
Probabilistic Planning

Branislav Bošanský

PUI/PAH 2016/2017

 what have you learnt so far?

 sequential decision making

 deterministic effects of actions

 static environment

 perfect observation

 perfect sensors

Classical vs. Probabilistic Planning

 the world is not perfect

 actions take some time to execute

 actions may fail or yield unexpected results

 the environment may change due to other agents

 the agent does not have knowledge about whole situation

 other agents can have conflicting objectives

 sensors are not precise

 towards more realistic setting

 planning with uncertainty

Classical vs. Probabilistic Planning

 Classical Planning: 𝑆, 𝑠0, 𝑆𝐺 , 𝐴, 𝑓, 𝑐

 states, initial state, goal state(s)

 actions

 transition function 𝑓: 𝑆 × 𝐴 → 𝑆

 cost function

 Probabilistic Planning

 probabilistic transition function 𝑃: 𝑆 × 𝐴 × 𝑆 → 0,1

෍
𝑠′ ∈ 𝑆

𝑃 𝑠, 𝑎, 𝑠′ = 1

Q: why is this enough for modelling uncertainty in environment?

Classical vs. Probabilistic Planning

Probabilistic Planning -Visualization

Probabilistic Planning - Solution

 what is the solution in classical planning?

 sequence of (partially) ordered actions

leading from initial state to the goal state

 this is not sufficient in the probabilistic case

 what if the plan fails?

 we need a contingency plan (policy)

 typically assumes k failures

 if the number of failures is unbounded →
policy

Probabilistic Planning - Solution

 in general we seek for a probabilistic history-

dependent policy

 𝜋:𝐻 × 𝐴 → 0,1

 where ℎ = 𝑠1𝑎1𝑠2𝑎2…𝑠𝑡

 note that the policy may prescribe

randomization over actions

 now we have a representation for plans

(policy)

 we need a method for plan evaluation

Probabilistic Planning - Evaluation

 costs are assigned to triplets 𝑠, 𝑎, 𝑠′

 typically termed rewards (i.e., positive sense)

 executing a policy yields a sequence of

rewards

 policy value – linear additive utility

 𝑢 𝑅1, 𝑅2, … = 𝑅1 + 𝛾𝑅2 + 𝛾2𝑅3 +⋯

 𝑢 𝜋 𝑠0 = 𝐸[𝑢 𝑅1, …]

 expected utility – what can happen?

 optimal only for risk-neutral agent

Probabilistic Planning – Optimal Solution

 If the quality of every policy can be measured by its expected

linear additive utility, there is a policy that is optimal at every

time step.

(Stated in various forms by Bellman, Denardo, and others)

 we seek for 𝜋∗ s.t. 𝑢 𝜋∗ ≥ 𝑢(𝜋) for all other policies 𝜋

 Q: Can there be a case where the policy cannot be measured by

expected linear additive utility?

 yes (infinite state-space with non-discounted rewards, dead-

ends, …)

Probabilistic Planning –Algorithms

 this lecture

 using classical planning to probabilistic planning

 straightforward approach (FF-replan)

 improved approach (Robust FF)

 next lectures

 algorithms that directly use probability and uncertainty

 formal definition MDP, strategy/policy iteration

 MCTS, current approaches for solving MDPs

 uncertainty in observations

 formal definition and current approaches for solving POMDPs

Probabilistic Planning – First Approach

 2004 – first international probabilistic planning competition

 several participants, mainly based on MDP solvers

 winner?

 FF-Replan

 possibly the simplest algorithm you can think of …

FF-Replan

 outline of the algorithm

1. determinize the input domain (remove all probabilistic

information from the problem)

2. synthesize a plan

3. execute the plan

4. should an unexpected state occur, replan

FF-Replan - Determinization

 what information can be discarded?

 two main heuristics

 keep only one from all probabilistic outcomes of an action in a

state (e.g., using the outcome with the highest probability)

 keep all outcomes

 generate a separate action for each possible outcome

 very simple, not sound, not optimal, but still good enough for

simple domains

 (outperformed also all participants in IPPC-06)

 Q: In which cases should you adopt such techniques?

Probabilistic Planning (2)

 winner of IPPC 2008

 Robust-FF

 (Incremental Plan Aggregation for Generating Policies in MDPs,

Konigsbuch, Kuter, Infantes 2010)

 generalizes FF-Replan

1. determinize the problem

2. use classical planner to find partial plans

3. aggregate these plans into the partial policy

4. continue until the probability of replanning is below given

threshold

Robust-FF

• outline of the algorithm

Robust-FF

• pseudocode of the algorithm

Robust-FF

• number of options

• selecting determinization (most probable, all outcomes)

• selecting goals (only problem goals, random goals, best goals)

• random/best goals – include also expanded states into 𝐺𝐹𝐹; either k
random, or k “best ones”

• calculating probability of reaching terminal states (dynamic
programming, Monte Carlo simulations)

• soundness vs. completeness of the algorithm?

• only with selected methods (𝑅𝐹𝐹𝐴𝑂)

• not (approximately) optimal in general

FF-Hindsight

• Approximate the value of a state

• sample a set of determinized problems originating from a state

• then solve these problems and combine their values

• Optimal value function

• 𝑉∗ 𝑠, 𝑇 = max
𝜋

𝑬[𝑅 𝑠, 𝐹, 𝜋]

• from state s, horizon T, policy 𝜋, random variable F, reward function R

• HOP value approximation

• 𝑉∗ 𝑠, 𝑇 = 𝑬[max
𝜋

𝑅(𝑠, 𝐹, 𝜋)]

Robust-FF –Towards MCTS/UCT

• incrementally builds the search space

• adds only such states and actions that lead to a goal

• the process of space-expansion does not guarantee optimality

• this was achieved by using theoretic results addressing the problem of

exploration vs. exploitation

• In IPPC-12, the winner (and most of the other competitors) was based

on UCT (Upper Confidence bounds applied on Trees)

