Probabilistic Planning

Stefan Edelkamp

PUI - CTU

Motivation

- Situations where actions have multiple possible outcomes and each outcome has a probability
- Several possible action representations
 - Bayes nets, probabilistic actions, ...
- Book doesn't commit to any representation
 - Mainly concentrates on the underlying semantics


```
roll-die(d)

pre: holding(d) = true
eff:

1/6: top(d) \leftarrow 1
1/6: top(d) \leftarrow 2
1/6: top(d) \leftarrow 3
1/6: top(d) \leftarrow 4
1/6: top(d) \leftarrow 5
1/6: top(d) \leftarrow 5
```

Probabilistic Planning Domain

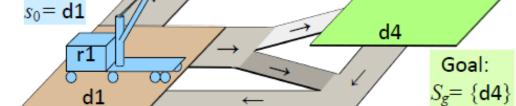
- $\Sigma = (S, A, \gamma, Pr, cost)$
 - \triangleright S = set of states
 - \rightarrow A = set of actions
 - $\triangleright \gamma: S \times A \rightarrow 2^S$
 - $ightharpoonup \Pr(s' | s, a) = \text{probability of going to state } s' \text{ if we perform } a \text{ in } s$
 - Require $Pr(s' | s, a) \neq 0$ iff $s' \in \gamma(s, a)$
 - \triangleright cost: $S \times A \rightarrow \mathbb{R}_{>0}$
 - cost(s,a) = cost of action a in state s
 - may omit, default is cost(s,a) = 1

Example

Start:

Robot r1 starts at d1

 Objective: get to d4



d2

- Simplified state names: write {loc(r1)=d2} as d2
- Simplified action names: write move(r1,d2,d3) as m23
- r1 has unreliable steering, especially on hills
 - may slip and go elsewhere

m12:
$$Pr(d2 \mid d1,m12) = 1$$

m21, m34, m41, m43, m45, m52, m54: like above

d3

d5

m14:
$$Pr(d4 \mid d1,m14) = 0.5$$

$$Pr(d1 \mid d1,m14) = 0.5$$

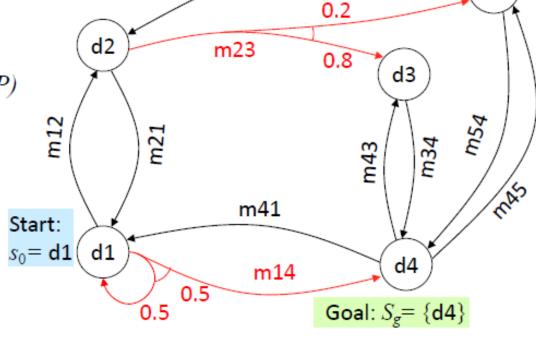
m23:
$$Pr(d3 \mid d1,m23) = 0.8$$

$$Pr(d5 \mid d1,m23) = 0.2$$

Policies, Problems, Solutions

Stochastic shortest path (SSP) problem:

- \triangleright a triple (Σ, s_0, S_g)
- Policy: partial function
 π : S → A such that
 for every s ∈ Dom(π) ⊆ S,
 π(s) ∈ Applicable(s)



m52

d5

- Solution for (Σ, s_0, S_g) : a policy π such that $s_0 \in \text{Dom}(\pi)$ and
 - ightharpoonup $-leaves(s_0,\pi) \cap S_g \neq \emptyset$
 - $\triangleright \hat{\gamma}(s_0,\pi) \cap S_g \neq \emptyset$

m14:
$$Pr(d4 \mid d1,m14) = 0.5$$

$$Pr(d1 \mid d1,m14) = 0.5$$

m23:
$$Pr(d3 \mid d1,m23) = 0.8$$

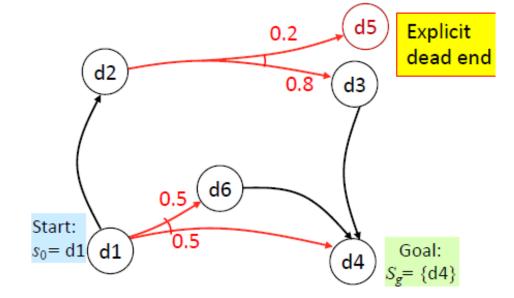
$$Pr(d5 \mid d1,m23) = 0.2$$

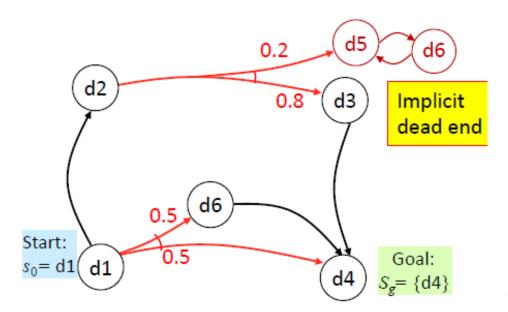
Notation and Terminology

- Transitive closure
 - $\hat{\gamma}(s,\pi) = \{s \text{ and all states reachable from } s \text{ using } \pi\}$
- Graph(s,π) = rooted graph induced by π at s
 - \triangleright nodes: $\hat{\gamma}(s,\pi)$
 - edges: state transitions
- $leaves(s,\pi) = \hat{\gamma}(s,\pi) \setminus Dom(\pi)$
- A solution policy π is closed if it doesn't stop at non-goal states unless there's no way to continue
 - \triangleright for every state in $\hat{\gamma}(s,\pi)$, either
 - $s \in \text{Dom}(\pi)$ (i.e., π specifies an action at s)
 - $s \in S_g$ (i.e., s is a goal state)
 - Applicable(s) = \emptyset (i.e., there are no applicable actions at s)

Dead Ends

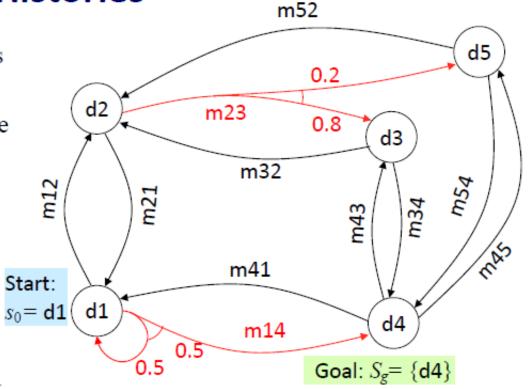
- Dead end:
 - A state or set of states from which the goal is unreachable





Histories

- **History**: sequence of states $\sigma = \langle s_0, s_1, s_2, ... \rangle$
 - May be finite or infinite $\sigma = \langle d1, d2, d3, d4 \rangle$ $\sigma = \langle d1, d2, d1, d2, ... \rangle$
- Let H(s,π) = {all possible histories if we start at s and follow π, stopping if π(s) is undefined or if we reach a goal state}

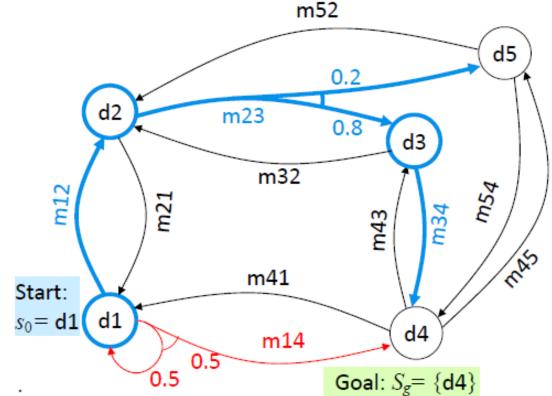


- If $\sigma \in H(s,\pi)$ then $\Pr(\sigma \mid s,\pi) = \prod_i \Pr(s_{i+1} \mid s_i, \pi(s_i))$
 - Thus $\sum_{\sigma \in H(s,\pi)} \Pr(\sigma \mid s,\pi) = 1$
- Probability of reaching a goal state:

