
Monte Carlo Tree Search

PAH 2015

MCTS animation and RAVE slides by Michèle Sebag and Romaric Gaudel

 main formal model

 Π = 𝑆, 𝐴, 𝐷, 𝑇, 𝑅

 states – finite set of states of the world

 actions – finite set of actions the agent can perform

 horizon – finite/infinite set of time steps (1,2,…)

 transition function

 𝑇: 𝑆 × 𝐴 × 𝑆 × 𝐷 → [0,1]

 reward function

 𝑅: 𝑆 × 𝐴 × 𝑆 × 𝐷 → ℝ

Markov Decision Processes (MDPs)

 online planning ~ any-time algorithm

 learn the next move

 play it

 iterate

 reward on final states (often win or lose)

 implicit (and compact) representation of large MDPs

 cannot grow the full tree

 cannot safely cut branches

 cannot be greedy

Markov Decision Processes (MDPs)

 online planning

 focus on current state

 set of possible courses

 decision making ∼ selection of one action

 online planning curse of dimensionality

 number of applicable action is O poly Π

 complexity because of the state-space size O exp Π

Markov Decision Processes (MDPs)

 Monte Carlo sampling is a well known method for searching through

large state space

 exploiting MC in sequential decision making has first been successfully

designed in (Kocsis & Szepesvari, 2006)

 foundations in mathematical theory

 Multi-Armed Bandit (MAB) Problem

 Upper Confidence Bounds (UCB)

 exploration/exploitation dilemma

MDPs – Using Monte Carlo Methods

 Monte Carlo Simulation: a technique that can be used to solve a

mathematical or statistical problem using repeated sampling to

determine the properties of some phenomenon (or behavior)

 Monte-Carlo Planning: compute a good policy for an MDP by

interacting with an MDP simulator

 when simulator of a planning domain is available

or can be learned from data

 even if not described

as a MDP

 queries has to be cheap

(relatively)

Monte Carlo Methods

World
simulator

 Domains with Simulators

 traffic

 robotics

 military missions

 computer network

 disaster relief and emergency planning

 sports

 board and video games

 board (Go, Hex, Settlers of Catan, …), card (poker, Magic: The

Gathering, …), RTS (Total War: Rome II, …)

Monte Carlo Simulation

 sequential decision problem (over a single state)

 𝑘 ≥ 2 stochastic actions (arms 𝑎𝑖)

 each parameterized with an unknown probability distribution 𝜈𝑖

 each with a stored expectation 𝜇𝑖

 if executed (pulled) rewarded at

random from 𝜈𝑖

 objective

 get maximal reward after N pulls

 minimize regret of pulling wrong arm(s)

Multi-Armed Bandit Problem

 learning-while-acting

 reward for each action

 cumulative regret (exploration/exploitation dilemma)

 algorithms: 𝝐-greedy, UCB1

 used in: Monte Carlo Tree Search, UCB1 applied to trees (UCT)

 online planning/learning-while-planning

 reward only for final decision (N “free action tries” by simulator)

 simple regret (only exploration)

 algorithms: uniform sampling, 𝝐-greedy, Sequential Halving

 used in: Trial-based Heuristic Tree Search (THTS)

Multi-Armed Bandit Problem (variants)

 parameterized by 𝝐

 flip a 𝝐-biased coin

 (𝝐): select arm 𝑎𝑖 randomly with uniform probability and update 𝜇𝑖

 (1 − 𝝐): select estimated best arm 𝑎∗ and update 𝜇∗

 typically 𝝐 ≈ 𝟎, 𝟏 (but this can vary depending on circumstances)

 exponential convergence to the optimal arm

𝝐-greedy

 UCB1 arm selection:

 select arm 𝑎𝑖 maximizing UCB1 formula:

𝜇𝑖 +
2 ln 𝑛

𝑛𝑖

and update 𝜇𝑖

 𝑛 – times the state is visited; 𝑛𝑖 – times the action is visited

 𝜇𝑖 – average reward from the previous plays

 exploration factor ensures to evaluate actions that are evaluated

rarely

 only polynomial (but empirically fast) convergence to optimal arm

Upper Confidence Bounds

 parameterized by sampling budget T

 (1) begins with all arms as candidate arms 𝑆

 (2) sample/play all candidate arms in 𝑆 𝑡-times

𝑡 =
𝑇

|𝑆| log2 𝑘

and update their 𝜇𝑖

 (3) remove half of the candidate arms with lowest 𝜇𝑖

 (4) until there is only one (resulting) candidate arm: goto (2)

 exponential convergence to the optimal arm (provided the budget is

going to ∞; not any-time)

