Monte Carlo Tree Search

PAH 2015

MCTS animation and RAVE slides by Michele Sebag and Romaric Gaudel

Markov Decision Processes (MDPs) %

« main formal model
o« [1=(S,A D, T,R)
« states — finite set of states of the world
« actions — finite set of actions the agent can perform
« horizon — finite/infinite set of time steps (1,2, ...)

o transition function
e T:SXAXSXD - [0,1]

o reward function
e R:SXAXSXD->R

Markov Decision Processes (MDPs) %

« online planning ~ any-time algorithm
 learn the next move

° Pla)’ |t
e iterate

« reward on final states (often win or lose)

 implicit (and compact) representation of large MDPs
« cannot grow the full tree
« cannot safely cut branches

e cannot be greedy

Markov Decision Processes (MDPs)

« online planning
« focus on current state
 set of possible courses

 decision making ~ selection of one action

« online planning curse of dimensionality

. number of applicable action is O(poly(|T1]))

« complexity because of the state-space size O(exp(lHl))

MDPs - Using Monte Carlo Methods %

« Monte Carlo sampling is a well known method for searching through
large state space

. exploiting MC in sequential decision making has first been successfully
designed in (Kocsis & Szepesvari, 2006)

« foundations in mathematical theory
o Multi-Armed Bandit (MAB) Problem
« Upper Confidence Bounds (UCB)

« exploration/exploitation dilemma

Monte Carlo Methods %

» Monte Carlo Simulation: a technique that can be used to solve a
mathematical or statistical problem using repeated sampling to
determine the properties of some phenomenon (or behavior)

» Monte-Carlo Planning: compute a good policy for an MDP by
interacting with an MDP simulator

World
« when simulator of a planning domain is available
or can be learned from data

o even if not described
as a MDP

« queries has to be cheap
(relatively)

Monte Carlo Simulation

o Domains with Simulators
. traffic
e robotics
« military missions
« computer network
o disaster relief and emergency planning
e Sports

e board and video games

e board (Go, Hex, Settlers of Catan, ...), card (poker, Magic: The
Gathering, ...), RTS (Total War: Rome Il ...)

Multi-Armed Bandit Problem %

« sequential decision problem (over a single state)

e k = 2 stochastic actions (arms a;)
o each parameterized with an unknown probability distribution v;
o each with a stored expectation y;
o if executed (pulled) rewarded at

random from v;

« oObjective

« get maximal reward after N pulls

. minimize regret of pulling wrong arm(s)

Multi-Armed Bandit Problem (variants) %

 learning-while-acting

o reward for each action

. cumulative regret (exploration/exploitation dilemma) |5
o algorithms: e-greedy, UCBI
« used in: Monte Carlo Tree Search, UCBI applied to trees (UCT)

« online planning/learning-while-planning
« reward only for final decision (N “free action tries” by simulator)
« simple regret (only exploration)
 algorithms: uniform sampling, €-greedy, Sequential Halving

 used in: Trial-based Heuristic Tree Search (THTY)

e-greedy %

« parameterized by €

« flip a e-biased coin
e (€):select arm a; randomly with uniform probability and update y;

e (1 — €):select estimated best arm a” and update y*
 typically € = 0,1 (but this can vary depending on circumstances)

. exponential convergence to the optimal arm

Upper Confidence Bounds %

e UCBI arm selection:

o select arm a; maximizing UCBI formula:

2Inn

. +
Ui n,

N
and update y;

« N — times the state is visited; n; — times the action is visited

e U; —average reward from the previous plays

. exploration factor ensures to evaluate actions that are evaluated
rarely

 only polynomial (but empirically fast) convergence to optimal arm

Sequential Halving %

parameterized by sampling budget T

(1) begins with all arms as candidate arms S

(2) sample/play all candidate arms in S t-times

(3) remove |half| of the candidate arms with lowest y;

(4) until there is only one (resulting) candidate arm: goto (2)

exponential convergence to the optimal arm (provided the budget is
going to ©0; not any-time)

Combinatorial Multi-Armed Bandit Problem%

T
« combination of actions (arms) has to be : =
selected (some forbidden) o ol®
« reward defined over combinations of o |
actions (c-actions) ‘
« expectation of reward per c-action

o ® curse of dimensionality (action combinations), O(exp(|TI|))

« © we can approximate
« randomly generate candidate c-actions, pick the best one (NMC)

 assume additive rewards for one c-action; linear-side inform. (LSI)

Combinatorial Multi-Armed Bandit Problem%

« =2 sequential decision making (over different states): repeated MABs

oo o

2 | | |

o —
|
O

Monte Carlo Tree Search (MCTYS) %

 sequential decision making (over different states)
« gradually grow the search tree

« two types of tree nodes
 decision nodes (action selection) — the algorithm selects