Unsafe Solutions

- Unsafe solution:
 - $ightharpoonup 0 < \Pr(S_{g} | s_{0}, \pi) < 1$
- Example:

$$\pi_1 = \{(d1, m12), (d2, m23), (d3, m34)\}$$



- $H(s_0, \pi_1)$ contains two histories:
 - $\sigma_1 = \langle d1, d2, d3, d4 \rangle$ $\Pr(\sigma_1 \mid s_0, \pi_1) = 1 \times .8 \times 1 = .8$

$$Pr(\sigma_1 \mid s_0, \pi_1) = 1 \times .8 \times 1 = .8$$

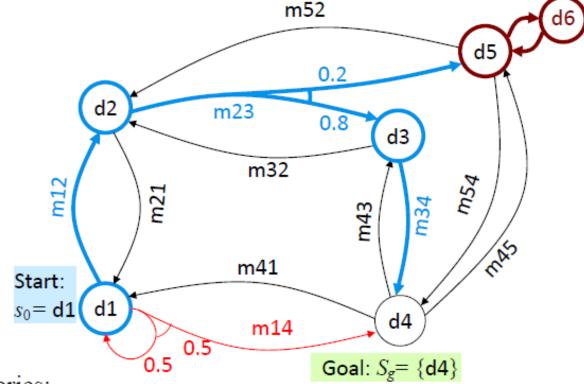
$$\sigma_2 = \langle d1, d2, d5 \rangle$$
 $\Pr(\sigma_2 \mid s_0, \pi_1) = 1 \times .2 = .2$

•
$$\Pr(S_g | s_0, \pi_1) = .8$$

Unsafe Solutions

- Unsafe solution:
 - $ightharpoonup 0 < \Pr(S_{\sigma} | s_0, \pi) < 1$
- Example:

$$\pi_2 = \{(d1, m12), \\ (d2, m23), \\ (d3, m34), \\ (d5, move(r1,d5,d6)), \\ (d6, move(r1,d6,d5))\}$$



- $H(s_0,\pi_2)$ contains two histories:
 - $\sigma_1 = \langle d1, d2, d3, d4 \rangle$

$$Pr(\sigma_1 \mid s_0, \pi_2) = 1 \times .8 \times 1 = .8$$

$$\sigma_3 = \langle d1, d2, d5, d6, d5, d6, ... \rangle$$

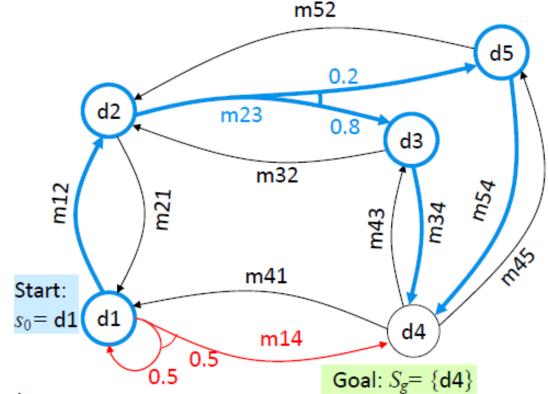
$$\sigma_3 = \langle d1, d2, d5, d6, d5, d6, ... \rangle$$
 $\Pr(\sigma_3 \mid s_0, \pi_2) = 1 \times .2 \times 1 \times 1 \times 1 \times ... = .2$

•
$$\Pr(S_g | s_0, \pi_2) = .8$$

Safe Solutions

- Safe solution:
 - $ightharpoonup \Pr(S_g | s_0, \pi) = 1$
- An acyclic safe solution:

$$\pi_3$$
 = {(d1, m12),
(d2, m23),
(d3, m34),
(d5, m54)}



• $H(s_0,\pi_3)$ contains two histories:

$$\sigma_1 = \langle d1, d2, d3, d4 \rangle$$

$$\sigma_4 = (d1, d2, d5, d4)$$

$$Pr(\sigma_1 \mid s_0, \pi_3) = 1 \times .8 \times 1 = .8$$

$$Pr(\sigma_4 \mid s_0, \pi_3) = 1 \times .2 \times 1 = .2$$

$$Pr(S_g | s_0, \pi_3) = .8 + .2 = 1$$

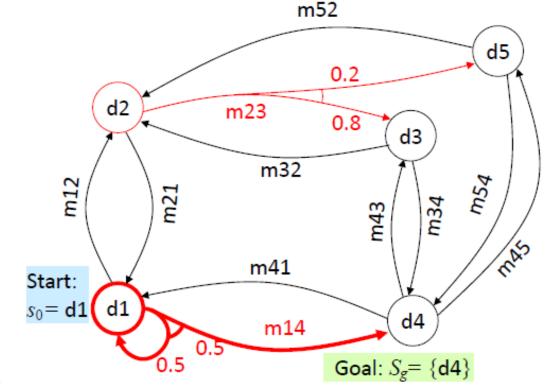
Safe Solutions

- Safe solution:
 - $ightharpoonup \Pr(S_{g} | s_{0}, \pi) = 1$
- A cyclic safe solution: $\pi_4 = \{(d1, m54)\}$
- $H(\pi_4)$ contains infinitely many histories:

$$\sigma_5 = \langle d1, d4 \rangle$$

$$\sigma_6 = (d1, d1, d4)$$

$$\sigma_7 = \langle d1, d1, d1, d4 \rangle$$



$$\Pr(\sigma_5 \mid s_0, \pi_4) = \frac{1}{2}$$

$$\sigma_6 = \langle d1, d1, d4 \rangle$$
 $\Pr(\sigma_6 \mid s_0, \pi_4) = (\frac{1}{2})^2 = \frac{1}{4}$

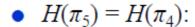
$$\sigma_7 = \langle d1, d1, d4 \rangle$$
 $\Pr(\sigma_6 \mid s_0, \pi_4) = (\frac{1}{2})^3 = \frac{1}{8}$

$$\Pr(S_g | s_0, \pi_4) = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 1$$

Safe Solutions

- Safe solution:
 - $ightharpoonup \Pr(S_g | s_0, \pi) = 1$
- Another cyclic safe solution:

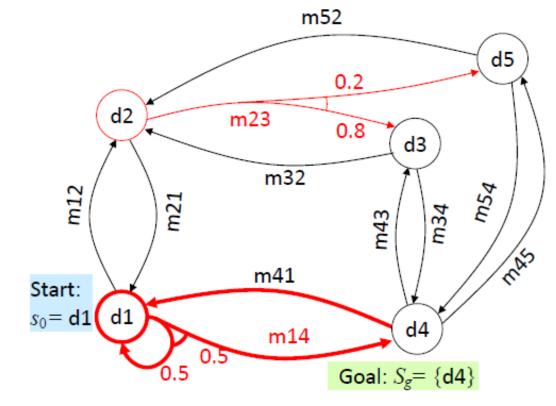
$$\pi_5 = \{(d1, m54), (d4, m41)\}$$



$$\sigma_5 = \langle d1, d4 \rangle$$

$$\sigma_6 = (d1, d1, d4)$$

$$\sigma_7 = \langle d1, d1, d1, d4 \rangle$$



$$\Pr\left(\sigma_{5} \mid s_{0}, \pi_{4}\right) = \frac{1}{2}$$

$$\sigma_6 = \langle d1, d1, d4 \rangle$$
 $\Pr(\sigma_6 \mid s_0, \pi_4) = (\frac{1}{2})^2 = \frac{1}{4}$

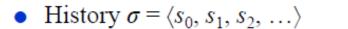
$$\sigma_7 = \langle d1, d1, d4 \rangle$$
 $\Pr(\sigma_6 \mid s_0, \pi_4) = (\frac{1}{2})^3 = \frac{1}{8}$

$$\Pr(S_g | s_0, \pi_4) = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 1$$