Sequential Halving

 combination of actions (arms) has to be

selected (some forbidden)

 reward defined over combinations of

actions (c-actions)

 expectation of reward per c-action

  curse of dimensionality (action combinations), O exp Π

  we can approximate

 randomly generate candidate c-actions, pick the best one (NMC)

 assume additive rewards for one c-action; linear-side inform. (LSI)

Combinatorial Multi-Armed Bandit Problem

Combinatorial Multi-Armed Bandit Problem

  sequential decision making (over different states): repeated MABs

 sequential decision making (over different states)

 gradually grow the search tree

 two types of tree nodes

 decision nodes (action selection) – the algorithm selects

 chance nodes (world selection) – the world selects the outcome (in

case of MDP model based on known probabilities)

 returned solution: path (action from root) visited the most often

Monte Carlo Tree Search (MCTS)

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random

 UCB1 applied on trees – UCT

UCT – Principle

s

a1 a2 a3 a4 ak

R(s,a1, *) R(s,a2, *) R(s,a3, *) R(s,a4, *) R(s,ak, *)

 UCB1 applied on trees – UCT

UCT – Principle

a1 a2 a3 a4 ak

 UCB1 applied on trees – UCT

 cumulative or simple regret?

 why?

 using bandits in sequential decision making

 4 phases from MCTS

UCT – Phases

 UCB1 applied on trees – UCT

 cumulative or simple regret?

 why?

 using bandits in sequential decision making

 4 phases from MCTS

UCT – Phases

 UCB1 applied on trees – UCT

 cumulative or simple regret?

 why?  “it just works”

 using bandits in sequential decision making

 4 phases from MCTS

UCT – Phases

 selection (UCB1)

 for each action 𝑎𝑖 applicable in 𝑠 UCB selects

the one that maximizes

𝑐
ln 𝑛

𝑛𝑖
+

𝑠′∈𝑆

𝑇 𝑠, 𝑎𝑖 , 𝑠
′ [𝑅 𝑠, 𝑎𝑖 , 𝑠

′ + 𝛾𝑉 𝑠′]

 𝑛 – times the state is visited; 𝑛𝑖 – times the action is visited

 𝑉(𝑠) – average reward from the previous iterations

 𝑐 - exploration constant (linear to expected utility)

 exploration factor ensures to evaluate actions that are evaluated

rarely

UCT – Selection

 expansion (MCTS)

 in a selection node where not all actions were yet sampled, expand

(uniformly) randomly one of the new nodes

 simulation (MCTS)

 (uniformly) randomly select actions in decision nodes

 using the simulator based on the probabilities in the MDP simulate

world behavior in the chance nodes MDP

 backup (MCTS)

 updating 𝜇𝑖
𝑠 for all search tree nodes along the trial based on the

rewards (incl. the simulation)

UCT – Expansion, Simulation, Backup

 UCT is far from optimal algorithm

 there exist simple examples where vanilla UCT performs bad

 number of reasons

 learning the best action is different from learning the best

(contingency) plan

 situation that occur in states does not exactly correspond to multi-

armed bandit (mathematically)

 there are modifications and improvements

 RAVE (Gelly & Silver, 2007)  rapid action value estimate

 THTS (Keller & Helmert, 2013)  MaxUTC, UTC*

 many others …

Beyond UCT

 numbers of possible of improvements

 vanilla UCT is not that fast

 MCTS/UCT requires large number of iterations to converge

 depth-limited rollouts

 reducing branching factor (some actions are dominated  remove)

 different action selection principles

 improving rollout policy (biased simulators, “clever” decision nodes)

 incorporate prior knowledge

 parallelization

Beyond UCT many others

RAVE: Rapid Action Value Estimate

Gelly Silver 07

Motivation

I It needs some time to decrease the variance of µ̂s,a
I Generalizing across the tree ?

