

Probabilistic Planning

Branislav Bošanský

PAH 2015/2016

Classical vs. Probabilistic Planning

- what have you learnt so far?
 - sequential decision making
 - deterministic effects of actions
 - static environment
 - perfect observation
 - perfect sensors

Classical vs. Probabilistic Planning

- the world is not perfect
 - actions take some time to execute
 - actions may fail or yield unexpected results
 - the environment may change due to other agents
 - the agent does not have knowledge about whole situation
 - other agents can have conflicting objectives
 - sensors are not precise
 - towards more realistic setting
 - planning with uncertainty

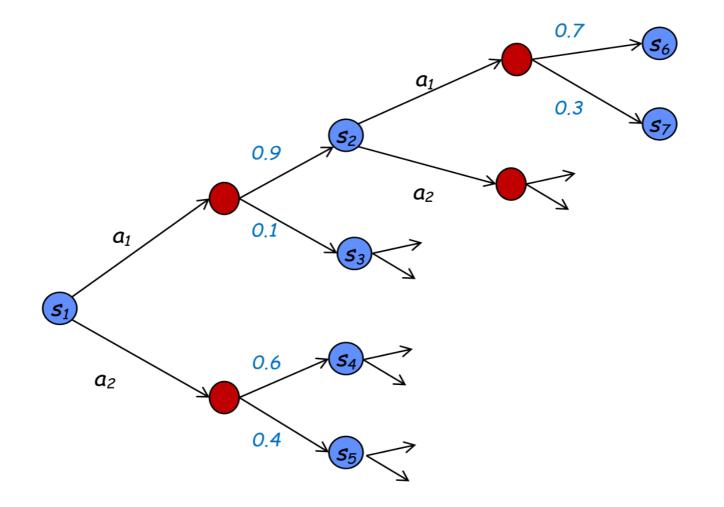
Classical vs. Probabilistic Planning

- Classical Planning: $\langle S, s_0, S_G, A, f, c \rangle$
 - states, initial state, goal state(s)
 - actions
 - transition function $f: S \times A \rightarrow S$
 - cost function
- Probabilistic Planning
 - probabilistic transition function $P: S \times A \times S \rightarrow [0,1]$

$$\sum_{s' \in S} P(s, a, s') = 1$$

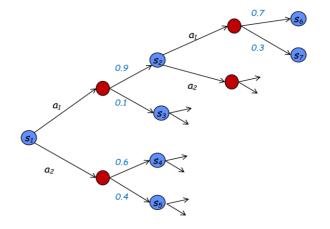
Q: why is this enough for modelling uncertainty in environment?

Probabilistic Planning - Visualization



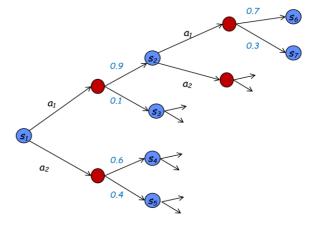
Probabilistic Planning - Solution

- what is the solution in classical planning?
 - sequence of (partially) ordered actions leading from initial state to the goal state
- this is not sufficient in the probabilistic case
 - what if the plan fails?
- we need a contingency plan (policy)
 - typically assumes k failures
 - if the number of failures is unbounded \rightarrow policy



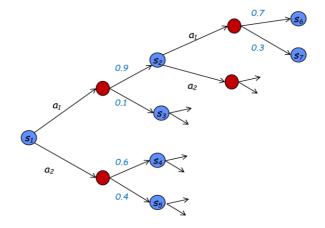
Probabilistic Planning - Solution

- in general we seek for a probabilistic historydependent policy
 - $\pi: H \times A \rightarrow [0,1]$
 - where $h = s_1 a_1 s_2 a_2 \dots s_t$
 - note that the policy may prescribe randomization over actions
- now we have a representation for plans (policy)
 - we need a method for plan evaluation



Probabilistic Planning - Evaluation

- costs are assigned to triplets (s, a, s')
- typically termed rewards (i.e., positive sense)
- executing a policy yields a sequence of rewards
- policy value linear additive utility
 - $u(R_1, R_2, ...) = R_1 + \gamma R_2 + \gamma^2 R_3 + \cdots$
 - $u(\pi(s_0)) = E[u(R_1, ...)]$
- expected utility what can happen?
 - optimal only for risk-neutral agent



Probabilistic Planning – Optimal Solution

• If the quality of every policy can be measured by its expected linear additive utility, there is a policy that is optimal at every time step.

(Stated in various forms by Bellman, Denardo, and others)

• we seek for π^* s.t. $u(\pi^*) \ge u(\pi)$ for all other policies π

- note: can be the case that the policy cannot be measured by expected linear additive utility?
 - yes (infinite state-space with non-discounted rewards, deadends, ...)