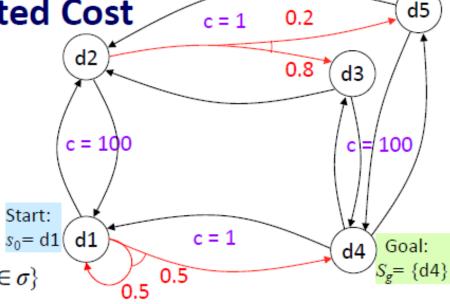
Expected Cost

- 0.2

- cost(s,a) = cost of using a in s
- Example:
 - each "horizontal" action costs 1
 - > each "vertical" action costs 100



 \triangleright cost $(\sigma | s_0, \pi) = \sum \{ cost(s_i, \pi(s_i)) | s_i \in \sigma \}$

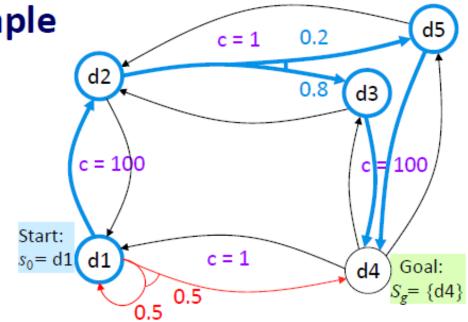


- Let π be a safe solution
- At each state $s \in Dom(\pi)$, expected cost of following π to goal:
 - Weighted sum of history costs:
 - $V^{\pi}(s) = \cot(s, \pi(s)) + \sum_{\sigma \in H(s,\pi)} \Pr(\sigma \mid s, \pi) \cot(\sigma \mid s, \pi)$
 - Recursive equation

$$V^{\pi}(s) = \begin{cases} 0, & \text{if } s \text{ is a goal} \\ \cos t(s, \pi(s)) + \sum_{s' \in \gamma(s, \pi(s))} \Pr(s' \mid s, \pi(s)) \ V^{\pi}(s'), & \text{otherwise} \end{cases}$$

Example

- Weighted sum of history costs:
 - $\sigma_1 = \langle d1, d2, d3, d4 \rangle$
 - $Pr(\sigma_1 | s_0, \pi_3) = 0.8$
 - $cost(\sigma_1 | s_0, \pi_3)$ = 100 + 1 + 100 = 201
 - $\sigma_2 = \langle d1, d2, d5, d4 \rangle$
 - $Pr(\sigma_2 | s_0, \pi_3) = 0.2$
 - $cost(\sigma_2 | s_0, \pi_3)$ = 100 + 1 + 100 = 201
- $V^{\pi_1}(d1) = .8(201) + .2(201) = 201$



Recursive equation:

$$\begin{split} V^{\pi_1}(\mathsf{d1}) &= 100 + V^{\pi_1}(\mathsf{d2}) \\ &= 100 + 1 + .8V^{\pi_1}(\mathsf{d3}) + .2V^{\pi_1}(\mathsf{d5}) \\ &= 100 + 1 + .8(100) + .2(100) \\ &= 201 \end{split}$$

Example

- $\pi_4 = \{(d5, m54)\}$
- Weighted sum of history costs:

$$\sigma_5 = \langle d1, d4 \rangle$$

•
$$\Pr(\sigma_5 \mid \pi_4) = \frac{1}{2}$$

•
$$cost(\sigma_5 | \pi_4) = 1$$

$$\sigma_6 = \langle d1, d1, d4 \rangle$$

•
$$Pr(\sigma_6 \mid \pi_4) = (\frac{1}{2})^2$$

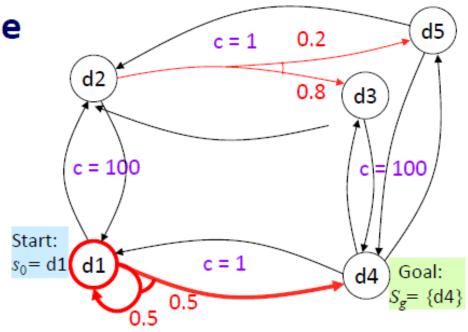
•
$$cost(\sigma_6 \mid \pi_4) = 2$$

$$\sigma_7 = \langle d1, d1, d1, d4 \rangle$$

•
$$Pr(\sigma_7 \mid \pi_4) = (\frac{1}{2})^3$$

•
$$cost(\sigma_7 | \pi_4) = 3$$

. . .



Recursive equation:

$$V^{\pi_4}(\mathrm{d1}) = 1 + \frac{1}{2}(0) + \frac{1}{2}(V^{\pi_4}(\mathrm{d1}))$$

$$\frac{1}{2}V^{\pi_4}(\mathrm{d1}) = 1$$

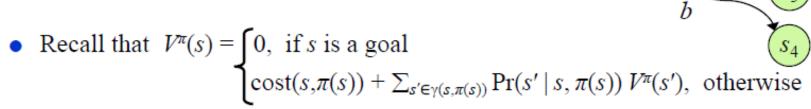
$$V^{\pi_4}(\mathrm{d1}) = 2$$

•
$$V^{\pi_4}(d1) = (\frac{1}{2})1 + (\frac{1}{2})^2 2 + (\frac{1}{2})^3 3 + \dots$$

= 2

Planning as Optimization

- Let π and π' be safe solutions
 - \nearrow π dominates π' if $V^{\pi}(s) \leq V^{\pi'}(s)$ for every $s \in \text{Dom}(\pi) \cap \text{Dom}(\pi')$
- π is *optimal* if π dominates *every* safe solution
 - If π and π' are both optimal, then $V^{\pi}(s) = V^{\pi'}(s)$ at every state where they're both defined
- V*(s) = expected cost of getting to goal using an optimal safe solution



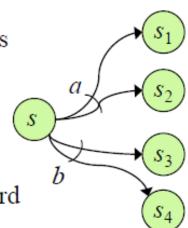
Optimality principle (Bellman's theorem):

$$V^*(s) = \begin{cases} 0, & \text{if } s \text{ is a goal} \\ \min_{a \in \text{Applicable}(s)} \{ \cos t(s, a) + \sum_{s' \in \gamma(s, a)} \Pr(s' \mid s, a) \ V^*(s'), \text{ otherwise} \end{cases}$$

Intuition: consider what would happen if V*(s) ≠ min_{a∈Applicable(s)} {...}

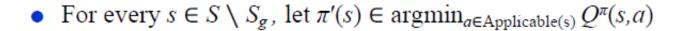
Cost to Go

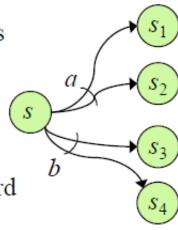
- Let (Σ, s_0, S_g) be a safe SSP
 - \triangleright i.e., S_g is reachable from every state
 - > same as *safely explorable* in Chapter 5
- Let π be a safe solution that's defined at all non-goal states
 - \triangleright i.e., $Dom(\pi) = S \setminus S_g$
- Let $a \in Applicable(s)$
- Cost-to-go:
 - \triangleright Expected cost if we start at s, use a, and use π afterward
 - $Q^{\pi}(s,a) = \cot(s,a) + \sum_{s' \in \gamma(s,a)} \Pr(s' \mid s,a) \ V^{\pi}(s')$
- For every $s \in S \setminus S_g$, let $\pi'(s) \in \operatorname{argmin}_{a \in \operatorname{Applicable}(s)} Q^{\pi}(s, a)$



Cost to Go

- Let (Σ, s_0, S_g) be a safe SSP
 - \triangleright i.e., S_g is reachable from every state
- Let π be a safe solution that's defined at all non-goal states
 - \triangleright i.e., $Dom(\pi) = S \setminus S_g$
- Let $a \in Applicable(s)$
- Cost-to-go:
 - \triangleright Expected cost if we start at s, use a, and use π afterward
 - $P^{\pi}(s,a) = \cot(s,a) + \sum_{s' \in \gamma(s,a)} \Pr(s' \mid s,a) V^{\pi}(s')$





