Planning with Uncertainty

PAH 2015

Classical vs. Uncertainty Planning %

« what have you learnt so far?
« sequential decision making
« deterministic effects of actions
e Sstatic environment
« perfect observation

« perfect sensors

Classical vs. Uncertainty Planning %

. the world is not perfect
 actions may fail or yield unexpected results
« the environment may change due to other agents
« the agent does not have knowledge about whole situation
« other agents can have antagonistic objectives

e Sensors are not precise

o first step towards more realistic setting

« planning with uncertainty

Classical vs. Uncertainty Planning

« Uncertainty modeling

e non-determinism
 a limited set of outcomes of actions
 unlimited possible failures (conformant/contingency)

 limited possible failures (fault tolerant)

« probability
o all possible outcomes with probability distribution
« perfect observability (MDP)
. partial observability (POMDP) (i

k=) 4

Conformant Planning

Conformant Planning Belief space

Conformant vs. Classical Planning

mL I8

Problem: A robot must move from an uncertain / into G with certainty,
one cell at a time, in a grid nxn

» Conformant and classical planning look similar except for uncertain /
(assuming actions are deterministic).

» Yet plans can be quite different:
best conformant plan must move robot to a corner first! (in order to
localize)

Carmel Domshlak Automated Action Planning 26 / 44

Conformant Planning Kj

Basic Translation: Move to Knowledge Level
Given conformant problem 1= (P, I, O, G)

» P —set of (all unobservable) propositional state variables
> O - set of operators with conditional effects (c, e)
» | — prior knowledge about the initial state (clauses over P)

» G — goal description (conjunction over P)
Define classical problem Ky() = (P’,I', O', G)
P ={Kp,K—p|p < P}
I"={Kp | clause pe I}
G'={Kp|pe G}

O’ = O but preconds p replaced by Kp, and effects (c, e) replaced
by Kc — Ke (supports) and =-K—c — —K—e (cancellation)

vV v . vvY

Ko(M) is sound but incomplete: every classical plan that solves Kp() is a
conformant plan for I, but not vice versa.

Carmel Domshlak Automated Action Planning 34 /44

Conformant Planning Ko

Basic Translation: Move to Knowledge Level

Conformant I = Classical Ko(I)
(P,1,0,G) = (P10, G
variable p = Kp, K—p (two vars)
Init: ~ known var p = Kp A =K=-p
Init unknown var p = = Kp A =K=p (both false)
Goal p = Kp
Operator a has prec p = a has prec Kp
a:Kec— Kp
Operator a: (c, p) = a:K-c—10

a:—K-c— —=K-p

Carmel Domshlak Automated Action Planning 35/ 44

Conformant Planning Ko

Basic Properties and Extensions

» Translation Kp(I) is sound:
» If 7 is a classical plan that solves Ky(I), then 7 is a conformant
plan for I1.
» But way too incomplete

» often Ko(IM) will have no solution while N does
» works when uncertainty is irrelevant

> Extension K7 (M) we present now can be
both complete and polynomial

Carmel Domshlak Automated Action Planning 36 / 44

Conformant Planning Kt

ldea

» Given literal L and tag t, atom KL/t means
> K(to D L): KL true if t is true initially

Example

» Conformant Problem [1:

> Init: x1 V X2, g

» Goal: g

> Actions: a1 :x1 > g, a1 x — &
» Classical Problem K7 p(I):

> Init: Kxi/x1, Kxa/x2, K—g, = Kg, 7 Kxy, 7 K-xi,. ..

v

After a1: Kg/xi, -K-g,
After ap: Kg/xo,
> New action mergeg: Kg/x1 N Kg/x2 — Kg

v

v

After merge;: Kg,
Goal satisfied: Kg

v

Carmel Domshlak Automated Action Planning

37 / 44

Conformant Planning K7

Key elements in Translation K7 (1)

» aset T of tags t: consistent set of assumptions (literals) about the
initial situation /

/ b& -t
> a set M of merges m: valid subsets of tags
e\ L

Lem

» Semantics of var KL/t: L is true given that initially t (i.e. K(to D L))

Carmel Domshlak Automated Action Planning 38 / 44

Conformant Planning K7

Example of T, M

Example
Given I ={pV q,vV-w}, T and M can be:

T = {{}’p>q’v7ﬁw} T = {{}7{/97‘/}’{(7»‘/}7"'}

M = {{p,q},{v,~w}} M’

Carmel Domshlak Automated Action Planning

30 / 44

Conformant Planning Kt

Translation K1 (M)

For conformant (P, 1,0, G), Kr.m(MN)is (P',I', 0", G’)
» P’: KL/t for every literal L and tag t € T
» I KL/tif I =(tD L)
» G: KLforLe G
» Foreverytagtin Tanda: L1 A---AL,— L in O, add to O’

