
Partially Observable Markov 
Decision Process

based on lecture slides of Branislav Bošanský and a POMDP 
tutorial of H. Huang



Partial Observability

 the world is not perfect

 actions take some time to execute

 actions may fail or yield unexpected results

 the environment may change due to other 

agents

 the agent does not have knowledge about 

whole situation

 sensors are not precise
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Partially Observable MDPs

 main formal model for scenarios with uncertain observations

 𝑆, 𝐴, 𝐷, 𝑂, 𝑏0, 𝑇, Ω, 𝑅, 𝛾

 states – finite set of states of the world

 actions – finite set of actions the agent can perform

 time steps

 observations – finite set of possible observations

 initial belief function 𝑏0: 𝑆 → [0,1]

 transition function 𝑇: 𝑆 × 𝐴 × 𝑆 → [0,1]

 observation probability Ω: 𝐴 × 𝑂 × 𝑆 → [0,1]

 reward function 𝑅: 𝑆 × 𝐴 → ℝ

 discount factor 0 ≤ 𝛾 < 1



Partially Observable MDPs - probabilities
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Partially Observable MDPs - beliefs

 beliefs represent a probability distribution over states

 beliefs are uniquely identified by the history

 𝑏1 - probability distribution over states after playing one action 

 𝑏𝑡 ← Pr 𝑠𝑡 𝑏0, 𝑎0, 𝑜1, … , 𝑜𝑡−1, 𝑎𝑡−1, 𝑜𝑡

 we can exploit dynamic programming (define transformation of 

beliefs, belief update)

 𝑏𝑡 𝑠
′ = µΩ 𝑎, 𝑜, 𝑠′ . σ𝑠∈S 𝑇 𝑠, 𝑎, 𝑠′ 𝑏𝑡−1(𝑠)

 where 

 𝑜 is the last observation

 𝑎 is the last action

 µ is the normalizing constant



Partially Observable MDPs - values

 beliefs determine new values

 𝑉 𝑏 = max
𝑎∈𝐴

[𝑅 𝑏, 𝑎 + 𝛾σ𝑏′∈𝐵 𝑇 𝑏, 𝑎, 𝑏′ 𝑉(𝑏′)]

 what we have done … 

 we have transformed a POMDP to a continuous state MDP 

 belief state is a simplex

 𝑆 − 1 dimensions

 in theory we can use all the algorithms for MDPs (value iteration)

 but B is infinite 



Solving Continuous State MDPs

 in value iteration we take max of actions

 the belief space can be partitioned depending on the fact, which 

action is the best one
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Solving Continuous State MDPs

 values can be compactly represented as a finite set of 𝛼 vectors; 

𝑉 = {𝛼0, … , 𝛼𝑚}

 𝛼 vector is an |𝑆| dimensional hyper-plane 

 a linear function representing utility values after selecting some fixed action

 defines the value function over a bounded region of the belief

 𝑉 𝑏 = max
𝛼∈𝑉

σ𝑠∈𝑆𝛼 𝑠 𝑏(𝑠)

 𝑉 is a piece-wise linear convex function
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Solving Continuous State MDPs

 Q: Can we modify value iteration algorithm to work with 𝜶
functions?

 exact value iteration for POMDPs

 𝑉𝑡 𝑏 = max
𝑎∈𝐴

[ σ𝑠∈𝑆𝑅 𝑠, 𝑎 𝑏 𝑠 +

 +𝛾 σ𝑜∈𝑂 max
𝛼′∈𝑉𝑡−1

σ𝑠∈𝑆σ𝑠′∈𝑆 𝑇 𝑠, 𝑎, 𝑠′ Ω 𝑜, 𝑠′, 𝑎 𝛼′ 𝑠′ 𝑏(𝑠)]

 the above formula compute values (we need 𝛼-vectors)

 𝛼𝑎,∗ 𝑠 = 𝑅 𝑠, 𝑎

 𝛼𝑖
𝑎,𝑜 𝑠 = 𝛾 σ𝑠′∈𝑆 𝑇 𝑠, 𝑎, 𝑠′ Ω 𝑜, 𝑠′, 𝑎 𝛼𝑖

′ 𝑠′ ∀𝛼′𝑖 ∈ 𝑉′

 𝑉𝑎 = 𝛼𝑎,∗ ⊕𝛼𝑎,𝑜1 ⊕𝛼𝑎,𝑜2 ⊕⋯

 𝑉 = 𝑎∈𝐴𝑉ڂ
𝑎
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Exact Value Iteration for POMDPs

 exact baseline algorithm, however has several disadvantages

 complexity

 exponential in size of observations |𝑂|

 base of the exponent is |𝑉|

 it is important to remove dominated alpha-vectors

 useful only for very small domains

 Tiger example
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A POMDP example: The tiger problem

