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 what have you learnt so far?

 sequential decision making

 deterministic effects of actions

 static environment

 perfect observation

 perfect sensors

Classical vs. Uncertainty Planning



 the world is not perfect

 actions may fail or yield unexpected results

 the environment may change due to other agents

 the agent does not have knowledge about whole situation

 other agents can have antagonistic objectives

 sensors are not precise

 first step towards more realistic setting

 planning with uncertainty

Classical vs. Uncertainty Planning



 Uncertainty modeling

 non-determinism

 a limited set of outcomes of actions 

 unlimited possible failures (conformant/contingency)

 limited possible failures (fault tolerant)

 probability

 all possible outcomes with probability distribution

 perfect observability (MDP)

 partial observability (POMDP)

Classical vs. Uncertainty Planning



Conformant Planning



Conformant Planning Belief space

Conformant vs. Classical Planning

G
I

Problem: A robot must move from an uncertain I into G with certainty,
one cell at a time, in a grid nxn

I Conformant and classical planning look similar except for uncertain I
(assuming actions are deterministic).

I Yet plans can be quite different:
best conformant plan must move robot to a corner first! (in order to
localize)

Carmel Domshlak Automated Action Planning 26 / 44





Conformant Planning K0

Basic Translation: Move to Knowledge Level
Conformant Π ⇒ Classical K0(Π)
〈P, I ,O,G 〉 ⇒ 〈P ′, I ′,O ′,G ′〉

variable p ⇒ ¬Kp,K¬p (two vars)

Init: unknown var p ⇒ ¬Kp ∧ ¬K¬p
Init unknown var p ⇒ ¬Kp ∧ ¬K¬p (both false)

Goal p ⇒ Kp
Operator a has prec p ⇒ a has prec Kp

Operator a: 〈c , p〉 ⇒


a : Kc → Kp
a : K¬c → ∅
a : ¬K¬c → ¬K¬p
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Conformant Planning K0

Basic Properties and Extensions

I Translation K0(Π) is sound:
I If π is a classical plan that solves K0(Π), then π is a conformant

plan for Π.

I But way too incomplete
I often K0(Π) will have no solution while Π does
I works when uncertainty is irrelevant

I Extension KT ,M(Π) we present now can be
both complete and polynomial
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Conformant Planning KT,M

Idea

I Given literal L and tag t, atom KL/t means
I K (t0 ⊃ L): KL true if t is true initially

Example

I Conformant Problem Π:
I Init: x1 ∨ x2,¬g
I Goal: g
I Actions: a1 : x1 → g , a2 : x2 → g

I Classical Problem KT ,M(Π):
I Init: Kx1/x1,Kx2/x2,K¬g ,¬Kg ,¬Kx1,¬K¬x1, . . .
I After a1: Kg/x1, Kx1/x1,Kx2/x2, ¬K¬g , ¬Kg , . . .
I After a2: Kg/x2, Kg/x1,Kx1/x2,Kx2/x2,¬K¬g ,¬Kg , . . .

I New action mergeg : Kg/x1 ∧ Kg/x2 → Kg

I After mergeg : Kg , Kg/x2,Kg/x1,Kx1/x2,Kx2/x2,¬K¬g , . . .
I Goal satisfied: Kg
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Conformant Planning KT,M

Key elements in Translation KT ,M(Π)

I a set T of tags t: consistent set of assumptions (literals) about the
initial situation I

I 6|= ¬t

I a set M of merges m: valid subsets of tags

I |=
∨
L∈m

L

I Semantics of var KL/t: L is true given that initially t (i.e. K (t0 ⊃ L))
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Conformant Planning KT,M

Example of T , M

Example
Given I = {p ∨ q, v ∨ ¬w}, T and M can be:

T = {{}, p, q, v ,¬w}
M = {{p, q}, {v ,¬w}}

T ′ = {{}, {p, v}, {q, v}, . . .}
M ′ = . . .
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Conformant Planning KT,M

Translation KT ,M(Π)

For conformant 〈P, I ,O,G 〉, KT ,M(Π) is 〈P ′, I ′,O ′,G ′〉
I P′: KL/t for every literal L and tag t ∈ T

I I′: KL/t if I |= (t ⊃ L)

I G′: KL for L ∈ G
I For every tag t in T and a : L1 ∧ · · · ∧ Ln → L in O, add to O ′

I a : KL1/t ∧ · · · ∧ KLn/t → KL/t
I a : ¬K¬L1/t ∧ · · · ∧ ¬K¬Ln/t → ¬K¬L/t

I prec L ⇒ prec KL

I Merge actions in O ′: for each lit L and merge m ∈ M with
m = {t1, . . . , tn}

mergeL,m : KL/t1 ∧ . . . ∧ KL/tn → KL
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Conformant Planning KT,M

Properties of Translation KT ,M

I If T contains only the empty tag, KT ,M(Π) reduces to K0(Π)

I KT ,M(Π) is always sound

We will see that...

