

Probabilistic Planning and Markov Decision Processes

Branislav Bošanský

PUI 2017/2018

Classical vs. Probabilistic Planning

- what have you learnt so far?
 - sequential decision making
 - deterministic effects of actions
 - static environment
 - perfect observation
 - perfect sensors

Classical vs. Probabilistic Planning

- the world is not perfect
 - actions take some time to execute
 - actions may fail or yield unexpected results
 - the environment may change due to other agents
 - the agent does not have knowledge about whole situation
 - other agents can have conflicting objectives
 - sensors are not precise
 - towards more realistic setting
 - planning with uncertainty

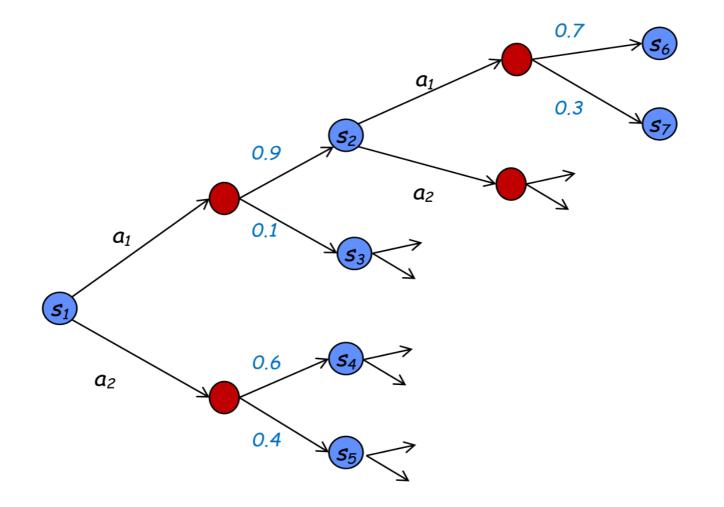
Classical vs. Probabilistic Planning

- Classical Planning: $\langle S, s_0, S_G, A, f, c \rangle$
 - states, initial state, goal state(s)
 - actions
 - transition function $f: S \times A \to S$
 - cost function
- Probabilistic Planning
 - probabilistic transition function $T: S \times A \times S \rightarrow [0,1]$

$$\sum_{s' \in S} T(s, a, s') = 1$$

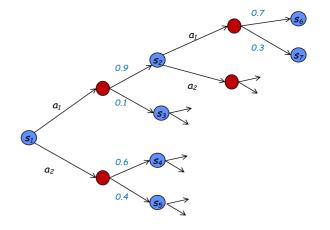
Q: why is this enough for modelling uncertainty in environment?

Probabilistic Planning - Visualization



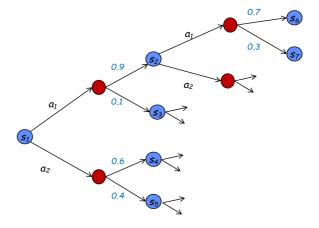
Probabilistic Planning - Solution

- what is the solution in classical planning?
 - sequence of (partially) ordered actions leading from initial state to the goal state
- this is not sufficient in the probabilistic case
 - what if the plan fails?
- we need a contingency plan (policy)
 - typically assumes k failures
 - if the number of failures is unbounded \rightarrow policy



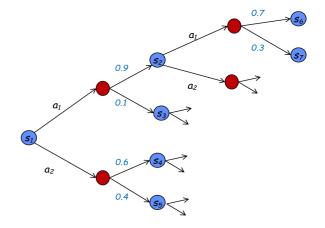
Probabilistic Planning - Solution

- in general we seek for a probabilistic historydependent policy
 - $\pi: H \times A \rightarrow [0,1]$
 - where $h = s_1 a_1 s_2 a_2 \dots s_t$
 - note that the policy may prescribe randomization over actions
- now we have a representation for plans (policy)
 - we need a method for plan evaluation



Probabilistic Planning - Evaluation

- costs are assigned to triplets (s, a, s')
- typically termed rewards (i.e., positive sense)
- executing a policy yields a sequence of rewards
- policy value linear additive utility
 - $u(R_1, R_2, ...) = R_1 + \gamma R_2 + \gamma^2 R_3 + \cdots$
 - $u(\pi(s_0)) = E[u(R_1, ...)]$
- expected utility what can happen?
 - optimal only for risk-neutral agent



Probabilistic Planning – Optimal Solution

• If the quality of every policy can be measured by its expected linear additive utility, there is a policy that is optimal at every time step.

(Stated in various forms by Bellman, Denardo, and others)

• we seek for π^* s.t. $u(\pi^*) \ge u(\pi)$ for all other policies π

- Q: Can there be a case where the policy cannot be measured by expected linear additive utility?
 - yes (infinite state-space with non-discounted rewards, deadends, ...)