Policy Iteration

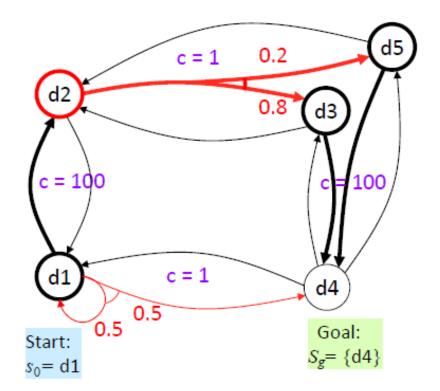
```
• PI(\Sigma, s_0, S_g, \pi_0)
         \pi \leftarrow \pi_0
                                                                      n equations, n unknowns, where n = |S|
             loop
                 compute \{V^{\pi}(s) \mid s \in S\}
                                                                                 E(\text{cost of using } a \text{ then } \pi)
                 for every non-goal state s do
                     A \leftarrow \operatorname{argmin}_{a \in \operatorname{Applicable}(s)} Q^{\pi}(\widetilde{s}, a)
                     if \pi(s) \in A then \pi'(s) \leftarrow \pi(s)
                     else \pi'(s) \leftarrow any action in A
                  if \pi' = \pi then
                     return \pi
                  \pi \leftarrow \pi'
```

• Converges in a finite number of iterations

Example

Start with

$$\pi = \pi_0 = \{ (\text{d1, m12}),\\ (\text{d2, m23}),\\ (\text{d3, m34}),\\ (\text{d5, m54}) \}$$

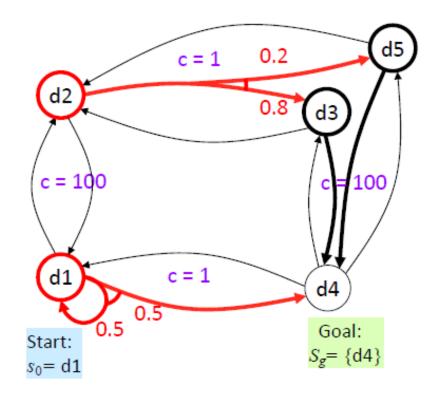


$$V^{\pi}(d4) = 0$$

 $V^{\pi}(d3) = 100 + V^{\pi}(d4) = 100$
 $V^{\pi}(d5) = 100 + V^{\pi}(d5) = 100$
 $V^{\pi}(d2) = 1 + (0.8 V^{\pi}(d3) + 0.2 V^{\pi}(d5)) = 101$
 $V^{\pi}(d1) = 100 + V^{\pi}(d2) = 201$
 $Q(d1,m12) = 100 + 101 = 201$
 $Q(d1,m14) = 1 + \frac{1}{2} \times 201 + \frac{1}{2}(0) = 101.5$
 $argmin = m14$
 $Q(d2,m23) = 1 + (0.8(100) + 0.2(100)) = 101$
 $Q(d2,m21) = 100 + 201 = 301$
 $argmin = m23$
 $Q(d3,m34) = 100 + 0 = 100$
 $Q(d3,move(r1,d3,d2)) = 100 + 101 = 201$
 $argmin = m34$
 $Q(d5,m54) = 100 + 0 = 100$
 $Q(d5,m54) = 100 + 101 = 201$
 $argmin = m54$

Example

$$\pi = \{ (d1, m14), \\ (d2, m23), \\ (d3, m34), \\ (d5, m54) \}$$



$$V^{\pi}(d4) = 0$$

 $V^{\pi}(d3) = 100 + V^{\pi}(d4) = 100$
 $V^{\pi}(d5) = 100 + V^{\pi}(d5) = 100$
 $V^{\pi}(d2) = 1 + (0.8 V^{\pi}(d3) + 0.2 V^{\pi}(d5)) = 101$
 $V^{\pi}(d1) = 1 + \frac{1}{2}V^{\pi}(d1) + \frac{1}{2}V^{\pi}(d4) \Rightarrow V^{\pi}(d1) = 2$
 $Q(d1,m12) = 100 + 101 = 201$
 $Q(d1,m14) = 1 + \frac{1}{2}(2) + \frac{1}{2}(0) = 2$
 $argmin = m14$
 $Q(d2,m23) = 1 + (0.8(100) + 0.2(100)) = 101$
 $Q(d2,m21) = 100 + 2 = 102$
 $argmin = m23$
 $Q(d3,m34) = 100 + 0 = 100$
 $Q(d3,move(r1,d3,d2)) = 100 + 101 = 201$
 $argmin = m34$
 $Q(d5,m54) = 100 + 0 = 100$
 $Q(d5,m54) = 100 + 101 = 201$

argmin = m54

Value Iteration

Synchronous version (easier to understand)

```
VI(\Sigma, s_0, S_g, V_0)

for i = 1, 2, ...

for every nongoal state s

for every applicable action a do

Q(s,a) \leftarrow \cos(s,a) + \sum_{s' \in S} \Pr(s'|s,a) V_{i-1}(s')

V_i(s) \leftarrow \min_{a \in \text{Applicable}(s)} Q(s,a)

\pi_i(s) \leftarrow \operatorname{argmin}_{a \in \text{Applicable}(s)} Q(s,a)

if \max_{s \in S} |V_i(s) - V_{i-1}(s)| \le \eta then return \pi'
```

- $\eta > 0$: for testing approximate convergence
- V_0 is a heuristic function
 - ▶ must have $V_0(s) = 0$ for every $s \in S_g$
 - e.g., adapt a heuristic from Chapter 2
- V_i = values computed at *i*'th iteration
- π_i = plan computed from V_i

Asynchronous version (more efficient)

```
\begin{aligned} & \mathsf{VI}(\Sigma, s_0, S_g, V_0) \\ & \mathsf{global} \ \pi \leftarrow \emptyset; \ \mathsf{global} \ V(s) \leftarrow V_0(s) \ \forall s \\ & \mathsf{loop} \\ & r \leftarrow \max_{s \in S \setminus Sg} \mathsf{Bellman-Update}(s) \\ & \mathsf{if} \ r \leq \eta \ \mathsf{then} \ \mathsf{return} \ \pi \end{aligned} & \mathsf{Bellman-Update}(s) \\ & v_{\mathsf{old}} \leftarrow V(s) \\ & \mathsf{for} \ \mathsf{every} \ a \in \mathsf{Applicable}(s) \ \mathsf{do} \\ & Q(s, a) \leftarrow \mathsf{cost}(s, a) + \sum_{s' \in S} \mathsf{Pr} \ (s' | s, a) \ V(s') \\ & V(s) \leftarrow \min_{a \in \mathsf{Applicable}(s)} Q(s, a) \\ & \pi(s) \leftarrow \mathsf{argmin}_{a \in \mathsf{Applicable}(s)} Q(s, a) \end{aligned}
```