Probabilistic Planning – Algorithms

- this lecture
 - using classical planning to probabilistic planning
 - straightforward approach (FF-replan)
 - improved approach (Robust FF)
- next lectures
 - algorithms that directly use probability and uncertainty
 - formal definition MDP, strategy/policy iteration
 - current approaches for solving MDPs
 - uncertainty in observations
 - formal definition and current approaches for solving POMDPs

Probabilistic Planning – First Approach

- 2004 first international probabilistic planning competition
- several participants, mainly based on MDP solvers
- winner?
 - FF-Replan
 - possibly the simplest algorithm you can think of ...

FF-Replan

- outline of the algorithm
 - I. determinize the input domain (remove all probabilistic information from the problem)
 - 2. synthesize a plan
 - 3. execute the plan
 - 4. should an unexpected state occur, replan

FF-Replan - Determinization

- what information can be discarded?
- two main heuristics
 - keep only one from all probabilistic outcomes of an action in a state (e.g., using the outcome with the highest probability)
 - keep all outcomes
 - generate a separate action for each possible outcome

- very simple, not sound, not optimal, but still good enough for simple domains
 - Q: In which cases you should adopt such techniques?
 - (outperformed also all participants in IPPC-06)

Probabilistic Planning (2)

- winner of IPPC 2008
 - Robust-FF
 - (Incremental Plan Aggregation for Generating Policies in MDPs, Konigsbuch, Kuter, Infantes 2010)
 - generalizes FF-Replan
 - I. determinize the problem
 - 2. use classical planner to find partial plans
 - 3. aggregate these plans into the partial policy
 - 4. continue until the probability of replanning is below given threshold

Robust-FF

• outline of the algorithm

\mathcal{I} initial graph: \mathcal{I}, \mathcal{G}	<i>I</i> initial call to FF	Add probabilistic outcomes to previous
	Compute probability to reach a terminal state by Monte-Carlo sampling	terminal states

Robust-FF

pseudocode of the algorithm

Algorithm 1: RFF (M, s_0, G, ρ, N) 1 $\mathcal{D} \leftarrow$ a deterministic relaxation of M**2** $T \leftarrow \{s_0\}; \pi \leftarrow \emptyset; \omega(s_0, \pi, s_0) \leftarrow 1$ 3 repeat $T' \leftarrow \emptyset / /$ new terminal states 4 $X \leftarrow \emptyset / /$ new expanded states 5 for $s \in T$ such that $\omega(s_0, \pi, s) > \rho$ do 6 pick $G_{\text{FF}} \subseteq G \cup S_{\pi}$ 7 $p \leftarrow \texttt{FF}(\mathcal{D}, s, G_{\texttt{FF}})$ 8 if $p \neq failure$ then 9 $s' \leftarrow s$; let $p = \langle \hat{a_1}, \dots, \hat{a_k} \rangle$ 10 for $1 \leq i \leq k$ do 11 $X \leftarrow X \cup \{s'\}$ 12 $\pi(s') \leftarrow a_i$ 13 $T' \leftarrow T' \cup succ(s', a_i) \setminus (S_{\pi} \cup G)$ 14 $s' \leftarrow succ_{\mathcal{D}}(s', \hat{a_i})$ 15 16 else $X \leftarrow X \cup \{s\}$ $T \leftarrow (T \setminus X) \cup T'$ 17 $\{\omega(s_0, \pi, s) \mid s \in T)\} \leftarrow \texttt{Fail_Prob}(s_0, \pi, T, N)$ 18 $\Omega(s_0,\pi) = \sum_{s \in T} \omega(s_0,\pi,s)$ 19 // Next line is optional Optimize the shortest stochastic path in S_{π} by considering all 20 states in T as if they were unsolvable **21 until** $\Omega(s_0, \pi) \leq \rho$ or $T = \emptyset$ **22** if $\pi \neq \emptyset$ then return π 23 else return failure

Robust-FF

- number of options
 - selecting determinization (most probable, all outcomes)
 - selecting goals (only problem goals, random goals, best goals)
 - random/best goals include also expanded states into G_{FF} ; either k random, or k "best ones"
 - calculating probability of reaching terminal states (dynamic programming, Monte Carlo simulations)
- soundness vs. completeness of the algorithm?
 - only with selected methods (RFF_{AO})
- not (approximately) optimal in general

FF-Hindsight

- Approximate the value of a state
 - sample a set of determinized problems originating from a state
 - then solve these problems and combine their values
- Optimal value function

$$V^*(s,T) = \max_{\pi} \boldsymbol{E}[R(s,F,\pi)]$$

• from state s, horizon T, policy π , random variable F, reward function R

• HOP value approximation

•
$$V^*(s,T) = \mathbf{E}[\max_{\pi} R(s,F,\pi)]$$

Robust-FF – Towards UCT

- incrementally builds the search space
- adds only such states and actions that lead to a goal
- the process of space-expansion does not guarantee optimality
- this was achieved by using theoretic results addressing the problem of exploration vs. exploitation
- In IPPC-12, the winner (and most of the other competitors) was based on UCT (Upper Confidence bounds applied on Trees)