze and compactly represent the problem
- deduce information helping with solution of the problem
- Search (Lecture 3)
- do not enumerate all states and actions
- find path through the implicit graph
- Heuristics (Lectures 5, 6, 7)
- navigate the search using simplified variant of the problem
- how? relaxation, abstraction, structural information (e.g., landmarks or potentials)
- machine learned heuristics

Wanna plan?

Representation \rightarrow Search + Heuristics

Representation \rightarrow Search + Heuristics

- factorized representation

```
{player1-at \in {A1, A2, ..., B1, B2, ...},
    box1-at \in{A1, A2, ... B1, B2, ...}, ...}
```

- compact representation (+grounding) move(who, from, to \rightarrow \{move-player1-C3-B3, ...\}
- grounding of actions usable in reachable states only
- grounding of actions not leading to dead-ends only
- structural reductions

Wanna plan?

Representation \rightarrow Search + Heuristics

Representation \rightarrow Search + Heuristics

the initial state

Representation \rightarrow Search + Heuristics

Wanna plan?

Representation \rightarrow Search + Heuristics

Heuristics are strategies using readily accessible, though loosely applicable, information to control problem solving in human beings and machines. (J. Pearl)

Representation \rightarrow Search + Heuristics

Relaxation

Representation \rightarrow Search + Heuristics

.

Representation \rightarrow Search + Heuristics

Landmarks

Representation \rightarrow Search + Heuristics

Abstraction

Not Enough?

Are you trying to understand fundamentals of solving toy problems and puzzles?

Not Enough?

Are you trying to understand fundamentals of solving toy problems and puzzles?
That's not enough for me!

Not Enough? Good.

- domain-independent \leftrightarrow domain-specific
- off-line \leftrightarrow on-line
- deterministic \leftrightarrow stochastic \leftrightarrow non-deterministic
- fully-observable \leftrightarrow partially-observable \leftrightarrow unobservable
- instantaneous actions \leftrightarrow durative actions
- discrete \leftrightarrow continuous fluents
- linear \leftrightarrow partially ordered/temporal
- hard goals \leftrightarrow soft goals
- satisficing (approximative) \leftrightarrow optimal
- single-agent \leftrightarrow multi-agent
- plan \leftrightarrow policy

Not Enough? Good.

- domain-independent \leftrightarrow domain-specific
- off-line \leftrightarrow on-line
- deterministic \leftrightarrow stochastic \leftrightarrow non-deterministic
- fully-observable \leftrightarrow partially-observable \leftrightarrow unobservable
- instantaneous actions \leftrightarrow durative actions
- discrete \leftrightarrow continuous fluents
- linear \leftrightarrow partially ordered/temporal
- hard goals \leftrightarrow soft goals
- satisficing (approximative) \leftrightarrow optimal
- single-agent \leftrightarrow multi-agent
- plan \leftrightarrow policy

Not Enough? Good. But Be Aware, Because ...

- domain-inde
- off-line \leftrightarrow on
- deterministic
- fully-observa
- instantaneo
- discrete $\leftrightarrow c$
- linear \leftrightarrow par
- hard goals
- satisficing (a

Welcome

 to the real world- single-agent \leftrightarrow multi-agent
- plan \leftrightarrow policy

Automated Planning Elements (Recall)

- States
- Actions
- Initial state
- Goal states

Automated Planning Elements $(\rightarrow$ Real World)

- Agents
- States
- Observations
- Actions
- Transitions
- Costs
- Stochasticity
- Temporal, deontic, modal logics
- (Unknown) Initial state
- Common (Cumulative) Reward

Automated Planning Elements $(\rightarrow$ Real World $)$

- Agents
- States
- Observations
- Actions
- Transitions
- Costs
- Stochasticity
- Temporal, dec
- (Unknown) Ini
- Common (Cuimurativestinevvara

Challenge Accepted!