« chance nodes (world selection) — the world selects the outcome (in
case of MDP model based on known probabilities)

« returned solution: path (action from root) visited the most often

Monte-Carlo Tree Search

Gradually grow the search tree:

> [terate Tree-Walk
> Building Blocks
> Select next action
Bandit phase
> Add a node
Grow a leaf of the search tree
> Select next action bis
Random phase, roll-out
» Compute instant reward
Evaluate
Update information in visited nodes
Propagate

v

» Returned solution:
» Path visited most often

Kocsis Szepesvari, 06

Monte-Carlo Tree Search

Gradually grow the search tree:

> [terate Tree-Walk
> Building Blocks
> Select next action
Bandit phase
> Add a node
Grow a leaf of the search tree
> Select next action bis
Random phase, roll-out
» Compute instant reward
Evaluate
Update information in visited nodes
Propagate

v

» Returned solution:
» Path visited most often

Kocsis Szepesvari, 06

Monte-Carlo Tree Search

Gradually grow the search tree:

> [terate Tree-Walk
> Building Blocks
> Select next action
Bandit phase
> Add a node
Grow a leaf of the search tree
> Select next action bis
Random phase, roll-out
» Compute instant reward
Evaluate
Update information in visited nodes
Propagate

v

» Returned solution:
» Path visited most often

Kocsis Szepesvari, 06

Monte-Carlo Tree Search

Gradually grow the search tree:

> [terate Tree-Walk
> Building Blocks
> Select next action
Bandit phase
> Add a node
Grow a leaf of the search tree
> Select next action bis
Random phase, roll-out
» Compute instant reward
Evaluate
Update information in visited nodes
Propagate

v

» Returned solution:
» Path visited most often

Kocsis Szepesvari, 06

Monte-Carlo Tree Search

Gradually grow the search tree:

> [terate Tree-Walk
> Building Blocks
> Select next action
Bandit phase
> Add a node
Grow a leaf of the search tree
> Select next action bis
Random phase, roll-out
» Compute instant reward
Evaluate
Update information in visited nodes
Propagate

v

» Returned solution:
» Path visited most often

Kocsis Szepesvari, 06

Monte-Carlo Tree Search

Gradually grow the search tree:

> [terate Tree-Walk
> Building Blocks
> Select next action
Bandit phase
> Add a node
Grow a leaf of the search tree
> Select next action bis
Random phase, roll-out
» Compute instant reward
Evaluate
Update information in visited nodes
Propagate

v

» Returned solution:
» Path visited most often

Kocsis Szepesvari, 06

Monte-Carlo Tree Search

Gradually grow the search tree:

> [terate Tree-Walk
> Building Blocks
> Select next action
Bandit phase
> Add a node
Grow a leaf of the search tree
> Select next action bis
Random phase, roll-out
» Compute instant reward
Evaluate
Update information in visited nodes
Propagate

v

» Returned solution:
» Path visited most often

Kocsis Szepesvari, 06

Monte-Carlo Tree Search

Gradually grow the search tree:

> [terate Tree-Walk
> Building Blocks
> Select next action
Bandit phase
> Add a node
Grow a leaf of the search tree
> Select next action bis
Random phase, roll-out
» Compute instant reward
Evaluate
Update information in visited nodes
Propagate

v

» Returned solution:
» Path visited most often

Kocsis Szepesvari, 06

Monte-Carlo Tree Search

Gradually grow the search tree:

> [terate Tree-Walk
> Building Blocks
> Select next action
Bandit phase
> Add a node
Grow a leaf of the search tree
> Select next action bis
Random phase, roll-out
» Compute instant reward
Evaluate
Update information in visited nodes
Propagate

v

» Returned solution:
» Path visited most often

Kocsis Szepesvari, 06

Monte-Carlo Tree Search

Kocsis Szepesvari, 06
Gradually grow the search tree:

> lterate Tree-Walk
> Building Blocks

> Select next action

Bandit phase Bandit-B
> Add a node Phas;
Grow a leaf of the search tree
> Select next action bis
Random phase, roll-out
» Compute instant reward

| 4] New Node
Evaluate

Update information in visited nodes
Propagate

v

» Returned solution:
» Path visited most often

Monte-Carlo Tree Search

Kocsis Szepesvari, 06
Gradually grow the search tree:

> lterate Tree-Walk
> Building Blocks

> Select next action

Bandit phase Bandit-B
> Add a node Phas;
Grow a leaf of the search tree
> Select next action bis
Random phase, roll-out
» Compute instant reward

|&] New Node

Evaluate Random\.
» Update information in visited nodes Phase
Propagate

» Returned solution:
» Path visited most often

Monte-Carlo Tree Search

Kocsis Szepesvari, 06
Gradually grow the search tree:

> lterate Tree-Walk
> Building Blocks

> Select next action

Bandit phase Bandit-B
> Add a node Phas;
Grow a leaf of the search tree
> Select next action bis
Random phase, roll-out
» Compute instant reward

|&] New Node

Evaluate Random:.
» Update information in visited nodes Phase
Propagate

» Returned solution:
» Path visited most often

Monte-Carlo Tree Search

Kocsis Szepesvari, 06
Gradually grow the search tree:

> lterate Tree-Walk
> Building Blocks

> Select next action

Bandit phase Bandit-B
> Add a node Phas;
Grow a leaf of the search tree
> Select next action bis
Random phase, roll-out
» Compute instant reward

|¢] New Node

.