Markov Decision Processes

- Main formal model
- $\langle S, A, D, T, R \rangle$
 - states a finite set of states of the world
 - actions a finite set of actions the agent can perform
 - horizon a finite/infinite set of time steps (1,2,...)
 - transition function
 - $T: S \times A \times S \rightarrow [0,1]; \sum_{s' \in S} T(s, a, s') = 1$
 - reward function
 - $R: S \times A \times S \to \mathbb{R}$
 - typically bounded

MDP – policy

- history-dependent policy
 - $\pi: H \times A \rightarrow [0,1]; \sum_{a \in A} \pi(h,a) = 1$
- for simple cases we do not need history and randomization
 - Markov assumption
 - finite-horizon MDPs
 - infinite-horizon MDPs with reward discount factor $0 \leq \gamma < 1$
 - stochastic shortest path
 - (... and some others)
- from now on, policy is an assignment of an action in each state and time

MDP – policy (2)

• $\pi: S \to A$

• stationary policy

- when the policy is same every time state s is visited
- otherwise **nonstationary policy**

• positional policy

• deterministic and stationary policy

Probabilistic Planning – Algorithms

- this lecture
 - using classical planning to probabilistic planning
 - straightforward approach (FF-replan)
 - improved approach (Robust FF)
 - algorithms that directly use probability and uncertainty
 - formal definition MDP, strategy/policy iteration
- next lectures
 - MCTS, current approaches for solving MDPs
 - uncertainty in observations
 - formal definition and current approaches for solving POMDPs

Probabilistic Planning – First Approach

- 2004 first international probabilistic planning competition
- several participants, mainly based on MDP solvers
- winner?
 - FF-Replan
 - possibly the simplest algorithm you can think of ...

FF-Replan

- outline of the algorithm
 - I. determinize the input domain (remove all probabilistic information from the problem)
 - 2. synthesize a plan
 - 3. execute the plan
 - 4. should an unexpected state occur, replan

FF-Replan - Determinization

- what information can be discarded?
- two main heuristics
 - keep only one from all probabilistic outcomes of an action in a state (e.g., using the outcome with the highest probability)
 - keep all outcomes
 - generate a separate action for each possible outcome

- very simple, not sound, not optimal, but still good enough for simple domains
 - (outperformed also all participants in IPPC-06)
 - Q: In which cases should you adopt such techniques?

Probabilistic Planning (2)

- winner of IPPC 2008
 - Robust-FF
 - (Incremental Plan Aggregation for Generating Policies in MDPs, Konigsbuch, Kuter, Infantes 2010)
 - generalizes FF-Replan
 - I. determinize the problem
 - 2. use classical planner to find partial plans
 - 3. aggregate these plans into the partial policy
 - 4. continue until the probability of replanning is below given threshold

Robust-FF

• outline of the algorithm

\mathcal{I} initial graph: \mathcal{I}, \mathcal{G}	<i>I</i> initial call to FF	Add probabilistic outcomes to previous
	Compute probability to reach a terminal state by Monte-Carlo sampling	terminal states

Robust-FF

pseudocode of the algorithm

Algorithm 1: RFF (M, s_0, G, ρ, N) 1 $\mathcal{D} \leftarrow$ a deterministic relaxation of M**2** $T \leftarrow \{s_0\}; \pi \leftarrow \emptyset; \omega(s_0, \pi, s_0) \leftarrow 1$ 3 repeat $T' \leftarrow \emptyset / /$ new terminal states 4 $X \leftarrow \emptyset / /$ new expanded states 5 for $s \in T$ such that $\omega(s_0, \pi, s) > \rho$ do 6 pick $G_{\text{FF}} \subseteq G \cup S_{\pi}$ 7 $p \leftarrow \texttt{FF}(\mathcal{D}, s, G_{\texttt{FF}})$ 8 if $p \neq failure$ then 9 $s' \leftarrow s$; let $p = \langle \hat{a_1}, \dots, \hat{a_k} \rangle$ 10 for $1 \leq i \leq k$ do 11 $X \leftarrow X \cup \{s'\}$ 12 $\pi(s') \leftarrow a_i$ 13 $T' \leftarrow T' \cup succ(s', a_i) \setminus (S_{\pi} \cup G)$ 14 $s' \leftarrow succ_{\mathcal{D}}(s', \hat{a_i})$ 15 16 else $X \leftarrow X \cup \{s\}$ $T \leftarrow (T \setminus X) \cup T'$ 17 $\{\omega(s_0, \pi, s) \mid s \in T)\} \leftarrow \texttt{Fail_Prob}(s_0, \pi, T, N)$ 18 $\Omega(s_0,\pi) = \sum_{s \in T} \omega(s_0,\pi,s)$ 19 // Next line is optional Optimize the shortest stochastic path in S_{π} by considering all 20 states in T as if they were unsolvable **21 until** $\Omega(s_0, \pi) \leq \rho$ or $T = \emptyset$ **22** if $\pi \neq \emptyset$ then return π 23 else return failure