• Synchronous version computes V_i and π_i from old V_{i-1} and π_{i-1}

return $|V(s)-v_{\rm old}|$

• Asynchronous version updates V and π in place; new values available immediately

$$Q(d1,m12) = 100 + 0 = 100$$

$$Q(d1,m14)$$

= 1 + ($\frac{1}{2}(0) + \frac{1}{2}(0)$) = 1

$$V_1(d1) = 1$$
; $\pi_1(d1) = m14$

$$Q(d2,m21) = 100 + 0 = 100$$

$$Q(d2,m23) = 1 + (\frac{1}{2}(0) + \frac{1}{2}(0)) = 1$$

$$V_1(d2) = 1$$
; $\pi_1(d2) = m23$

$$Q(d3,m32) = 1 + 0 = 1$$

$$Q(d3,m34) = 100 + 0 = 100$$

$$V_1(d3) = 1; \pi_1(d3) = m32$$

$$Q(d5,m52) = 1 + 0 = 1$$

$$O(d5,m54) = 100 + 0 = 100$$

$$V_1(d5) = 1$$
; $\pi_1(d5) = m52$

$$r = \max(1-0, 1-0, 1-0, 1-0, 1-0, 1-0) = 1$$

$$\eta = 0.2$$

$$V_0(s) = 0$$
 for all s

Asynchronous

$$Q(d1,m12) = 100 + 0 = 100$$

$$= 1 + (\frac{1}{2}(0) + \frac{1}{2}(0)) = 1$$

$$V(d1) = 1$$
; $\pi(d1) = m14$

$$Q(d2,m21) = 100 + 1 = 101$$

$$Q(d2,m23) = 1 + (\frac{1}{2}(0) + \frac{1}{2}(0)) = 1$$

$$V(d2) = 1; \pi(d2) = m23$$

$$Q(d3,m32) = 1 + 1 = 2$$

$$Q(d3,m34) = 100 + 0 = 100$$

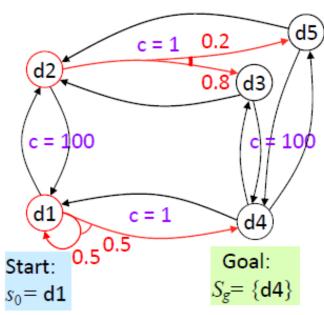
$$V(d3) = 2$$
; $\pi(d3) = m32$

$$Q(d5,m52) = 1 + 1 = 2$$

$$O(d5,m54) = 100 + 0 = 100$$

$$V(d5) = 2$$
; $\pi(d5) = m52$

$$r = \max(1-0, 1-0, 2-0, 2-0) = 1$$



$$Q(d1,m12) = 100 + 1 = 101$$

 $Q(d1,m14)$
 $= 1 + (\frac{1}{2}(1) + \frac{1}{2}(0)) = \frac{1}{2}$

$$V_2(d1) = 1\frac{1}{2}; \pi_2(d1) = m14$$

$$Q(d2,m21) = 100 + 1 = 101$$

 $Q(d2,m23) = 1 + (\frac{1}{2}(1) + \frac{1}{2}(1)) = 2$
 $V_2(d2) = 2$; $\pi_2(d2) = m23$

$$Q(d3,m32) = 1 + 1 = 2$$

 $Q(d3,m34) = 100 + 0 = 100$

$$V_2(d3) = 2; \pi_2(d3) = m32$$

$$Q(d5,m52) = 1 + 1 = 2$$

$$Q(d5,m54) = 100 + 0 = 100$$

$$V_2(d5) = 2$$
; $\pi_2(d5) = m52$

$$r = \max(1\frac{1}{2} - 1, 2 - 1, 2 - 1, 2 - 1, 2 - 1, 2 - 1) = 1$$

$$\eta = 0.2$$

$$V(d1) = 1$$
$$V(d2) = 1$$

$$V(d2) = 1$$
$$V(d3) = 1$$

$$V(d5) = 1$$

$$\eta = 0.2$$

$$V(d1) = 1$$
$$V(d2) = 1$$

$$V(d2) = 1$$

 $V(d3) = 2$

$$V(d5) = 2$$

Asynchronous

$$Q(d1,m12) = 100 + 0 = 101$$

d5

$$= 1 + (\frac{1}{2}(1) + \frac{1}{2}(0)) = \frac{1}{2}$$

$$V(d1) = 1; \pi(d1) = m14$$

$$Q(d2,m21) = 100 + 1\frac{1}{2} = 101\frac{1}{2}$$

$$Q(d2,m23) = 1 + (\frac{1}{2}(2) + \frac{1}{2}(2)) = 3$$

$$V(d2) = 3$$
; $\pi(d2) = m23$

$$Q(d3,m32) = 1 + 3 = 4$$

$$Q(d3,m34) = 100 + 0 = 100$$

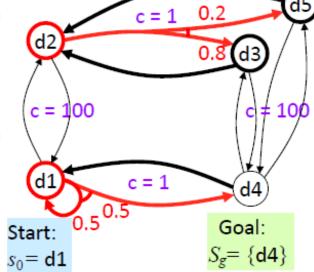
$$V(d3) = 4$$
; $\pi(d3) = m32$

$$Q(d5,m52) = 1 + 3 = 4$$

$$Q(d5,m54) = 100 + 0 = 100$$

$$V(d5) = 4$$
; $\pi(d5) = m52$

$$r = \max(1\frac{1}{2} - 1, 3 - 1, 4 - 2, 4 - 2) = 2$$



$$Q(d1,m12) = 100 + 2 = 102$$

 $Q(d1,m14)$
 $= 1 + (\frac{1}{2}(1\frac{1}{2}) + \frac{1}{2}(0)) = \frac{1^{3}}{4}$

$$V_3(d1) = 1^3/_4$$
; $\pi_3(d1) = m14$

$$Q(d2,m21) = 100 + 1\frac{1}{2} = 101\frac{1}{2}$$

 $Q(d2,m23) = 1 + (\frac{1}{2}(2) + \frac{1}{2}(2)) = 3$
 $V_3(d2) = 3$; $\pi_3(d2) = m23$

$$Q(d3,m32) = 1 + 2 = 3$$

 $Q(d3,m34) = 100 + 0 = 100$

$$V_3(d3) = 3$$
; $\pi_3(d3) = m32$

$$Q(d5,m52) = 1 + 2 = 3$$

$$Q(d5,m54) = 100 + 0 = 100$$

$$V_3(d5) = 3$$
; $\pi_3(d5) = m52$

$$r = \max(1^{3}/_{4} - 1^{1}/_{2}, 3 - 2, 3 - 2) = 1$$

$$\eta = 0.2$$

$$V(d1) = 1\frac{1}{2}$$

 $V(d2) = 2$
 $V(d3) = 2$
 $V(d5) = 2$

$$\eta = 0.2$$

$$V(d1) = 1\frac{1}{2}$$

 $V(d2) = 3$
 $V(d3) = 4$

$$V(d5) = 4$$

Asynchronous

$$Q(d1,m12) = 100 + 3 = 103$$

 $Q(d1,m14)$
 $= 1 + (\frac{1}{2}(1\frac{1}{2}) + \frac{1}{2}(0)) = \frac{1^{3}}{4}$
 $V(d1) = \frac{1^{3}}{4}$; $\pi(d1) = m14$

$$Q(d2,m21) = 100 + 1^{3}/_{4} = 101^{3}/_{4}$$

 $Q(d2,m23) = 1 + (\frac{1}{2}(4) + \frac{1}{2}(4)) = 5$
 $V(d2) = 5$; $\pi(d2) = m23$

$$Q(d3,m32) = 1 + 5 = 6$$

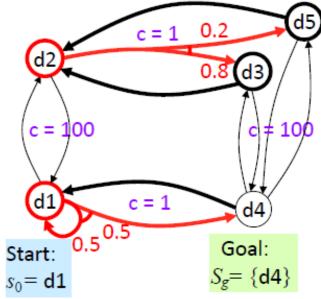
$$Q(d3,m34) = 100 + 0 = 100$$

$$V(d3) = 6; \pi(d3) = m32$$

$$Q(d5,m52) = 1 + 5 = 6$$

 $Q(d5,m54) = 100 + 0 = 100$
 $V(d5) = 6$; $\pi(d5) = m52$

$$r = \max(1^3/_4 - 1^1/_2, 5 - 3, 6 - 4, 6 - 4) = 2$$



$$Q(d1,m12) = 100 + 0 = 100$$

 $Q(d1,m14)$
 $= 1 + (\frac{1}{2}(1^{3}/_{4}) + \frac{1}{2}(0)) = 1^{7}/_{8}$

$$V_4({
m d1})=1^7/_8;\,\pi_4({
m d1})={
m m14}$$

$$\begin{split} &Q(\text{d2,m21}) = 100 + 1^3/_4 = 101^3/_4 \\ &Q(\text{d2,m23}) = 1 + (\frac{1}{2}(3) + \frac{1}{2}(3)) = 4 \\ &V_4(\text{d2}) = 4; \ \pi_4(\text{d2}) = \text{m23} \end{split}$$