S0
“tiger-left”

Pr(o=TL | S0, listen)=0.85
Pr(o=TR | S1, listen)=0.15

S1
“tiger-right”

Pr(o=TL | S0, listen)=0.15
Pr(o=TR | S1, listen)=0.85

Actions={ 0: listen,
 1: open-left,
 2: open-right}

Reward Function
 - Penalty for wrong opening: -100
 - Reward for correct opening: +10
 - Cost for listening action: -1

Observations
 - to hear the tiger on the left (TL)
 - to hear the tiger on the right(TR)



Tiger Problem (Transition Probabilities)
•

1.00.0Tiger: right

0.01.0Tiger: left

Tiger: rightTiger: leftProb. (LISTEN)

Tiger: rightTiger: leftProb. (LEFT)

0.50.5Tiger: right

0.50.5Tiger: left

Tiger: rightTiger: leftProb. (RIGHT)

0.50.5Tiger: right

0.50.5Tiger: left

Problem reset

Doesn’t change

Tiger location



Tiger Problem (Observation Probabilities)
•

0.850.15Tiger: right

0.150.85Tiger: left

O: TRO: TLProb. (LISTEN)

0.50.5Tiger: right

0.50.5Tiger: left

O: TRO: TLProb. (LEFT)

O: TRO: TLProb. (LEFT)

0.50.5Tiger: right

0.50.5Tiger: left

Any observation

Without the listen action

Is uninformative



Tiger Problem (Immediate Rewards)
•

Tiger: right

Tiger: left

Reward (LISTEN)

-1

-1

Tiger: right

Tiger: left

Reward (LEFT)

+10

-100

Tiger: right

Tiger: left

Reward (RIGHT)

-100

+10



The tiger problem: State tracking

S1
“tiger-left”

S2
“tiger-right”

Belief vector

b0

Belief



The tiger problem: State tracking

S1
“tiger-left”

S2
“tiger-right”

Belief vector

b0

Belief

obs=hear-tiger-left
action=listen



The tiger problem: State tracking

b1

obs=growl-left

S1
“tiger-left”

S2
“tiger-right”

Belief vector

Belief

b0

action=listen
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Tiger Example Optimal Policy t=1

• Optimal Policy for t=1
α0(1)=(-100.0, 10.0)         α1(1)=(-1.0, -1.0)                   α0(1)=(10.0, -100.0)

    [0.00,  0.10]       [0.10, 0.90]                            [0.90, 1.00]

rightleft listen

Belief Space:

open-rightopen-left listen

S1
“tiger-left”

S2
“tiger-right”

Optimal policy:



Tiger Example Optimal Policy for t=2

• For t=2
 [0.00, 0.02]          [0.02, 0.39]          [0.39, 0.61]          [0.61, 0.98]          [0.98, 1.00]

listenlistenlistenlisten listen

rightleft listen

TL/TR TR TL TLTR TL/TRTL/TR



Exact Value Iteration for POMDPs

 can we do better than full value iteration?

 only a fraction of all belief state is actually achievable in POMDP

 we can sample the belief state



Point Based Value Iteration for POMDPs

 instead of the complete belief space we use a limited set

 𝐵 = {𝑏0, … , 𝑏𝑞 }

 the algorithm keeps only a single alpha vector for one belief point

 anytime algorithm altering 2 main steps

 belief point value update

 belief point set expansion
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Point Based Value Iteration for POMDPs

 belief value update

 𝑉𝑏
𝑎 = 𝛼𝑎,∗ + 𝛾σ𝑜∈𝑂 arg max

𝛼∈𝛼𝑖
𝑎,𝑜
(𝛼. 𝑏)

 𝑉 ← arg max
𝑉𝑏
𝑎,∀𝑎∈𝐴

𝑉𝑏
𝑎 . 𝑏 ∀𝑏 ∈ 𝐵

 removes the exponential complexity

 VI state ends after ℎ iterations

 finite horizon / the error is smaller than 𝜀

 belief point set expansion

 sampling new beliefs from existing beliefs 

 trying to uniformly cover reachable belief space



Point Based Value Iteration for POMDPs

 further improvements

 exploiting heuristics

 for setting initial values

 selecting belief points

 current scalability

 up to 105 states of POMDP

 further reading

 Shani, Pineau, Kaplow: A survey of point-based POMDP solvers (2012)



Beyond (PO)MDPs

 many other models

 specific variants of MDPs / generalization

 AND/OR graphs

 influence diagrams

 dynamic Bayesian networks

 multiple agents

 decentralized (PO)MDPs - DEC-(PO)MDPs

 theoretical framework for multi-agent planning

 partially observable stochastic games (POSG)

 theoretical framework for interaction of rational agents