Robust-FF

- number of options
 - selecting determinization (most probable, all outcomes)
 - selecting goals (only problem goals, random goals, best goals)
 - random/best goals include also expanded states into G_{FF} ; either k random, or k "best ones"
 - calculating probability of reaching terminal states (dynamic programming, Monte Carlo simulations)
- soundness vs. completeness of the algorithm?
 - only with selected methods (RFF_{AO})
- not (approximately) optimal in general

FF-Hindsight

- Approximate the value of a state
 - sample a set of determinized problems originating from a state
 - then solve these problems and combine their values
- Optimal value function

$$V^*(s,T) = \max_{\pi} \boldsymbol{E}[R(s,F,\pi)]$$

• from state s, horizon T, policy π , random variable F, reward function R

• HOP value approximation

$$V^*(s,T) = \boldsymbol{E}[\max_{\pi} R(s,F,\pi)]$$

MDP – value of a policy

- we can express an expected reward for every state and time-step when specific policy is followed
- $V_{\pi}^{k}(s) = \mathbb{E}\left[\sum_{t=0}^{k} \gamma^{t} \cdot R(s_{t}, a_{t}, s_{t+1}) | s_{0} = s, a_{t} = \pi(s_{t})\right]$
 - optimal policy : $\pi^{*,k}(s) = \operatorname{argmax}_{\pi} V_{\pi}^{k}(s)$

- for large (infinite) k we can approximate the value by dynamic programming
 - $V_{\pi}^0(s) = 0$
 - $V_{\pi}^{k}(s) = \sum_{s' \in S} T(s, a, s') [R(s, a, s') + \gamma V_{\pi}^{k-1}(s')] \qquad a = \pi(s)$

MDP – towards finding optimal policy

- we can exploit the concept of dynamic programming to find an optimal policy
- basic algorithm for solving MDPs based on Bellman's equation
- value iteration

• $V^0(s) = 0 \quad \forall s \in S$

•
$$V^{k}(s) = \max_{a \in A} \sum_{s' \in S} T(s, a, s') \left[R(s, a, s') + \gamma V^{k-1}(s') \right]$$

Q-function (Q(s, a))

• for $k \to \infty$ values converge to optimum $V^k \to V^*$

MDP – convergence of value iteration

- value iteration converges
 - for finite-horizon MDPs: |D| steps
 - for infinite-horizon: asymptotically
 - we can measure residual r and stop if it is small enough $(r \le \varepsilon (1 \gamma) / \gamma)$

•
$$r = \max_{s \in S} |V_{i+1}(s) - V_i(s)|$$

• convergence depends on γ

MDP – extracting policy and policy iteration $\Delta = \sum_{renter}$

- value iteration calculates only values
- the optimal policy can be extracted by using a greedy approach
 - $\pi^k(s) = \arg \max_{a \in A} \sum_{s' \in S} T^k(s, a, s') \left[R^k(s, a, s') + \gamma V^k(s') \right]$

- alternative algorithm **policy iteration**
 - starts with an arbitrary policy
 - **policy evaluation:** recalculates value of states given the current policy π^k
 - **policy improvement:** calculates a new maximum expected utility policy π^{k+1}
 - until the strategy changes

MDP – VI/PI improvements

- value iteration is very simple
 - updates all states during each iteration
 - curse of dimensionality (huge state space)
 - asynchronous VI
 - select a single state to be updated in each iteration separately
 - each state must be updated infinitely often to guarantee convergence
 - lower memory requirements
- Q: Can we use some heuristics to improve the convergence?

MDP – VI/PI heuristics

- initial values can be assigned better
 - we can use a heuristic function instead of 0

• Q: Can you think of any heuristic function?

- e.g., remember FFReplan/Robust FF?
- we can use a single run of a planner on the determinized version

• Q:What if the values V are initialized incorrectly?

MDP – VI/PI with priority

- initialize V and a priority queue q
- select state s from the top of q and perform a Bellman backup
- add all possible predecessors of s to q
- repeat until convergence
 - priorities: changes in utility, position in the graph, ...

- but, values are still updated regardless on the current values
- consider a typical probabilistic planning problem
 - finite-horizon MDP with some goal states

MDPs – Find and Revise

- we can further combine selective updates with heuristic search
 - starts with admissible $V(s) \ge V^*(s)$ for all states
 - select next state s' that is:
 - reachable from s_0 using current greedy policy π_V , and
 - residual $r(s') > \varepsilon$
 - update s'
 - repeat until such states exist
- many further improvements and algorithms ...

MDPs – Real-Time Dynamic Programming

- updates the values only on the path from the starting state to the goal
- during one iteration updates one rollout/trial:
 - start with $s = s_0$
 - evaluate all actions using Bellman's Q-functions Q(s, a)
 - select action that maximizes current value: $\arg \max_{a \in A} Q(s, a)$
 - set $V(s) \leftarrow Q(s, a)$
 - get resulting state s'
 - if s' is not goal, then $s \leftarrow s'$ and go to step 2
- can be further improved with labeling (LRTDP) to identify solved states