$$Q(d3,m32) = 1 + 3 = 4$$

$$Q(d3,m34) = 100 + 0 = 100$$

$$V_4(d3) = 4$$
; $\pi_4(d3) = m32$

$$O(d5,m52) = 1 + 3 = 4$$

$$Q(d5,m54) = 100 + 0 = 100$$

$$V_4(d5) = 4$$
; $\pi_4(d5) = m52$

$$r = \max(1^{7}/_{8} - 1^{3}/_{4}, 3 - 2, 3 - 2, 3 - 2) = 1$$

$$\eta = 0.2$$

$$\eta = 0.2$$

$$V(d1) = 1^3/_4$$
 $V(d1) = 1$

$$V(d2) = 3$$

$$V(d3) = 3$$

$$V(d5) = 3$$

$$\eta = 0.2$$

$$V(d1) = 1^3/_4$$

$$V(d2) = 5$$

$$V(d3) = 6$$

$$V(d5) = 6$$

How long before $r \le \eta$? $V(d1) = 1^{7/8}$; $\pi(d1) = m14$

How long, if the "vertical" actions cost 10 instead of 100?

Asynchronous

$$Q(d1,m12) = 100 + 0 = 100$$

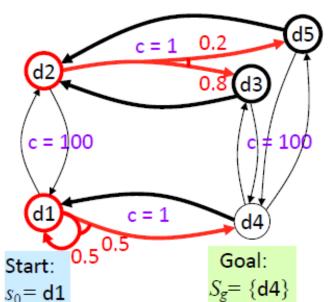
$$= 1 + (\frac{1}{2}(1^{3}/_{4}) + \frac{1}{2}(0)) = 1^{7}/_{8}$$

$$V(d1) = 1^7/_8$$
; $\pi(d1) = m14$

$$Q(d2,m21) = 100 + 17/8 = 1017/8$$

$$Q(d2,m23) = 1 + (\frac{1}{2}(6) + \frac{1}{2}(6)) = 7$$

$$V(d2) = 7$$
; $\pi(d2) = m23$



$$Q(d3,m32) = 1 + 7 = 8$$

$$Q(d3,m34) = 100 + 0 = 100$$

$$V(d3) = 8$$
; $\pi(d3) = m32$

$$Q(d5,m52) = 1 + 7 = 8$$

$$Q(d5,m54) = 100 + 0 = 100$$

$$V(d5) = 8$$
; $\pi(d5) = m52$

$$r = \max(1^{7}/_{8} - 1^{3}/_{4}, 7 - 5,$$

 $8 - 6, 8 - 6) = 2$

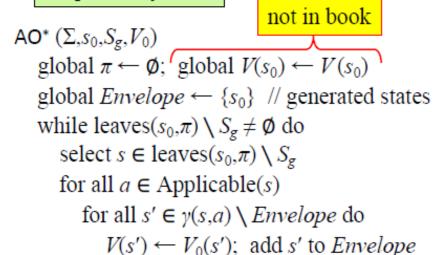
Discussion

- Policy iteration computes new π in each iteration; computes V^{π} from π
 - More work per iteration than value iteration
 - Needs to solve a set of simultaneous equations
 - Usually converges in a smaller number of iterations
- Value iteration
 - \triangleright Computes new V in each iteration; chooses π based on V
 - ➤ New V is a revised set of heuristic estimates
 - Not V^{π} for π or any other policy
 - Less work per iteration: doesn't need to solve a set of equations
 - Usually takes more iterations to converge
- At each iteration, both algorithms need to examine the entire state space
 - \triangleright Number of iterations polynomial in |S|, but |S| may be quite large
- Next: use search techniques to avoid searching the entire space

Requires acyclic Σ

AO*

Bellman-Update(s)



 $v_{\text{old}} \leftarrow V(s)$ for every $a \in \text{Applicable}(s)$ do $Q(s,a) \leftarrow \text{cost}(s,a) + \sum_{s' \in S} \Pr(s'|s,a) \ V(s')$ $V(s) \leftarrow \min_{a \in \text{Applicable}(s)} Q(s,a)$ $\pi(s) \leftarrow \operatorname{argmin}_{a \in \text{Applicable}(s)} Q(s,a)$ return $|V(s) - v_{\text{old}}|$

AO-Update(s) return π

no π -descendants in Z but s itself

AO-Update(s)

ensures bottom-up updates

 $Z \leftarrow \{s\}$ // nodes that need updating while $Z \neq \emptyset$ do

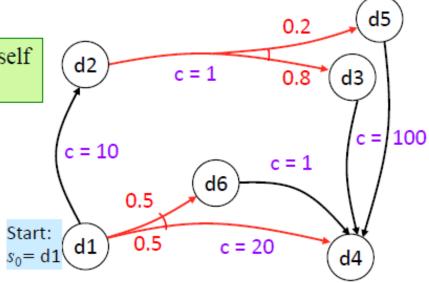
select $s \in Z$ such that $\hat{\gamma}(s, \pi(s)) \cap Z = \{s\}$

remove s from Z

Bellman-Update(s)

 $Z \leftarrow Z \cup \{s' \in Envelope \mid s \in \gamma(s', \pi)\}$

the states "just above" s

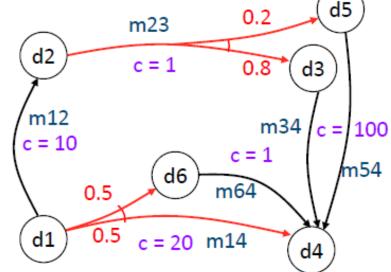


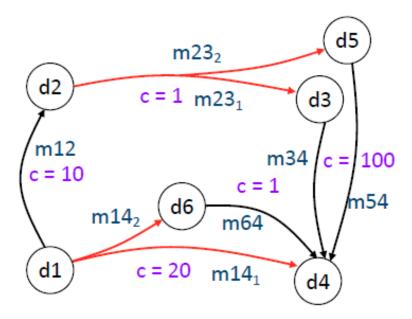
Example: $V_0(s) = 0$ for all s

Goal: $S_g = \{d4\}$

Heuristics through Determinization

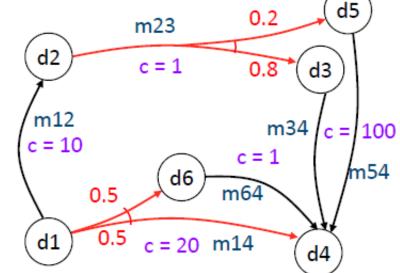
- What to use for V_0 ?
 - One possibility: classical planner
 - Need to convert nondeterministic actions into something the classical planner can use
- Determinize the actions
 - Suppose $\gamma(s,a) = \{s_1, ..., s_n\}$
 - $ightharpoonup Det(s,a) = \{n \text{ actions } a_1, a_2, ..., a_n\}$
 - $\gamma_d(s, a_i) = s_i$
 - $cost_d(s, a_i) = cost(s, a)$
- Classical domain $\Sigma_d = (S, A_d, \gamma_d, \cos t_d)$
 - \triangleright S = same as in Σ
 - $\rightarrow A_d = \bigcup_{a \in A, s \in S} \text{Det}(s, a)$
 - $\triangleright \gamma_d$ and cost_d as above

