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Markov Decision Processes

• Main formal model

• 𝑆, 𝐴, 𝐷, 𝑇, 𝑅

 states – a finite set of states of the world

 actions – a finite set of actions the agent can perform

 horizon – a finite/infinite set of time steps (1,2, … )

 transition function

 𝑇: 𝑆 × 𝐴 × 𝑆 → 0,1 ;σ𝑠′∈𝑆 𝑇 𝑠, 𝑎, 𝑠′ = 1

 reward function

 𝑅: 𝑆 × 𝐴 × 𝑆 → ℝ

 typically bounded



MDP – policy

 history-dependent policy

 𝜋:𝐻 × 𝐴 → 0,1 ;σ𝑎∈𝐴𝜋(ℎ, 𝑎) = 1

 for simple cases we do not need history and randomization

 Markov assumption

 finite-horizon MDPs

 infinite-horizon MDPs with reward discount factor 0 ≤ 𝛾 < 1

 stochastic shortest path

 (… and some others)

 from now on, policy is an assignment of an action in each state and 

time



MDP – policy (2)

 𝜋: 𝑆 → 𝐴

 stationary policy

 when the policy is same every time state s is visited

 otherwise – nonstationary policy

 positional policy

 deterministic and stationary policy



MDP – value of a policy

 we can express an expected reward for every state and time-step 

when specific policy is followed

 𝑉𝜋
𝑘 𝑠 = 𝔼 σ𝑡=0

𝑘 𝛾𝑡 ⋅ 𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) |𝑠0 = 𝑠, 𝑎𝑡 = 𝜋(𝑠𝑡)

 optimal policy : 𝜋∗,𝑘 𝑠 = argmax
𝜋

𝑉𝜋
𝑘(𝑠)

 for large (infinite) 𝑘 we can approximate the value by dynamic 

programming

 𝑉𝜋
0 𝑠 = 0

 𝑉𝜋
𝑘 𝑠 = σ𝑠′∈𝑆 𝑇(𝑠, 𝑎, 𝑠

′) 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋
𝑘−1 𝑠′ 𝑎 = 𝜋 𝑠



MDP – towards finding optimal policy

 we can exploit the concept of dynamic programming to find an 

optimal policy

 basic algorithm for solving MDPs based on Bellman’s equation

 value iteration

 𝑉0 𝑠 = 0 ∀𝑠 ∈ 𝑆

 𝑉𝑘 𝑠 = max
𝑎∈𝐴

σ𝑠′∈𝑆 𝑇(𝑠, 𝑎, 𝑠
′) 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘−1 𝑠′

 Q-function (𝑄(𝑠, 𝑎))

 for 𝑘 → ∞ values converge to optimum 𝑉𝑘 → 𝑉∗



MDP – convergence of value iteration

 value iteration converges

 for finite-horizon MDPs: |𝐷| steps

 for infinite-horizon: asymptotically 

 we can measure residual r and stop if it is small enough              

(r ≤ 𝜀(1 − 𝛾)/𝛾)

 𝑟 = max
𝑠∈𝑆

|𝑉𝑖+1 𝑠 − 𝑉𝑖 𝑠 |

 convergence depends on 𝛾



MDP – extracting policy and policy iteration

 value iteration calculates only values

 the optimal policy can be extracted by using a greedy approach

 𝜋𝑘 𝑠 = argmax
𝑎∈𝐴

σ𝑠′∈𝑆𝑇
𝑘(𝑠, 𝑎, 𝑠′) 𝑅𝑘 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′

 alternative algorithm – policy iteration

 starts with an arbitrary policy

 policy evaluation: recalculates value of states given the current policy 𝜋𝑘

 policy improvement: calculates a new maximum expected utility policy 

𝜋𝑘+1

 until the strategy changes



MDP –VI/PI improvements

 value iteration is very simple

 updates all states during each iteration 

 curse of dimensionality (huge state space)

 asynchronous VI

 select a single state to be updated in each iteration separately

 each state must be updated infinitely often to guarantee convergence

 lower memory requirements

 Q: Can we use some heuristics to improve the 

convergence?



MDP –VI/PI heuristics

 initial values can be assigned better

 we can use a heuristic function instead of 0

 Q: Can you think of any heuristic function?

 e.g., remember FFReplan/Robust FF? 

 we can use a single run of a planner on the determinized version

 Q: What if the values V are initialized incorrectly?