» a:KLi/tA---ANKL,/t — KL/t
> a: KoL/t A A=Kl /t — K=/t

prec L = prec KL

v

v

Merge actions in O’: for each lit L and merge m € M with
m={ty,...,tg}

merge; m - KL/ti A ... NKL/t, — KL

Carmel Domshlak Automated Action Planning 40 / 44

Conformant Planning Kt

Properties of Translation K1 v

> If T contains only the empty tag, K7 m(I1) reduces to Ko(IM)
» K7 m(M) is always sound

We will see that...
» For suitable choices of T,M translation is complete

> ...and sometimes polynomial as well

Carmel Domshlak Automated Action Planning 41 / 44

Conformant Planning Kt

Intuition of soundness

» |dea:

> if sequence of actions m makes KL/t true in K7 ()
» 7 makes L true in 1 over all trajectories starting
at initial states satisfying t

Theorem (Soundness K1 u(IM))

If w is a plan that solves the classical planning problem K1 p(IM), then
the action sequence w' that results from © by dropping the merge actions
is a plan that solves the conformant planning problem T1.

Carmel Domshlak Automated Action Planning 42 / 44

Conformant Planning Kt

A complete but exponential instance of K7 p(): Ky

If possible initial states are s&, ..., 57, scheme Ky is the instance of
KT’M(H) with
> T={{}s0,--»50 }
> M={{st,....50} }
i.e., only one merge for the disjunction of possible initial states

> Intuition: applying actions in Ky keeps track of each fluent for each
possible initial states

» This instance is complete, but exponential in the number of fluents
» ...although not a bad conformant planner

Carmel Domshlak Automated Action Planning 43 / 44

Performance of Ko + FF

Conformant Planning

Kt,m

Planners exec time (s)
Problem #50 Kso KP | POND | CFF
Bomb-10-1 1k 648,9 0 1 0
Bomb-10-5 1k | 2795,4 | 0,1 3 0
Bomb-10-10 | 1k | 5568,4 | 0,1 8 0
Bomb-20-1 | 1M | >1.8G | 0,1 | 4139 0
Sqr-4-16 4 0,3 fail | 1131 | 13,1
Sqr-4-24 4 1,6 fail | >2h | 321
Sqr-4-48 4 57,5 fail | >2h | > 2h
Sortnet-6 64 2,2 fail 2,1 fail
Sortnet-7 128 27,9 fail | 17,98 fail
Sortnet-8 256 | > 1.8G | fail | 907,1 fail

Translation time included in all tables.

Carmel Domshlak

Automated Action Planning

44 | 44

Fault Tolerant Planning:
Complexity and Compilation

Carmel Domshlak

Action Dynamics and Solution Concepts

Classical

Fault Tolerant

FOND

O/O/ 5 \O\O

Q

Q

Action Dynamics and Solution Concepts

Classical Fault Tolerant FOND
R
O o/o 5 o\o JOQOQD
(weak) plan strong plan

©
©
©

Action Dynamics and Solution Concepts

Classical Fault Tolerant FOND
? J3 /&}

Q O/O é O\O COQQ
(weak) plan k-plan strong plan

Between Classical and (FOND) Contingent Planning

Between Bold Optimism and Paranoia

We control the nature.
Classical © PSPACE / NP
No bad things will happen!

Nature tries to full us.
FOND ® EXPTIME
Bad things always happen ...

Between Classical and (FOND) Contingent Planning

Between Bold Optimism and Paranoia

We control the nature.
Classical © PSPACE / NP

No bad things will happen!

E

Nature tries to full us, but it
has other things to do as well.

©

Nature tries to full us.
FOND ® EXPTIME
Bad things always happen ...

Between Classical and (FOND) Contingent Planning

Between Bold Optimism and Paranoia

We control the nature.

Classical © PSPACE / NP
No bad things will happen!
Nature tries to full us, but it]
has other things to do as well.
Fault Tolerant ©
At most « bad things will
happen.
Nature tries to full us.
FOND ® EXPTIME

Bad things always happen ...

Jensen, Veloso, & Bryant, ICAPS'04

Between Classical and (FOND) Contingent Planning

Between Bold Optimism and Paranoia

We control the nature.

Classical © PSPACE / NP
No bad things will happen!
Nature tries to full us, but it
has other things to do as well.
EXPTIME
Fault Tolerant O PSPACE / NP
At most k bad things will
happen.
Nature tries to full us.
FOND ® EXPTIME

Bad things always happen ...

Here: COMPLEXITY

Between Classical and (FOND) Contingent Planning

Between Bold Optimism and Paranoia

We control the nature.