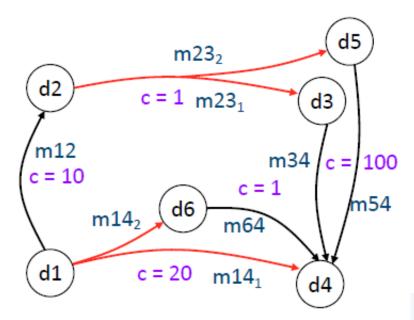




Heuristics through Determinization

- Suppose we want $V_0(s)$
- Call classical planner on (Σ_d, s, S_g)
 - ightharpoonup Get plan $p = \langle a_1, a_2, ..., a_n \rangle$
 - \triangleright Goes through states $\langle s, s_1, ..., s_n \rangle$
 - $s_1 = \gamma(s, a_1), s_2 = \gamma(s_1, a_2), \dots$
 - ightharpoonup Return $V_0(s) = cost(p) = \sum_i cost(a_i)$
- If the classical planner always returns optimal plans, then V_0 is admissible
- Outline of proof:
 - \triangleright Let π be a safe solution in Σ
 - Every acyclic execution of π corresponds to a solution plan p' in Σ_d
 - Must have $cost \ge V_0(s)$
 - Otherwise the classical planner would have chosen p' instead of p





Σ may be either cyclic or acyclic

LAO*

```
not in book
\mathsf{LAO}^*(\Sigma, s_0, S_{\mathsf{g}}, V_0)
    global \pi \leftarrow \emptyset; global V(s_0) \leftarrow V(s_0)
    global Envelope \leftarrow \{s_0\} // generated states
   loop
       if leaves(s_0,\pi) \subseteq S_g then return \pi
       select s \in \text{leaves}(s_0, \pi) \setminus S_{\sigma}
       for all a \in Applicable(s)
           for all s' \in y(s,a) \setminus Envelope do
              V(s') \leftarrow V_0(s'); add s' to Envelope
       LAO-Update(s)
   return \pi
                           All \pi-ancestors of s in Envelope
LAO-Update(s)
   Z \leftarrow \{s\} \cup \{s' \in Envelope \mid s \in \hat{\gamma}(s',\pi)\}
   loop
```

Asynchronous value iteration, restricted to Z

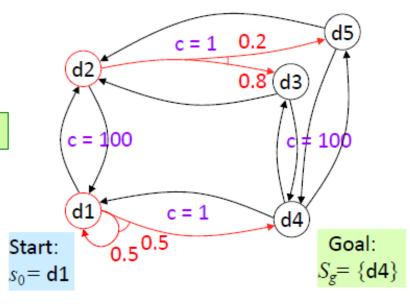
if $leaves(s_0,\pi)$ changed or $r \le \eta$ then break

 $r \leftarrow \max_{s \in Z} Bellman-Update(s)$

Bellman-Update(s)

$$v_{\text{old}} \leftarrow V(s)$$

for every $a \in \text{Applicable}(s)$ do
 $Q(s,a) \leftarrow \text{cost}(s,a) + \sum_{s' \in S} \Pr(s'|s,a) \ V(s')$
 $V(s) \leftarrow \min_{a \in \text{Applicable}(s)} Q(s,a)$
 $\pi(s) \leftarrow \underset{a \in \text{Applicable}(s)}{\operatorname{argmin}} Q(s,a)$
return $|V(s) - v_{\text{old}}|$



Example: $V_0(s) = 0$ for all s

LAO* Example

 $\eta = 0.2$

 $V_0(s) = 0$

for all s

1st iteration of main loop:

Expand d1: add d2 and d4 to Envelope

Call LAO-Update(d1)

$$\pi$$
 is empty, so $Z = \{d1\}$

Iteration 1:

$$Q(d1,m12) = 100 + 0 = 100$$

$$Q(d1,m14) = 1 + (\frac{1}{2}(0) + \frac{1}{2}(0)) = 1$$

$$V(d1) = 1$$
; $\pi(d1) = m14$; $r = V(d1) - 0 = 1$

Iteration 2:

$$Q(d1,m12) = 100 + 0 = 100$$

$$Q(d1,m14) = 1 + (\frac{1}{2}(1) + \frac{1}{2}(0)) = \frac{1}{2}$$

$$V(d1) = 1\frac{1}{2}$$
; $\pi(d1) = m14$; $r = 1\frac{1}{2} - 1 = \frac{1}{2}$

Iteration 3:

$$Q(d1,m12) = 100 + 0 = 100$$

$$Q(d1,m14) = 1 + (\frac{1}{2}(1\frac{1}{2}) + \frac{1}{2}(0)) = \frac{1^3}{4}$$

$$V(d1) = 1\frac{3}{4}$$
; $\pi(d1) = m14$; $r = 1\frac{3}{4} - 1\frac{1}{2} = \frac{1}{4}$

Iteration 4:

$$Q(d1,m12) = 100 + 0 = 100$$

$$Q(d1,m14) = 1 + (\frac{1}{2}(1\frac{3}{4}) + \frac{1}{2}(0)) = \frac{17}{8}$$

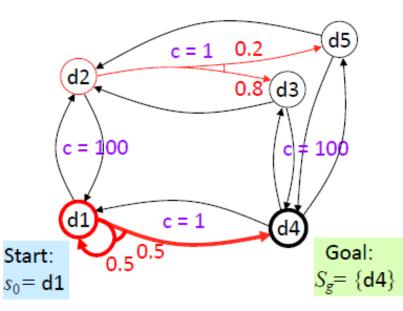
$$V(d1) = 1^{7}/_{8}; \pi(d1) = m14; r = 1/_{8} \le \eta$$

LAO-Update returns

2nd iteration of main loop:

$$leaves(\pi) = \{d4\} \subseteq S_g$$

return π

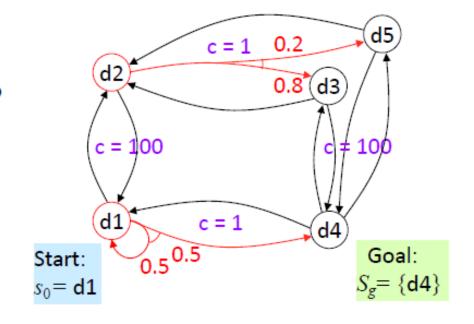


Planning and Acting

Run-Lookahead (Σ, s_0, S_g) $s \leftarrow s_0$

while $s \notin S_g$ and Applicable(s) $\neq \emptyset$ do $a \leftarrow \mathsf{Lookahead}(s, \theta)$ perform action a $s \leftarrow \mathsf{observe}$ resulting state

- Same as in Chapter 2, except $s = \xi$
 - Could use s ← abstraction of ξ as in Chapter 2
- Could also use
 Run-Lazy-Lookahead or
 Run-Concurrent-Lookahead



- What to use for Lookahead?
 - ➤ AO*, LAO*, ...
 - Modify to search part of the space
 - Classical planner running on determinized domain
 - Stochastic sampling algorithms

Planning and Acting

```
Run-Lookahead(\Sigma, s_0, S_g)

s \leftarrow s_0

while s \notin S_g and Applicable(s) \neq \emptyset do

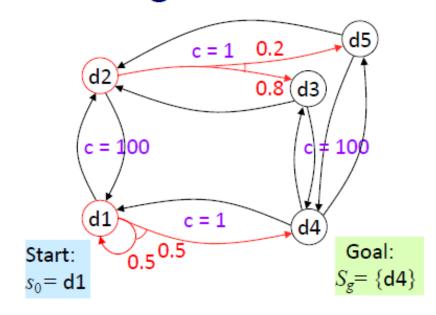
a \leftarrow \text{Lookahead}(s, \theta)

perform action a

s \leftarrow \text{observe resulting state}
```