Evaluate Random
» Update information in visited nodes Phase®,
Propagate

» Returned solution:
» Path visited most often

Monte-Carlo Tree Search

Kocsis Szepesvari, 06
Gradually grow the search tree:

> lterate Tree-Walk
> Building Blocks

> Select next action

Bandit phase Bandit-B
Phas,

> Add a node <
Grow a leaf of the search tree
> Select next action bis
Random phase, roll-out
» Compute instant reward

|&] New Node

.

Evaluate Random
» Update information in visited nodes Phase®,
‘.,

Propagate Explored Tree o

» Returned solution:
» Path visited most often

UCT - Principle

« UCBI applied on trees — UCT

R(s,a;, %) R(s,:@;, %) R(s,a3) R(s,as,*) R(s,a %)

UCT - Principle

UCT

« UCBI applied on trees —

UCT - Phases

« UCBI applied on trees — UCT

« cumulative or simple regret?

« using bandits in sequential decision making

e 4 phases from MCTS

Repeatod X times

Selection + Expansion « Simulation ——+ Backpropagation

U

O

vme/.NOh

UCT - Phases

« UCBI applied on trees — UCT

« cumulative or simple regret?

« using bandits in sequential decision making

e 4 phases from MCTS

Repaated X times

Selection + Expansion « Simulation -+ Backpropagation

~

ot |

FQae TOm Craet (008

O

UCT - Phases

« UCBI applied on trees — UCT

« cumulative or simple regret?

o why? 2 “it just works”

« using bandits in sequential decision making

e 4 phases from MCTS

Repaated X times

Selection + Expansion « Simulation -+ Backpropagation

"ony

e

O

FQse TOm Craget (Joos)

UCT - Selection

 selection (UCBI)

« for each action a; applicable in s UCB selects
the one that maximizes

Inn

C

+ z T(s,a;,s")[R(s,a;,s") +yV(s')]

Tli -
S'ES

N

« N — times the state is visited; n; — times the action is visited
e V(s) —average reward from the previous iterations

e C - exploration constant (linear to expected utility)

« exploration factor ensures to evaluate actions that are evaluated
rarely

UCT - Expansion, Simulation, Backup %

« expansion (MCTYS)

« in a selection node where not all actions were yet sampled, expand
(uniformly) randomly one of the new nodes

 simulation (MCTY)

 (uniformly) randomly select actions in decision nodes

« using the simulator based on the probabilities in the MDP simulate
world behavior in the chance nodes MDP

« backup (MCTY)

o updating u; for all search tree nodes along the trial based on the
rewards (incl. the simulation)

Beyond UCT %

« UCT is far from optimal algorithm

« there exist simple examples where vanilla UCT performs bad

e number of reasons

 learning the best action is different from learning the best
(contingency) plan

o situation that occur in states does not exactly correspond to multi-

armed bandit (mathematically)

« there are modifications and improvements
« RAVE (Gelly & Silver, 2007) = rapid action value estimate
o THTS (Keller & Helmert, 2013) - MaxUTC, UTC*

« many others ...

Beyond UCT many others %

« numbers of possible of improvements

o vanilla UCT is not that fast

o MCTS/UCT requires large number of iterations to converge

« depth-limited rollouts

 reducing branching factor (some actions are dominated = remove)
. different action selection principles

« improving rollout policy (biased simulators,“clever” decision nodes)
« incorporate prior knowledge

 parallelization

RAVE: Rapid Action Value Estimate

Gelly Silver 07
Motivation

> It needs some time to decrease the variance of jis ,

» Generalizing across the tree ?

RAVE (s, a) =
average {fi(s’,a),s parent of s'}
a
e
L |
local RAVE

global RAVE

Rapid Action Value Estimate, 2

Using RAVE for action selection
In the action selection rule, replace fis , by

fis.a+ (1— @) (BRAVE (s, a) + (1 — B)RAVE(s, a))
Mparent(s)

Ns,a
o= ———— —_ P
Ns,a+C1 IB parent(s)+62

Using RAVE with Progressive Widening
» PW: introduce a new action if [¢/n(s)+ 1] > [¢/n(s)]
» Select promising actions: it takes time to recover from bad

ones
» Select argmax RAVE,(parent(s)).