I For suitable choices of T ,M translation is complete

I . . . and sometimes polynomial as well
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Conformant Planning KT,M

Intuition of soundness

I Idea:
I if sequence of actions π makes KL/t true in KT ,M(Π)
I π makes L true in Π over all trajectories starting

at initial states satisfying t

Theorem (Soundness KT ,M(Π))

If π is a plan that solves the classical planning problem KT ,M(Π), then
the action sequence π′ that results from π by dropping the merge actions
is a plan that solves the conformant planning problem Π.
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Conformant Planning KT,M

A complete but exponential instance of KT ,M(Π): Ks0

If possible initial states are s1
0 , . . . , s

n
0 , scheme Ks0 is the instance of

KT ,M(Π) with

I T = { {}, s1
0 , . . . , s

n
0 }

I M = { {s1
0 , . . . , s

n
0} }

i.e., only one merge for the disjunction of possible initial states

I Intuition: applying actions in Ks0 keeps track of each fluent for each
possible initial states

I This instance is complete, but exponential in the number of fluents
I . . . although not a bad conformant planner
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Conformant Planning KT,M

Performance of Ks0 + FF

Planners exec time (s)

Problem #S0 Ks0 KP POND CFF

Bomb-10-1 1k 648,9 0 1 0

Bomb-10-5 1k 2795,4 0,1 3 0

Bomb-10-10 1k 5568,4 0,1 8 0

Bomb-20-1 1M > 1.8G 0,1 4139 0

Sqr-4-16 4 0,3 fail 1131 13,1

Sqr-4-24 4 1,6 fail > 2h 321

Sqr-4-48 4 57,5 fail > 2h > 2h

Sortnet-6 64 2,2 fail 2,1 fail

Sortnet-7 128 27,9 fail 17,98 fail

Sortnet-8 256 > 1.8G fail 907,1 fail

Translation time included in all tables.
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Fault Tolerant Planning:
Complexity and Compilation
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Between Classical and (FOND) Contingent Planning
Between Bold Optimism and Paranoia

We control the nature.

time

Classical PSPACE / NP

No bad things will happen!

Nature tries to full us, but it
has other things to do as well.

⇓

time

Fault Tolerant
EXPTIME
PSPACE / NP

At most κ bad things will
happen.

Nature tries to full us.

time

FOND EXPTIME
Bad things always happen ...
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Task Classification and Decision Problems

FT task classification
Task is α-primary if
each action has at most α primary (= 0-failures) effects

1
0 2

1
1

Decision problems

ft-α-κ: Does α-primary Π have a κ-plan?

poly-ft-α-κ: Does α-primary Π have a κ-plan such that all its
κ-admissible executions reach the goal after a
polynomial number of steps?
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1-or-2-effects fragment of FT

Each action is either

I deterministic, or

I has two possible effects, one primary and one secondary.

Example: 2-plan for a 1-or-2-effects task:
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Key property of ft-1-κ (within “1-or-2-effects”)

Property

Any irreducible κ-plan induces such a DFS-ordered sequence of
sub-plans with “at most one non-goal leaf with j failures so far.”

I Key enabler for the compilation

I In the paper: Generalization to O(1)-effects per action
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Tiny evaluation

I Robot to move from BL to TR of a 7 × 7, 4-connected grid
I Edges: unsafe/safe with p/(1 − p)

I Safe ; deterministic
I Unsafe ; can get a flat and stay

I 10 spare tires placed randomly on the grid

CFF CFF
(

Π(F,κ)
)

FD
(

Π′)
task 0 1 2 4 0 1 2 4

p = 0.1 0.12 0.00 – – – 0.00 0.02 0.03 0.06
0.13 0.00 2.10 – – 0.00 1.67 0.04 0.07
0.13 0.00 – – – 0.00 0.21 0.03 0.07
0.13 0.00 – – – 0.00 0.02 0.03 0.06
0.13 0.00 – – – 0.00 0.09 0.04 0.07

p = 0.2 0.13 0.00 – – – 0.00 27.32 0.04 0.08
0.13 0.00 – – – 0.00 0.01 0.03 0.06
0.13 0.00 – – – 0.00 0.02 0.03 0.06
0.13 0.00 – – – 0.00 0.01 0.03 0.06
0.13 0.00 – – – 0.00 5.96 0.04 0.07

p = 0.5 0.13 0.00 – – – 0.00 0.38 0.05 0.09
0.13 0.00 3.32 4.13 – 0.00 0.04 0.63 11.56
0.13 0.00 – – – 0.00 0.31 38.86 –
0.13 0.00 0.14 0.15 0.15 0.00 0.01 0.03 0.06
0.13 0.00 – – – 0.00 0.89 17.37 1.25



Probabilistic Planning



 Classical Planning: 𝑆, 𝑠0, 𝑆𝐺 , 𝐴, 𝑓, 𝑐

 states, initial state, goal state(s)

 actions

 transition function 𝑓: 𝑆 × 𝐴 → 𝑆

 cost function

 Probabilistic Planning

 probabilistic transition function 𝑃: 𝑆 × 𝐴 × 𝑆 → 0,1

 
𝑠′ ∈ 𝑆

𝑃 𝑠, 𝑎, 𝑠′ = 1

Q: why is this enough for modelling uncertainty in environment?