 If Lookahead = classical planner on determinized domain

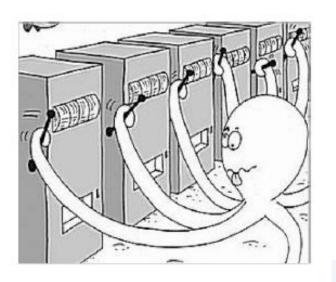
- Problem: Forward-search may choose a plan that depends on low-probability outcome
- RFF algorithm (see book) attempts to alleviate this



```
FS-Replan (\Sigma, s, S_g)
\pi_d \leftarrow \varnothing
while s \notin S_g and Applicable(s) \neq \varnothing do
if \pi_d undefined for s then do
\pi_d \leftarrow Forward-search (\Sigma_d, s, S_g)
if \pi_d = failure then return failure
perform action \pi_d(s)
s \leftarrow observe resulting state
```

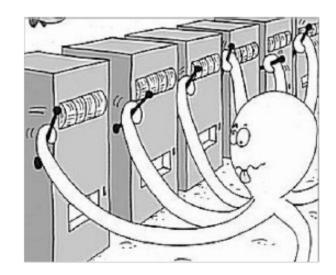

Multi-Arm Bandit Problem

- Statistical model of sequential experiments
 - Name comes from a traditional slot machine (one-armed bandit)
- Multiple actions $a_1, a_2, ..., a_n$
 - Each a_i provides a reward from an unknown (but stationary) probability distribution p_i
 - Objective: maximize expected utility of a sequence of actions
- Exploitation vs exploration dilemma:
 - > Exploitation: choose action that has given you high rewards in the past
 - Exploration: choose action that you don't know much about, in hopes that it might produce a higher reward



UCB (Upper Confidence Bound) Algorithm

- Assume all rewards are between 0 and 1
 - ➤ If they aren't, normalize them
- For each action a_i , let
 - r_i = average reward you've gotten from a_i
 - $\rightarrow t_i$ = number of times you've tried a_i
 - $ightharpoonup t = \sum_i t_i$



loop

if there are one or more actions that you haven't tried then choose an untried action a_i at random else choose an action a_i that has the highest value of $r_i + \sqrt{2(\ln t)/t_i}$ perform a_i update r_i , t_i , t

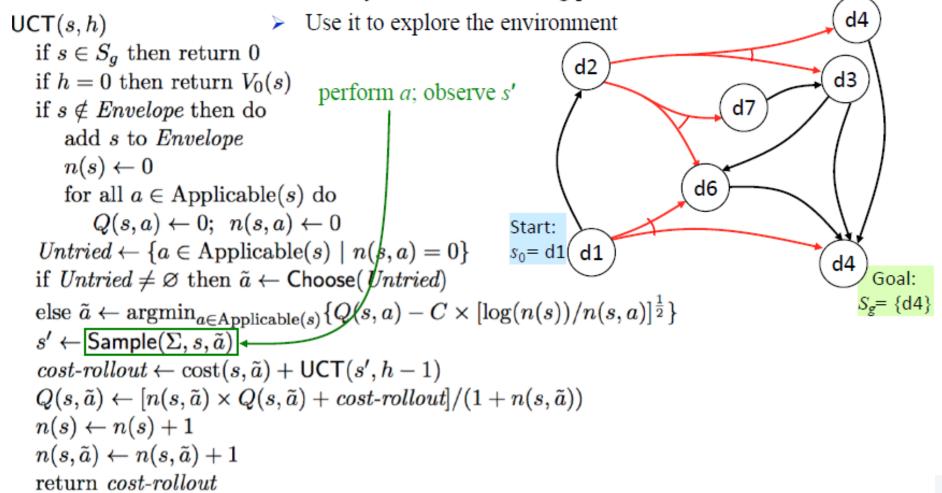
UCT Algorithm

- Recursive UCB computation to compute Q(s,a)
- Anytime algorithm: call repeatedly until time runs out

```
Then choose action \operatorname{argmin}_a Q(s,a)
                                                                                                                                         d4
\mathsf{UCT}(s,h)
   if s \in S_q then return 0
                                                                                            d2
                                                                                                                                       d3
   if h = 0 then return V_0(s)
   if s \notin Envelope then do
        add s to Envelope
        n(s) \leftarrow 0
                                                                                                                d6
        for all a \in Applicable(s) do
             Q(s,a) \leftarrow 0; \ n(s,a) \leftarrow 0
                                                                                 Start:
    Untried \leftarrow \{a \in Applicable(s) \mid n(s, a) = 0\}
                                                                                 s_0 = d1(d1)
   if Untried \neq \emptyset then \tilde{a} \leftarrow \mathsf{Choose}(Untried)
                                                                                                                                             Goal:
                                                                                                                                           S_g = \{d4\}
   else \tilde{a} \leftarrow \operatorname{argmin}_{a \in \operatorname{Applicable}(s)} \{ Q(s, a) - C \times [\log(n(s))/n(s, a)]^{\frac{1}{2}} \}
    s' \leftarrow \mathsf{Sample}(\Sigma, s, \tilde{a})
    cost\text{-}rollout \leftarrow cost(s, \tilde{a}) + \mathsf{UCT}(s', h-1)
    Q(s, \tilde{a}) \leftarrow [n(s, \tilde{a}) \times Q(s, \tilde{a}) + cost\text{-}rollout]/(1 + n(s, \tilde{a}))
   n(s) \leftarrow n(s) + 1
   n(s,\tilde{a}) \leftarrow n(s,\tilde{a}) + 1
   return cost-rollout
```

UCT as an Acting Procedure

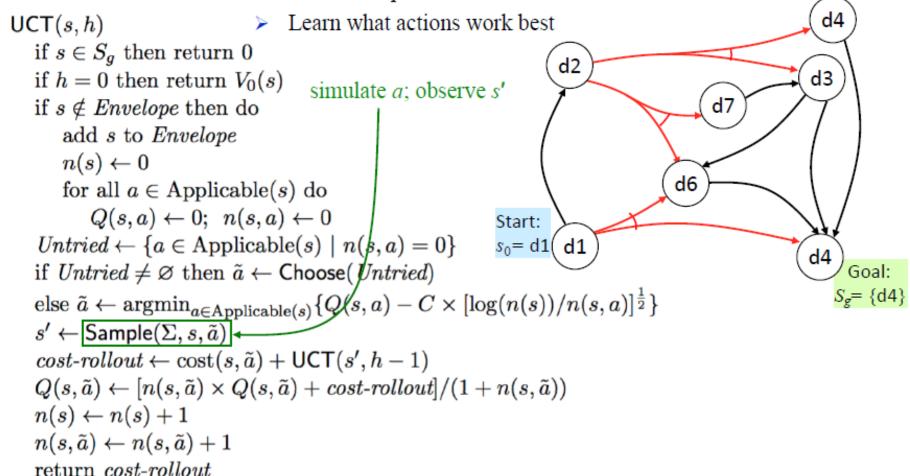
- Suppose you don't know the probabilities and costs
- Suppose you can restart your actor as many times as you want
- Can modify UCT to be an acting procedure



UCT as a Learning Procedure

- Suppose you don't know the probabilities and costs
 - > But you have an accurate simulator for the environment

Run UCT multiple times in the simulated environment



UCT in Two-Player Games

- Generate Monte Carlo rollouts using a modified version of UCT
- Main differences:
 - Instead of choosing actions that minimize accumulated cost, choose actions that maximize payoff at the end of the game
 - ➤ UCT for player 1 recursively calls UCT for player 2
 - Choose opponent's action
 - ➤ UCT for player 2 recursively calls UCT for player 1
- This produced the first computer programs to play go well
 - ≈ 2008–2012
- Monte Carlo rollout techniques similar to UCT were used to train AlphaGo

Summary

- SSPs
- solutions, closed solutions, histories
- unsafe solutions, acyclic safe solutions, cyclic safe solutions
- expected cost, planning as optimization
- policy iteration
- value iteration (synchronous, asynchronous)
 - Bellman-update
- AO*, LAO*
- Planning and Acting
 - Run-Lookahead
 - > RFF
- UCB, UCT