Classical © PSPACE / NP
No bad things will happen!
Nature tries to full us, but it i
has other things to do as well.
EXPTIME
Fault Tolerant O PSPACE / NP
At most k bad things will
happen.
Nature tries to full us.
FOND ® EXPTIME

Bad things always happen ...

\

Here: COMPILATION

Task Classification and Decision Problems

FT task classification
Task is a-primary if
each action has at most « primary (= 0-failures) effects

S{e1)

Task Classification and Decision Problems

FT task classification
Task is a-primary if
each action has at most « primary (= 0-failures) effects

1 0 2

S{e1)

FT-a-k: Does a-primary I have a k-plan?

Decision problems

POLY-FT-a-k: Does a-primary 1 have a k-plan such that all its
k-admissible executions reach the goal after a
polynomial number of steps?

P M
x2,0k,1 ‘WH)—{ x1,0k,0

M

.
[k 16+ {5k 10

1-or-2-effects fragment of FT

Each action is either
» deterministic, or

» has two possible effects, one primary and one secondary.

Example: 2-plan for a 1-or-2-effects task:

o]
1 o1 05
G Q
0,
\
1 s7,0
02 x Qo6
10
;
0 0
v ¥ Qo7
:

T4

o—[ss0]

o1

T3

!

T2

) e)

1

o—[s00]

@
o1

1

0

T

Key property of FT-1-x (within “1-or-2-effects”)

Property

Any irreducible k-plan induces such a DFS-ordered sequence of
sub-plans with “at most one non-goal leaf with j failures so far.”

Key property of FT-1-x (within “1-or-2-effects”)

Property
Any irreducible k-plan induces such a DFS-ordered sequence of
sub-plans with “at most one non-goal leaf with j failures so far.”

» Key enabler for the compilation
» In the paper: Generalization to O(1)-effects per action

@ E E OEOE [s9]
Selma]]] [«
o 0 O

Key property of FT-1-x (within “1-or-2-effects”)

Property

Any irreducible k-plan induces such a DFS-ordered sequence of
sub-plans with “at most one non-goal leaf with j failures so far.”

» Key enabler for the compilation

» In the paper: Generalization to O(1)-effects per action

0,0

0O—0
i)

0,

\
3
02! 0L06
3 %
\
Qo4 Qo3
g ? [se1]
¥ ¥ Qo7
/

B EEEEE
O E MM EE
% i A o O 3 I ey B = O e R e R Y
J®] [F [[EEefe] [
A e e o e e I e e Sy

Key property of FT-1-x (within “1-or-2-effects”)

Property

Any irreducible k-plan induces such a DFS-ordered sequence of
sub-plans with “at most one non-goal leaf with j failures so far.”

» Key enabler for the compilation

» In the paper: Generalization to O(1)-effects per action

EXIN o o [0 w] [s] [=] [] sio] - [sto
Pl . - 5 ©
2 2 3 3
[s11] M
&5
02 ! S 0 | s0 s6 E ﬂ E s10 s10
3 . . Sl A S —lw
1 ~l ;)
22 Y 2 [s2 [(=] L= 3
9t 9% EXl
v v Qo7) 6 [s6] [s6] [s6] 10 s10
i 1 st 54 {4) > 8 s9
2 [s2] 3 53

Tiny evaluation

» Robot to move from BL to TR of a 7 x 7, 4-connected grid
» Edges: unsafe/safe with p/(1 — p)

» Safe ~ deterministic
» Unsafe ~ can get a flat and stay

> 10 spare tires placed randomly on the grid

CFF CFF(I‘I(F’”)) FO(N’)
task O N O S
p=0.1]0.12][0.00] — [- | - [[0.00] 0.02 [0.03 [0.06
0.13][0.00[2.10] - | — |[0.00| 1.67 | 0.04 | 0.07
0.13]]0.00] - | = | = [[0.00] 0.21 | 0.03 | 0.07
0.13]]0.00] — | = | - |[0.00] 0.02 [0.03 [0.06
013[]0.00] — | — | - |[0.00] 0.09 | 0.04 | 0.07
p=0.2]0.13]]0.00] — | = | = [[0.00]27.32] 0.04 | 0.08
0.13]]0.00] — | = | = |[0.00] 0.01 [0.03 | 0.06
0.13]]0.00] — [= | - |[0.00] 0.02 | 0.03 [0.06
013[]0.00] — | — | - |[0.00] 0.01 | 0.03 | 0.06
0.13]]0.00] = | = | = |[0.00] 5.6 | 0.04 | 0.07
p=05[0.13]]0.00] — | - | - [[0.00] 0.38 | 0.05 [0.09
0.13]]0.00|3.32|4.13| — |[0.00] 0.04 | 0.63 [11.56
0.13][0.00] - | - | - |[0.00] 0.31 |38.86] -
0.13[]0.000.14]0.150.15][0.00 | 0.01 | 0.03 | 0.06
0.13]]0.00] - | - | - |[0.00] 0.89 |17.37] 1.25

Probabilistic Planning

Classical vs. Probabilistic Planning %

o Classical Planning: (S, so, S¢, A, f, ¢)
o states, initial state, goal state(s)
e actions
o transition function f:S XA —> S

o cost function

« Probabilistic Planning

o probabilistic transition function P:S X A X S — [0,1]

P(s,a,s") =1
PIRPINCERS

Q: why is this enough for modelling uncertainty in environment!?

