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 what have you learnt so far?

 sequential decision making

 deterministic effects of actions

 static environment

 perfect observation

 perfect sensors

Classical vs. Probabilistic Planning



 the world is not perfect

 actions take some time to execute

 actions may fail or yield unexpected results

 the environment may change due to other agents

 the agent does not have knowledge about whole situation

 other agents can have conflicting objectives

 sensors are not precise

 towards more realistic setting

 planning with uncertainty

Classical vs. Probabilistic Planning



 Classical Planning: 𝑆, 𝑠0, 𝑆𝐺 , 𝐴, 𝑓, 𝑐

 states, initial state, goal state(s)

 actions

 transition function 𝑓: 𝑆 × 𝐴 → 𝑆

 cost function

 Probabilistic Planning

 probabilistic transition function 𝑃: 𝑆 × 𝐴 × 𝑆 → 0,1

 
𝑠′ ∈ 𝑆

𝑃 𝑠, 𝑎, 𝑠′ = 1

Q: why is this enough for modelling uncertainty in environment?

Classical vs. Probabilistic Planning



Probabilistic Planning -Visualization



Probabilistic Planning - Solution

 what is the solution in classical planning?

 sequence of (partially) ordered actions 

leading from initial state to the goal state

 this is not sufficient in the probabilistic case

 what if the plan fails?

 we need a contingency plan (policy)

 typically assumes k failures

 if the number of failures is unbounded →
policy



Probabilistic Planning - Solution

 in general we seek for a probabilistic history-

dependent policy

 𝜋:𝐻 × 𝐴 → 0,1

 where ℎ = 𝑠1𝑎1𝑠2𝑎2…𝑠𝑡

 note that the policy may prescribe 

randomization over actions

 now we have a representation for plans 

(policy)

 we need a method for plan evaluation



Probabilistic Planning - Evaluation

 costs are assigned to triplets 𝑠, 𝑎, 𝑠′

 typically termed rewards (i.e., positive sense)

 executing a policy yields a sequence of 

rewards

 policy value – linear additive utility

 𝑢 𝑅1, 𝑅2, … = 𝑅1 + 𝛾𝑅2 + 𝛾
2𝑅3 +⋯

 𝑢 𝜋 𝑠0 = 𝐸[𝑢 𝑅1, … ]

 expected utility – what can happen?

 optimal only for risk-neutral agent



Probabilistic Planning – Optimal Solution

 If the quality of every policy can be measured by its expected 

linear additive utility, there is a policy that is optimal at every 

time step.

(Stated in various forms by Bellman, Denardo, and others)

 we seek for 𝜋∗ s.t. 𝑢 𝜋∗ ≥ 𝑢(𝜋) for all other policies 𝜋

 note: can be the case that the policy cannot be measured by 

expected linear additive utility?

 yes (infinite state-space with non-discounted rewards, dead-

ends, …)



Probabilistic Planning –Algorithms 

 this lecture

 using classical planning to probabilistic planning

 straightforward approach (FF-replan)

 improved approach (Robust FF)

 next lectures

 algorithms that directly use probability and uncertainty

 formal definition MDP, strategy/policy iteration

 current approaches for solving MDPs

 uncertainty in observations 

 formal definition and current approaches for solving POMDPs 



Probabilistic Planning – First Approach

 2004 – first international probabilistic planning competition

 several participants, mainly based on MDP solvers

 winner? 

 FF-Replan

 possibly the simplest algorithm you can think of …



FF-Replan

 outline of the algorithm

1. determinize the input domain (remove all probabilistic 

information from the problem)

2. synthesize a plan

3. execute the plan

4. should an unexpected state occur, replan



FF-Replan - Determinization

 what information can be discarded?

 two main heuristics

 keep only one from all probabilistic outcomes of an action in a 

state (e.g., using the outcome with the highest probability)

 keep all outcomes

 generate a separate action for each possible outcome 

 very simple, not sound, not optimal, but still good enough for 

simple domains

 Q: In which cases you should adopt such techniques?

 (outperformed also all participants in IPPC-06)



Probabilistic Planning (2)

 winner of IPPC 2008

 Robust-FF 

 (Incremental Plan Aggregation for Generating Policies in MDPs, 

Konigsbuch, Kuter, Infantes 2010)

 generalizes FF-Replan

1. determinize the problem

2. use classical planner to find partial plans

3. aggregate these plans into the partial policy

4. continue until the probability of replanning is below given 

threshold



Robust-FF

• outline of the algorithm



Robust-FF

• pseudocode of the algorithm 



Robust-FF

• number of options

• selecting determinization (most probable, all outcomes)

• selecting goals (only problem goals, random goals, best goals)

• random/best goals – include also expanded states into 𝐺𝐹𝐹; either k 
random, or k “best ones”

• calculating probability of reaching terminal states (dynamic  
programming, Monte Carlo simulations)

• soundness vs. completeness of the algorithm?

• only with selected methods (𝑅𝐹𝐹𝐴𝑂)

• not (approximately) optimal in general



FF-Hindsight

• Approximate the value of a state

• sample a set of determinized problems originating from a state

• then solve these problems and combine their values

• Optimal value function

• 𝑉∗ 𝑠, 𝑇 = max
𝜋
𝑬[𝑅 𝑠, 𝐹, 𝜋 ]

• from state s, horizon T, policy 𝜋, random variable F, reward function R

• HOP value approximation

• 𝑉∗ 𝑠, 𝑇 = 𝑬[max
𝜋
𝑅(𝑠, 𝐹, 𝜋)]



Robust-FF –Towards UCT

• incrementally builds the search space

• adds only such states and actions that lead to a goal

• the process of space-expansion does not guarantee optimality

• this was achieved by using theoretic results addressing the problem of 

exploration vs. exploitation

• In IPPC-12, the winner (and most of the other competitors) was based 

on UCT (Upper Confidence bounds applied on Trees)