Classical vs. Probabilistic Planning



Probabilistic Planning -Visualization



Probabilistic Planning - Solution

 what is the solution in classical planning?

 sequence of (partially) ordered actions 

leading from initial state to the goal state

 this is not sufficient in the probabilistic case

 what if the plan fails?

 we need a (partial) policy



Probabilistic Planning - Solution

 in general we seek for a probabilistic history-

dependent policy

 𝜋:𝐻 × 𝐴 → 0,1

 where ℎ = 𝑠1𝑎1𝑠2𝑎2…𝑠𝑡

 note that the policy may prescribe 

randomization over actions

 now we have a representation for plans 

(policy)

 we need a method for plan evaluation



Probabilistic Planning - Evaluation

 costs are assigned to triplets 𝑠, 𝑎, 𝑠′

 typically termed rewards (i.e., positive sense)

 executing a policy yields a sequence of 

rewards

 policy value – linear additive utility

 𝑢 𝑅1, 𝑅2, … = 𝑅1 + 𝛾𝑅2 + 𝛾
2𝑅3 +⋯

 𝑢 𝜋 𝑠0 = 𝐸[𝑢 𝑅1, … ]

 expected utility – what can happen?

 optimal only for risk-neutral agent



Probabilistic Planning – Optimal Solution

 If the quality of every policy can be measured by its expected 

linear additive utility, there is a policy that is optimal at every 

time step.

(Stated in various forms by Bellman, Denardo, and others)

 we seek for 𝜋∗ s.t. 𝑢 𝜋∗ ≥ 𝑢(𝜋) for all other policies 𝜋

 note: can be the case that the policy cannot be measured by 

expected linear additive utility?

 yes (infinite state-space with non-discounted rewards, dead-

ends, …)



Probabilistic Planning –Algorithms 

 this lecture

 using classical planning to probabilistic planning

 straightforward approach (FF-replan)

 improved approach (Robust FF)

 “multi-layered” approach (FF-Hindsight Optimization)

 next lectures

 algorithms that directly use probability and uncertainty

 formal definition MDP, strategy/policy iteration

 current approaches for solving MDPs

 uncertainty in observations 

 formal definition and current approaches for solving POMDPs 



Probabilistic Planning – First Approach

 2004 – first international probabilistic planning competition

 several participants, mainly based on MDP solvers

 winner? 

 FF-Replan

 possibly the simplest algorithm you can think of …



FF-Replan

 outline of the algorithm

1. determinizes the input domain (remove all probabilistic 

information from the problem)

2. synthesizes a plan

3. executes the plan

4. should an unexpected state occur, replans



FF-Replan - Determinization

 what information can be discarded?

 two main heuristics

 keep only one from all probabilistic outcomes of an action in a 

state (e.g., using the outcome with the highest probability)

 keep all outcomes

 generate a separate action for each possible outcome 

 very simple, not sound, not optimal, but still good enough for 

simple domains

 (outperformed also all participants in IPPC-06)



Probabilistic Planning (2)

 winner of IPPC 2008

 Robust-FF 

 (Incremental Plan Aggregation for Generating Policies in MDPs, 

Konigsbuch, Kuter, Infantes 2010)

 generalizes FF-Replan

1. determinize the problem

2. use classical planner to find partial plans

3. aggregate these plans into the partial policy

4. continue until the probability of replanning is below given 

threshold



Robust-FF

• outline of the algorithm



Robust-FF

• number of options

• selecting determinization (most probable, all outcomes)

• selecting goals (only problem goals, random goals, best goals)

• random/best goals – include also expanded states into 𝐺𝐹𝐹; either k 
random, or k “best ones”

• calculating probability of reaching terminal states (dynamic  
programming, Monte Carlo simulations)

• soundness vs. completeness of the algorithm?

• only with selected methods (𝑅𝐹𝐹𝐴𝑂)

• not (approximately) optimal in general



Hindsight Optimization (HOP) – FF-Hindsight

• Approximate the value of a state

• sample a set of determinized problems originating from that state

• then solve the problems “in hindsight” and combine their values

• if the deterministic problems are easier  computational gains

• Optimal value function

𝑉∗ 𝑠, 𝑇 = max
𝜋
𝑬[𝑅(𝑠, 𝐹, 𝜋)]

• state s, horizon T, (non-stationary) policy 𝜋, total reward R and 
random variable F uniformly distributed over all futures

• HOP value function approximation 

𝑉ℎ𝑠 𝑠, 𝑇 = 𝑬[max
𝜋
𝑅(𝑠, 𝐹, 𝜋)]