Probabilistic Planning - Visualization

az

0.9

0.1

0.6

0.4

0.7

0.3

az

s

Probabilistic Planning - Solution %

« Wwhat is the solution in classical planning?

« sequence of (partially) ordered actions
leading from initial state to the goal state

. this is not sufficient in the probabilistic case

« what if the plan fails?

. we need a (partial) policy

Probabilistic Planning - Solution %

« in general we seek for a probabilistic history-
dependent policy

e mHXA->[01]

« wWhere h = sja,8,a, ... 5;

« note that the policy may prescribe
randomization over actions

« now we have a representation for plans
(policy)
« we need a method for plan evaluation

Probabilistic Planning - Evaluation %

o costs are assigned to triplets (s,a,s’)
« typically termed rewards (i.e., positive sense)

« executing a policy yields a sequence of
rewards

 policy value — linear additive utility
e U(R,R,,...) =R{+VR, +y%R3 + -
o u(m(sy)) = E[u(Ry, ...)]

« expected utility — what can happen?

« optimal only for risk-neutral agent

Probabilistic Planning — Optimal Solution %

o If the quality of every policy can be measured by its expected
linear additive utility, there is a policy that is optimal at every

time step.

(Stated in various forms by Bellman, Denardo, and others)
« we seek for t* s.t.u(m*) = u(m) for all other policies 7
P

« note: can be the case that the policy cannot be measured by
expected linear additive utility?

« Yes (infinite state-space with non-discounted rewards, dead-
ends, ...)

Probabilistic Planning — Algorithms

o this lecture

using classical planning to probabilistic planning
straightforward approach (FF-replan)

improved approach (Robust FF)

“multi-layered” approach (FF-Hindsight Optimization)

next lectures

algorithms that directly use probability and uncertainty
« formal definition MDP, strategy/policy iteration
« current approaches for solving MDPs

uncertainty in observations

o formal definition and current approaches for solving POMDPs

Probabilistic Planning — First Approach %

« 2004 — first international probabilistic planning competition
« several participants, mainly based on MDP solvers

e winner!?
o FF-Replan

« possibly the simplest algorithm you can think of ...

FF-Replan

« outline of the algorithm

|. determinizes the input domain (remove all probabilistic
information from the problem)

2. synthesizes a plan
executes the plan

4. should an unexpected state occur, replans

FF-Replan - Determinization %

« what information can be discarded?

e« two main heuristics

. keep only one from all probabilistic outcomes of an action in a
state (e.g., using the outcome with the highest probability)

o keep all outcomes

e generate a separate action for each possible outcome

 very simple, not sound, not optimal, but still good enough for
simple domains

« (outperformed also all participants in IPPC-06)

Probabilistic Planning (2) %

« winner of IPPC 2008
o« Robust-FF

e (Incremental Plan Aggregation for Generating Policies in MDPs,
Konigsbuch, Kuter, Infantes 2010)

. generalizes FF-Replan

|. determinize the problem
use classical planner to find partial plans

aggregate these plans into the partial policy

B WD

continue until the probability of replanning is below given
threshold

Robust-FF

* outline of the algorithm

©

@

Add probabilistic outcomes to previous

initial graph: 7 initial call to FF .
grap G terminal states

Compute probability to reach a terminal
state by Monte-Carlo sampling

Call FF on terminal states

Robust-FF %

* number of options
* selecting determinization (most probable, all outcomes)

* selecting goals (only problem goals, random goals, best goals)

* random/best goals — include also expanded states into Ggp; either k
random, or k “best ones”

* calculating probability of reaching terminal states (dynamic
programming, Monte Carlo simulations)

* soundness vs.completeness of the algorithm!?

* only with selected methods (RFF,)

* not (approximately) optimal in general

Hindsight Optimization (HOP) - FF-Hindsigh%%

* Approximate the value of a state

* sample a set of determinized problems originating from that state
* then solve the problems “in hindsight” and combine their values

* if the deterministic problems are easier @ computational gains
* Optimal value function
V*(s,T) = max E[R(s,F,m)]
T

* state s, horizon T, (non-stationary) policy 7, total reward R and
random variable F uniformly distributed over all futures

* HOP value function approximation

Vis(s,T) = E[max R(s,F,m)]

