NI

CENTER

Probabilistic Planning
and
Markov Decision Processes

Branislav BoSansky

PUI 2017/2018

Classical vs. Probabilistic Planning

« what have you learnt so far?

sequential decision making
deterministic effects of actions
static environment

perfect observation

perfect sensors

NI

CENTER

»
yaN
CENTER

Classical vs. Probabilistic Planning

. the world is not perfect
 actions take some time to execute
 actions may fail or yield unexpected results
. the environment may change due to other agents
« the agent does not have knowledge about whole situation
« other agents can have conflicting objectives

e Sensors are not precise

« towards more realistic setting

« planning with uncertainty

»
yaN
CENTER

Classical vs. Probabilistic Planning

o Classical Planning: (S, so, S¢, A, f, ¢)
o states, initial state, goal state(s)
e actions
o transition function f:S XA —> S

o cost function

« Probabilistic Planning

« probabilistic transition function T: S X A X § — [0,1]

T(s,a,s") =1
2y esTGo)

Q: why is this enough for modelling uncertainty in environment?

Probabilistic Planning - Visualization

az

0.9

0.1

0.6

0.4

0.7

0.3

az

NI

CENTER

»
yaN
CENTER

Probabilistic Planning - Solution

« Wwhat is the solution in classical planning?

« sequence of (partially) ordered actions
leading from initial state to the goal state

o this is not sufficient in the probabilistic case

« what if the plan fails?

. we need a contingency plan (policy)
o typically assumes k failures

o if the number of failures is unbounded —
policy

»
yaN
CENTER

Probabilistic Planning - Solution

« in general we seek for a probabilistic history-
dependent policy

e T HXA->[01]

« wWhere h = sya,8,a, ... s;

« note that the policy may prescribe
randomization over actions

« now we have a representation for plans
(policy)
« we need a method for plan evaluation

NI

CENTER

Probabilistic Planning - Evaluation

o costs are assigned to triplets (s,a,s’)
o typically termed rewards (i.e., positive sense)

« executing a policy yields a sequence of
rewards

 policy value — linear additive utility
e U(R,Ry,...) =Ry +)/R2+y2R3_|_...
e u(m(s)) = E[u(Ry, ...)]

« expected utility — what can happen?

« optimal only for risk-neutral agent

»
yaN
CENTER

Probabilistic Planning — Optimal Solution

o If the quality of every policy can be measured by its expected
linear additive utility, there is a policy that is optimal at every
time step.

(Stated in various forms by Bellman, Denardo, and others)

« we seek for m* s.t. u(r*) = u(m) for all other policies

« Q:Can there be a case where the policy cannot be measured by
expected linear additive utility?

« Yes (infinite state-space with non-discounted rewards, dead-
ends, ...)

Markov Decision Processes NI

CENTER

* Main formal model

« (S,A,D,T,R)
« states — a finite set of states of the world
 actions — a finite set of actions the agent can perform
« horizon — a finite/infinite set of time steps (1,2, ...)

transition function

e T:SXAXS—>[01;XesT(s,a,5") =1

reward function
e R:SXAXS->R
 typically bounded

MDP - policy i

CENTER

« history-dependent policy
e T:HXA—-[0,1];X4cam(h,a) =1

 for simple cases we do not need history and randomization
e Markov assumption
o finite-horizon MDPs
o infinite-horizon MDPs with reward discount factor 0 <y <1
« stochastic shortest path

e (... and some others)

« from now on, policy is an assignment of an action in each state and
time

MDP - policy (2) i

CENTER

. stationary policy
« when the policy is same every time state s is visited

« otherwise — nonstationary policy

. positional policy

o deterministic and stationary policy

Probabilistic Planning — Algorithms

o this lecture
o using classical planning to probabilistic planning
o straightforward approach (FF-replan)
« improved approach (Robust FF)

o algorithms that directly use probability and uncertainty

« formal definition MDP, strategy/policy iteration

o next lectures
e MCTS, current approaches for solving MDPs

e uncertainty in observations

o formal definition and current approaches for solving POMDPs

NI

CENTER

»
yaN
CENTER

Probabilistic Planning — First Approach

« 2004 — first international probabilistic planning competition
« several participants, mainly based on MDP solvers

e winner!?
o FF-Replan

« possibly the simplest algorithm you can think of ...

NI

CENTER

FF-Replan

« outline of the algorithm

|. determinize the input domain (remove all probabilistic
information from the problem)

2. synthesize a plan
execute the plan

4. should an unexpected state occur, replan

»
yaN
CENTER

FF-Replan - Determinization

« what information can be discarded?

e« two main heuristics

. keep only one from all probabilistic outcomes of an action in a
state (e.g., using the outcome with the highest probability)

o keep all outcomes

« generate a separate action for each possible outcome

 very simple, not sound, not optimal, but still good enough for
simple domains

o (outperformed also all participants in IPPC-06)

e Q:In which cases should you adopt such techniques!?