MDP –VI/PI with priority

 initialize 𝑉 and a priority queue 𝑞

 select state 𝑠 from the top of 𝑞 and perform a Bellman backup

 add all possible predecessors of 𝑠 to 𝑞

 repeat until convergence

 priorities: changes in utility, position in the graph, …

 but, values are still updated regardless on the current values

 consider a typical probabilistic planning problem

 finite-horizon MDP with some goal states



MDPs – Find and Revise

 we can further combine selective updates with heuristic search

 starts with admissible 𝑉 𝑠 ≥ 𝑉∗(𝑠) for all states

 select next state 𝑠′ that is:

 reachable from 𝑠0 using current greedy policy 𝜋𝑉, and

 residual 𝑟 𝑠′ > 𝜀

 update 𝑠′

 repeat until such states exist

 many further improvements and algorithms …



MDPs – Real-Time Dynamic Programming

 updates the values only on the path from the starting state to the 

goal

 during one iteration updates one rollout/trial:

 start with s = 𝑠0

 evaluate all actions using Bellman’s Q-functions 𝑄(𝑠, 𝑎)

 select action that maximizes current value: argmax 𝑎∈𝐴𝑄(𝑠, 𝑎)

 set 𝑉 𝑠 ← 𝑄 𝑠, 𝑎

 get resulting state 𝑠′

 if 𝑠′ is not goal, then 𝑠 ← 𝑠′ and go to step 2

 can be further improved with labeling (LRTDP) to identify solved 

states



MDPs – Using Monte Carlo Methods

 Monte Carlo Simulation: a technique that can be used to solve a 

mathematical or statistical problem using repeated sampling to 

determine the properties of some phenomenon (or behavior)

 Monte-Carlo Planning:  compute a good policy for an MDP by 

interacting with an MDP simulator

 when simulator of a planning domain is available 

or can be learned from data

 even if not described 

as a MDP

 queries has to be cheap 

(relatively)



MDPs – Using Monte Carlo Methods

 Monte Carlo sampling is a well known method for searching 

through large state space

 exploiting MC in sequential decision making has first been 

successfully designed in (Kocsis & Szepesvari, 2006)

 foundations in mathematical theory

 Multi-Armed Bandit (MAB) Problem

 Upper Confidence Bounds (UCB)

 exploration/exploitation dilemma 



MDPs – Using Monte Carlo Methods

 sequential decision problem (over a single state)

 𝑘 ≥ 2 stochastic actions (arms 𝑎𝑖)

 each parameterized with an unknown probability distribution 𝜈𝑖

 each with a stored expectation 𝜇𝑖

 if executed (pulled) rewarded at 

random from 𝜈𝑖

 objective

 get maximal reward after N pulls

 minimize regret for pulling wrong arm(s)



MCTS - 𝝐-greedy

 parameterized by 𝝐

 flip a 𝝐-biased coin

 (𝝐): select arm 𝑎𝑖 randomly with uniform probability and update 𝜇𝑖

 (1 − 𝝐): select estimated best arm 𝑎∗ and update 𝜇∗

 typically 𝝐 ≈ 𝟎. 𝟏 (but this can vary depending on circumstances)



MCTS – UCB1

 UCB1 arm selection:

 select arm 𝑎𝑖 maximizing UCB1 formula:

𝜇𝑖 + 𝑐
ln 𝑛

𝑛𝑖

and update 𝜇𝑖

 𝑛 – times the state is visited; 𝑛𝑖 – times the action is visited

 𝜇𝑖 – average reward from the previous plays

 exploration factor ensures to evaluate actions that are evaluated 

rarely

Upper Confidence Bounds



MCTS – from UCB1 to UCT

 UCB1 applied on trees – UCT

a1 a2 a3 a4 ak



MCTS – from UCB1 to UCT



MCTS – UCT

 selection (UCB1)

 for each action 𝑎𝑖 applicable in 𝑠 UCB selects 

the one that maximizes

𝑐
ln 𝑛

𝑛𝑖
+ 

𝑠′∈𝑆

𝑇 𝑠, 𝑎𝑖 , 𝑠
′ [𝑅 𝑠, 𝑎𝑖 , 𝑠

′ + 𝛾𝑉 𝑠′ ]

 𝑛 – times the state is visited; 𝑛𝑖 – times the action is visited

 𝑉(𝑠) – average reward from the previous iterations

 𝑐 - exploration constant (linear to expected utility)

 exploration factor ensures to evaluate actions that are evaluated 

rarely

Upper Confidence Bounds on Trees



MCTS – UCT

 expansion (MCTS)

 in a selection node where not all actions were yet sampled, expand 

(uniformly) randomly one of the new nodes

 simulation (MCTS)

 (uniformly) randomly select actions in decision nodes

 using the simulator based on the probabilities in the MDP simulate world 

behavior in the chance nodes MDP

 backup (MCTS)

 updating 𝜇𝑖
𝑠 for all search tree nodes along the trial based on the 

rewards (incl. the simulation)

Upper Confidence Bounds on Trees



MDPs – Using Monte Carlo Methods

 learning-while-acting

 reward for each action

 cumulative regret (exploration/exploitation dilemma)

 algorithms:  𝝐-greedy, UCB1

 used in: Monte Carlo Tree Search, UCB1 applied to trees (UCT)

 online planning/learning-while-planning

 reward only for final decision (N “free action tries” by simulator)

 simple regret

 algorithms:  uniform sampling, 𝝐-greedy, Sequential Halving

 used in:  Trial-based Heuristic Tree Search (THTS)


