
Probabilistic Planning

and
Markov Decision Processes

Branislav Bošanský

PUI 2017/2018

 what have you learnt so far?

 sequential decision making

 deterministic effects of actions

 static environment

 perfect observation

 perfect sensors

Classical vs. Probabilistic Planning

 the world is not perfect

 actions take some time to execute

 actions may fail or yield unexpected results

 the environment may change due to other agents

 the agent does not have knowledge about whole situation

 other agents can have conflicting objectives

 sensors are not precise

 towards more realistic setting

 planning with uncertainty

Classical vs. Probabilistic Planning

 Classical Planning: 𝑆, 𝑠0, 𝑆𝐺 , 𝐴, 𝑓, 𝑐

 states, initial state, goal state(s)

 actions

 transition function 𝑓: 𝑆 × 𝐴 → 𝑆

 cost function

 Probabilistic Planning

 probabilistic transition function 𝑇: 𝑆 × 𝐴 × 𝑆 → 0,1

𝑠′ ∈ 𝑆

𝑇 𝑠, 𝑎, 𝑠′ = 1

Q: why is this enough for modelling uncertainty in environment?

Classical vs. Probabilistic Planning

Probabilistic Planning -Visualization

Probabilistic Planning - Solution

 what is the solution in classical planning?

 sequence of (partially) ordered actions

leading from initial state to the goal state

 this is not sufficient in the probabilistic case

 what if the plan fails?

 we need a contingency plan (policy)

 typically assumes k failures

 if the number of failures is unbounded →
policy

Probabilistic Planning - Solution

 in general we seek for a probabilistic history-

dependent policy

 𝜋:𝐻 × 𝐴 → 0,1

 where ℎ = 𝑠1𝑎1𝑠2𝑎2…𝑠𝑡

 note that the policy may prescribe

randomization over actions

 now we have a representation for plans

(policy)

 we need a method for plan evaluation

Probabilistic Planning - Evaluation

 costs are assigned to triplets 𝑠, 𝑎, 𝑠′

 typically termed rewards (i.e., positive sense)

 executing a policy yields a sequence of

rewards

 policy value – linear additive utility

 𝑢 𝑅1, 𝑅2, … = 𝑅1 + 𝛾𝑅2 + 𝛾2𝑅3 +⋯

 𝑢 𝜋 𝑠0 = 𝐸[𝑢 𝑅1, …]

 expected utility – what can happen?

 optimal only for risk-neutral agent

Probabilistic Planning – Optimal Solution

 If the quality of every policy can be measured by its expected

linear additive utility, there is a policy that is optimal at every

time step.

(Stated in various forms by Bellman, Denardo, and others)

 we seek for 𝜋∗ s.t. 𝑢 𝜋∗ ≥ 𝑢(𝜋) for all other policies 𝜋

 Q: Can there be a case where the policy cannot be measured by

expected linear additive utility?

 yes (infinite state-space with non-discounted rewards, dead-

ends, …)

Markov Decision Processes

• Main formal model

• 𝑆, 𝐴, 𝐷, 𝑇, 𝑅

 states – a finite set of states of the world

 actions – a finite set of actions the agent can perform

 horizon – a finite/infinite set of time steps (1,2, …)

 transition function

 𝑇: 𝑆 × 𝐴 × 𝑆 → 0,1 ;σ𝑠′∈𝑆 𝑇 𝑠, 𝑎, 𝑠′ = 1

 reward function

 𝑅: 𝑆 × 𝐴 × 𝑆 → ℝ

 typically bounded

MDP – policy

 history-dependent policy

 𝜋:𝐻 × 𝐴 → 0,1 ;σ𝑎∈𝐴𝜋(ℎ, 𝑎) = 1

 for simple cases we do not need history and randomization

 Markov assumption

 finite-horizon MDPs

 infinite-horizon MDPs with reward discount factor 0 ≤ 𝛾 < 1

 stochastic shortest path

 (… and some others)

 from now on, policy is an assignment of an action in each state and

time

MDP – policy (2)

 𝜋: 𝑆 → 𝐴

 stationary policy

 when the policy is same every time state s is visited

 otherwise – nonstationary policy

 positional policy

 deterministic and stationary policy

Probabilistic Planning –Algorithms

 this lecture

 using classical planning to probabilistic planning

 straightforward approach (FF-replan)

 improved approach (Robust FF)

 algorithms that directly use probability and uncertainty

 formal definition MDP, strategy/policy iteration

 next lectures

 MCTS, current approaches for solving MDPs

 uncertainty in observations

 formal definition and current approaches for solving POMDPs

Probabilistic Planning – First Approach

 2004 – first international probabilistic planning competition

 several participants, mainly based on MDP solvers

 winner?

 FF-Replan

 possibly the simplest algorithm you can think of …

FF-Replan

 outline of the algorithm

1. determinize the input domain (remove all probabilistic

information from the problem)

2. synthesize a plan

3. execute the plan

4. should an unexpected state occur, replan

FF-Replan - Determinization

 what information can be discarded?

 two main heuristics

 keep only one from all probabilistic outcomes of an action in a

state (e.g., using the outcome with the highest probability)

 keep all outcomes

 generate a separate action for each possible outcome

 very simple, not sound, not optimal, but still good enough for

simple domains

 (outperformed also all participants in IPPC-06)

 Q: In which cases should you adopt such techniques?