NI

CENTER

Probabilistic Planning (2)

« winner of IPPC 2008
o« Robust-FF

e (Incremental Plan Aggregation for Generating Policies in MDPs,
Konigsbuch, Kuter, Infantes 2010)

. generalizes FF-Replan

|. determinize the problem
use classical planner to find partial plans

aggregate these plans into the partial policy

B WD

continue until the probability of replanning is below given
threshold

NI

CENTER

Robust-FF

* outline of the algorithm

©

@

Add probabilistic outcomes to previous

initial graph: 7 initial call to FF .
grap G terminal states

Compute probability to reach a terminal
state by Monte-Carlo sampling

Call FF on terminal states

NI

CENTER

Robust-FF

* pseudocode of the algorithm
Algorithm 1: RFF(M, s0,G, p, N)

1 D < adeterministic relaxation of M
2 T —{so}; ™+ 0;w(so,m s0) — 1
3 repeat

4 T — 0 // new terminal states
5 X «— 0 // new expanded states
6 for s € T" such that w(sg, ™, s) > pdo
7 ple GEE‘ (_: GuU S'.rr

8 p FF(D, S, GEE)

9 if p # fatlure then

10 s'«— siletp= (ay,...,ay)
11 forl1 <i< kdo

12 X — X U{s'}

13 w(s') — a;

14 T — T U suce(s’,a;) \ (Sx UG)
15 s «— sucep(s’,d;)

16 else X «— X U {s}

17 T — (T\X)uT’

18 {w(sg,m,8)|s€T)} «— Fail_Prob(sg,m, T, N)

19 Q(so0,m) =D e w(s0,m,s)
// Next line is optional

20 Optimize the shortest stochastic path in S by considering all
states in 7" as if they were unsolvable

21 until Q(sp,7) < porT =10

22 if 7 # () then return =

23 else return failure

NI

CENTER

Robust-FF

* number of options
* selecting determinization (most probable, all outcomes)

* selecting goals (only problem goals, random goals, best goals)

* random/best goals — include also expanded states into Ggp; either k
random, or k “best ones”

* calculating probability of reaching terminal states (dynamic
programming, Monte Carlo simulations)

* soundness vs.completeness of the algorithm!?

* only with selected methods (RFF,)

* not (approximately) optimal in general

NI

CENTER

FF-Hindsight

* Approximate the value of a state

* sample a set of determinized problems originating from a state

* then solve these problems and combine their values

* Optimal value function
0 V*(s,T) = max E[R(s,F,m)]
T

* from state s, horizon T, policy 7, random variable F reward function R

* HOP value approximation
0 V*(s,T) = Elmax R(s, F,m)]
T

MDP - value of a policy N\i

CENTER

« We can express an expected reward for every state and time-step
when specific policy is followed

. Vnk(S) = [E[It(=0 Vt R(S¢, At Se41) [So = s,a¢ = T[(St)]

o optimal policy : m*%(s) = argmax V¥ (s)
T

 for large (infinite) k we can approximate the value by dynamic
programming

e V() =0
e VE(S) =XsesT(s,a,8")[R(s,a,5") +yV 1 (s")] a =m(s)

MDP - towards finding optimal policy NI

CENTER

« we can exploit the concept of dynamic programming to find an
optimal policy

« basic algorithm for solving MDPs based on Bellman’s equation

« value iteration
e Vo(is)=0 VseS
. VE(s) = mg}z:s’esT(S' a,s') [R(S, as')+ ka_l(s’)]
a R/—/

. Q-function (Q (s, a))

o for k — oo values converge to optimum V¥ — /*

MDP - convergence of value iteration NI

CENTER

« value iteration converges
« for finite-horizon MDPs: |D| steps

 for infinite-horizon: asymptotically

« we can measure residual r and stop if it is small enough
r=ed—=7v)/y)
o =max|Viy(s) = Vi(s)]
SES

« convergence depends on y

MDP - extracting policy and policy iteration NI

CENTER

« value iteration calculates only values

« the optimal policy can be extracted by using a greedy approach

. mk(s) =arg meaj(ZSIESTk(S, a,s') [Rk(s, as')+ ka(S’)]
a

o alternative algorithm — policy iteration

o starts with an arbitrary policy

. policy evaluation: recalculates value of states given the current policy ¥

. policy improvement: calculates a new maximum expected utility policy
k+1
T

 until the strategy changes

MDP -VI/Pl improvements NI

CENTER

« value iteration is very simple
o updates all states during each iteration
« curse of dimensionality (huge state space)

« asynchronous VI
« select a single state to be updated in each iteration separately
. each state must be updated infinitely often to guarantee convergence

o lower memory requirements

e Q:Can we use some heuristics to improve the
convergence!?

MDP -VI/PI heuristics AN

CENTER

o initial values can be assigned better

e We can use a heuristic function instead of 0

o Q:Can you think of any heuristic function?
. e.g.,remember FFReplan/Robust FF?

e We can use a single run of a planner on the determinized version

« Q:What if the valuesV are initialized incorrectly?

MDP -VI/PI with priority N\i

CENTER

o initialize I/ and a priority queue q
 select state s from the top of g and perform a Bellman backup
 add all possible predecessors of s to g

« repeat until convergence

« priorities: changes in utility, position in the graph, ...

« but, values are still updated regardless on the current values

« consider a typical probabilistic planning problem

o finite-horizon MDP with some goal states

MDPs - Find and Revise AN

CENTER

« we can further combine selective updates with heuristic search
o starts with admissible V(s) = V*(s) for all states

o select next state s’ that is:
o reachable from s, using current greedy policy 7y, and

o residual r(s') > ¢
o update s’

« repeat until such states exist

« many further improvements and algorithms ...

MDPs — Real-Time Dynamic Programming /)l

CENTER

 updates the values only on the path from the starting state to the
goal

 during one iteration updates one rollout/trial:
e start with s = s,
« evaluate all actions using Bellman’s Q-functions Q(s, a)
o« select action that maximizes current value: argmax ,c40(s,a)
e setlV(s) « Q(s,a)
o get resulting state s’

o if s'is not goal, then s « s’ and go to step 2

« can be further improved with labeling (LRTDP) to identify solved
states