Trial-based Heuristic Tree Search (THTS) %

« a common framework based on five ingredients:
« heuristic function
« backup function
 action selection
« outcome selection
o trial length
o subsuming: MCTS, UCT, FIND-and-REVISE, AO* (AND/OR graph

solver), Real-Time Dynamic Programming (RTDP), various heuristic
functions (e.g., iterative deepening search)

« providing: MaxUTC, UTCX, ...
o UTC*in PROST 2014 is currently best performing IPPC planner

Trial-based Heuristic Tree Search (THTS) %

o Heuristic function

 action value initialization (Q-value)
h:S XA R

o state value initialization (V-value)
h:S » R

o Action selection
« UCBI, €-greedy, ...

o Outcome selection

« Monte Carlo sampling; outcome based on biggest potential impact

Trial-based Heuristic Tree Search (THTS)

« optimal policy derived from the Bellman optimality equation:

, 0 if s is terminal
Vi(s) = max Q*(a,s) otherwise
da

Q*(a,s) = R(a,s) + z ,ESP(S’|a, s)-V*(s")

» Full Bellman backup ~ Bellman optimality equation, k trials

« Monte Carlo backup

(0 if s is terminal
VE(s) = { Xaeanas - Q*(a,s)
nS

otherwise

\

;. K(a!
0%(a,s) = R(a,s) + sres g = VE(s')

Ng s

Trial-based Heuristic Tree Search (THTS) %

Algorithm 1: The THTS schema.

1 THTS(MDP M, timeout T'):

no < getRootNode(M)

while not solved(no) and time() < 71" do
visitDecisionNode(n)

return greedyAction(np)

visitDecisionNode(Node n4):
if ng was never visited then initializeNode(n4)
N < selectAction(nq)
for n. € N do

10 visitChanceNode(n.)

11 backupDecisionNode(ng)

12 visitChanceNode(Node 7.):
13 N < selectOutcome(n..)
14 forng € N do

15 visitDecisionNode(n.4)
16 backupChanceNode(n.)

2
3
4
5
6
7
8
9

Trial-based Heuristic Tree Search (THTS)

« maintains explicit tree of alternating decision and chance nodes

« selection phase

o alternating visitDecisionNode and visitChangeNode

« selection by selectAction and selectOutcome

tree traversing (down)

« expansion phase

when unvisited nhode encountered
added child node for each action

heuristics used to initialize
the estimates

allows selection phase for new nodes

Algorithm 1: The THTS schema.

1 THTS(MDP M, timeout T'):

no +— getRootNode(M)

while not solved(no) and time() < T" do
visitDecisionNode(n)

return greedyAction(no)

visitDecisionNode(Node n,):
if ng was never visited then initializeNode(n)
N « selectAction(nq)

9 forn. € Ndo

10 visitChanceNode(n..)

11 backupDecisionNode(ng)

12 visitChanceNode(Node 7.):
13 N < selectOutcome(n.)
14 forng € Ndo

15 visitDecisionNode(7.4)
16 backupChanceNode(n..)

0 3 h & W R

Trial-based Heuristic Tree Search (THTS)

« selection and expansion phases alternate until the trial length

« backup phase (backupDecisionNode & backupChanceNode)
o all selected nodes are updated in reverse order
« when another selected, but not yet visited = selection phase

o a trial ends when the backup is called on the root node

e ftree bacl(i ng (u P) Algorithm 1: The THTS schema.
1 THTS(MDP M, timeout T):
ngo < getRootNode (M)
while not solved(no) and time() < T" do
visitDecisionNode(n)
return greedyAction(no)

« the process is repeated until the
timeout T allows for another trial

visitDecisionNode(Node n,):
if ng was never visited then initializeNode(n)
N < selectAction(ng)
for n. € N do
visitChanceNode(n..)
backupDecisionNode(n.q)

12 visitChanceNode(Node 7.):
13 N ¢ selectOutcome(n.)
14 forng € N do

15 visitDecisionNode(7.4)
16 backupChanceNode(n..)

—
—I=T- RN B h & W N

 highest expectation action is returned
greedyAction

—
—

MaxUCT

« backup function
. action-value by Monte Carlo backup (Q*(s))
o state-value by Full Bellman backup (V*(s))

o action selection 2 UCBI
« outcome selection = Monte Carlo sampling (MDP based)
o heuristic function 2 N/A

o trial length > UCT (horizon length, i.e. to leafs)

ver sis

« backup function

 Partial Bellman backup
(weighted proportionally to subtree probability)

o action selection - UCBI
« outcome selection = Monte Carlo sampling (MDP based)
o heuristic function = Iterative Deepening Search (depth: 15)

o trial length = explicit tree length + |
(only initialized new nodes using heuristics)

« resembles classical heuristic Breadth-First-Search (rather than UCT
Depth-First-Search)