Probabilistic Planning (2)

 winner of IPPC 2008

 Robust-FF

 (Incremental Plan Aggregation for Generating Policies in MDPs,

Konigsbuch, Kuter, Infantes 2010)

 generalizes FF-Replan

1. determinize the problem

2. use classical planner to find partial plans

3. aggregate these plans into the partial policy

4. continue until the probability of replanning is below given

threshold

Robust-FF

• outline of the algorithm

Robust-FF

• pseudocode of the algorithm

Robust-FF

• number of options

• selecting determinization (most probable, all outcomes)

• selecting goals (only problem goals, random goals, best goals)

• random/best goals – include also expanded states into 𝐺𝐹𝐹; either k
random, or k “best ones”

• calculating probability of reaching terminal states (dynamic
programming, Monte Carlo simulations)

• soundness vs. completeness of the algorithm?

• only with selected methods (𝑅𝐹𝐹𝐴𝑂)

• not (approximately) optimal in general

FF-Hindsight

• Approximate the value of a state

• sample a set of determinized problems originating from a state

• then solve these problems and combine their values

• Optimal value function

• 𝑉∗ 𝑠, 𝑇 = max
𝜋

𝑬[𝑅 𝑠, 𝐹, 𝜋]

• from state s, horizon T, policy 𝜋, random variable F, reward function R

• HOP value approximation

• 𝑉∗ 𝑠, 𝑇 = 𝑬[max
𝜋

𝑅(𝑠, 𝐹, 𝜋)]

MDP – value of a policy

 we can express an expected reward for every state and time-step

when specific policy is followed

 𝑉𝜋
𝑘 𝑠 = 𝔼 σ𝑡=0

𝑘 𝛾𝑡 ⋅ 𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) |𝑠0 = 𝑠, 𝑎𝑡 = 𝜋(𝑠𝑡)

 optimal policy : 𝜋∗,𝑘 𝑠 = argmax
𝜋

𝑉𝜋
𝑘(𝑠)

 for large (infinite) 𝑘 we can approximate the value by dynamic

programming

 𝑉𝜋
0 𝑠 = 0

 𝑉𝜋
𝑘 𝑠 = σ𝑠′∈𝑆 𝑇(𝑠, 𝑎, 𝑠

′) 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋
𝑘−1 𝑠′ 𝑎 = 𝜋 𝑠

MDP – towards finding optimal policy

 we can exploit the concept of dynamic programming to find an

optimal policy

 basic algorithm for solving MDPs based on Bellman’s equation

 value iteration

 𝑉0 𝑠 = 0 ∀𝑠 ∈ 𝑆

 𝑉𝑘 𝑠 = max
𝑎∈𝐴

σ𝑠′∈𝑆 𝑇(𝑠, 𝑎, 𝑠
′) 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘−1 𝑠′

 Q-function (𝑄(𝑠, 𝑎))

 for 𝑘 → ∞ values converge to optimum 𝑉𝑘 → 𝑉∗

MDP – convergence of value iteration

 value iteration converges

 for finite-horizon MDPs: |𝐷| steps

 for infinite-horizon: asymptotically

 we can measure residual r and stop if it is small enough

(r ≤ 𝜀(1 − 𝛾)/𝛾)

 𝑟 = max
𝑠∈𝑆

|𝑉𝑖+1 𝑠 − 𝑉𝑖 𝑠 |

 convergence depends on 𝛾

MDP – extracting policy and policy iteration

 value iteration calculates only values

 the optimal policy can be extracted by using a greedy approach

 𝜋𝑘 𝑠 = argmax
𝑎∈𝐴

σ𝑠′∈𝑆𝑇
𝑘(𝑠, 𝑎, 𝑠′) 𝑅𝑘 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′

 alternative algorithm – policy iteration

 starts with an arbitrary policy

 policy evaluation: recalculates value of states given the current policy 𝜋𝑘

 policy improvement: calculates a new maximum expected utility policy

𝜋𝑘+1

 until the strategy changes

MDP –VI/PI improvements

 value iteration is very simple

 updates all states during each iteration

 curse of dimensionality (huge state space)

 asynchronous VI

 select a single state to be updated in each iteration separately

 each state must be updated infinitely often to guarantee convergence

 lower memory requirements

 Q: Can we use some heuristics to improve the

convergence?

MDP –VI/PI heuristics

 initial values can be assigned better

 we can use a heuristic function instead of 0

 Q: Can you think of any heuristic function?

 e.g., remember FFReplan/Robust FF?

 we can use a single run of a planner on the determinized version

 Q: What if the values V are initialized incorrectly?

MDP –VI/PI with priority

 initialize 𝑉 and a priority queue 𝑞

 select state 𝑠 from the top of 𝑞 and perform a Bellman backup

 add all possible predecessors of 𝑠 to 𝑞

 repeat until convergence

 priorities: changes in utility, position in the graph, …

 but, values are still updated regardless on the current values

 consider a typical probabilistic planning problem

 finite-horizon MDP with some goal states

MDPs – Find and Revise

 we can further combine selective updates with heuristic search

 starts with admissible 𝑉 𝑠 ≥ 𝑉∗(𝑠) for all states

 select next state 𝑠′ that is:

 reachable from 𝑠0 using current greedy policy 𝜋𝑉, and

 residual 𝑟 𝑠′ > 𝜀

 update 𝑠′

 repeat until such states exist

 many further improvements and algorithms …

MDPs – Real-Time Dynamic Programming

 updates the values only on the path from the starting state to the

goal

 during one iteration updates one rollout/trial:

 start with s = 𝑠0

 evaluate all actions using Bellman’s Q-functions 𝑄(𝑠, 𝑎)

 select action that maximizes current value: argmax 𝑎∈𝐴𝑄(𝑠, 𝑎)

 set 𝑉 𝑠 ← 𝑄 𝑠, 𝑎

 get resulting state 𝑠′

 if 𝑠′ is not goal, then 𝑠 ← 𝑠′ and go to step 2

 can be further improved with labeling (LRTDP) to identify solved

states