RAVE (s, a) =
average {µ̂(s ′, a), s parent of s ′}

global RAVE

local RAVE

s

a

a

a

a

a

a

a

a

Rapid Action Value Estimate, 2

Using RAVE for action selection
In the action selection rule, replace µ̂s,a by

αµ̂s,a + (1− α) (βRAVE`(s, a) + (1− β)RAVEg (s, a))

α =
ns,a

ns,a+c1
β =

nparent(s)
nparent(s)+c2

Using RAVE with Progressive Widening

I PW: introduce a new action if b b
√

n(s) + 1c > b b
√

n(s)c
I Select promising actions: it takes time to recover from bad

ones

I Select argmax RAVE`(parent(s)).

 a common framework based on five ingredients:

 heuristic function

 backup function

 action selection

 outcome selection

 trial length

 subsuming: MCTS, UCT, FIND-and-REVISE, AO* (AND/OR graph

solver), Real-Time Dynamic Programming (RTDP), various heuristic

functions (e.g., iterative deepening search)

 providing: MaxUTC, UTC*, …

 UTC* in PROST 2014 is currently best performing IPPC planner

Trial-based Heuristic Tree Search (THTS)

 Heuristic function

 action value initialization (Q-value)

ℎ: 𝑆 × 𝐴 ↦ ℝ

 state value initialization (V-value)

ℎ: 𝑆 ↦ ℝ

 Action selection

 UCB1, 𝝐-greedy, …

 Outcome selection

 Monte Carlo sampling; outcome based on biggest potential impact

Trial-based Heuristic Tree Search (THTS)

 optimal policy derived from the Bellman optimality equation:

𝑉∗ 𝑠 =
0 if 𝑠 is terminal
max
a∈𝐴
𝑄∗ 𝑎, 𝑠 otherwise

𝑄∗ 𝑎, 𝑠 = 𝑅 𝑎, 𝑠 +
𝑠′∈𝑆
𝑃 𝑠′|𝑎, 𝑠 ⋅ 𝑉∗(𝑠′)

 Full Bellman backup ~ Bellman optimality equation, k trials

 Monte Carlo backup

𝑉𝑘 𝑠 =

0 if 𝑠 is terminal
 𝑎∈𝐴𝑛𝑎,𝑠 ⋅ 𝑄

𝑘 𝑎, 𝑠

𝑛𝑠
otherwise

𝑄𝑘 𝑎, 𝑠 = 𝑅 𝑎, 𝑠 +
 𝑠′∈𝑆 𝑛𝑠′ ⋅ 𝑉

𝑘 𝑠′

𝑛𝑎,𝑠

Trial-based Heuristic Tree Search (THTS)

Trial-based Heuristic Tree Search (THTS)

 maintains explicit tree of alternating decision and chance nodes

 selection phase

 alternating visitDecisionNode and visitChangeNode

 selection by selectAction and selectOutcome

 tree traversing (down)

 expansion phase

 when unvisited node encountered

 added child node for each action

 heuristics used to initialize

the estimates

 allows selection phase for new nodes

Trial-based Heuristic Tree Search (THTS)

 selection and expansion phases alternate until the trial length

 backup phase (backupDecisionNode & backupChanceNode)

 all selected nodes are updated in reverse order

 when another selected, but not yet visited  selection phase

 a trial ends when the backup is called on the root node

 tree backing (up)

 the process is repeated until the

timeout T allows for another trial

 highest expectation action is returned

greedyAction

Trial-based Heuristic Tree Search (THTS)

 backup function

 action-value by Monte Carlo backup (𝑄𝑘 𝑠)

 state-value by Full Bellman backup (𝑉∗ 𝑠)

 action selection  UCB1

 outcome selection  Monte Carlo sampling (MDP based)

 heuristic function  N/A

 trial length  UCT (horizon length, i.e. to leafs)

MaxUCT

 backup function

 Partial Bellman backup

(weighted proportionally to subtree probability)

 action selection  UCB1

 outcome selection  Monte Carlo sampling (MDP based)

 heuristic function  Iterative Deepening Search (depth: 15)

 trial length  explicit tree length +1

(only initialized new nodes using heuristics)

 resembles classical heuristic Breadth-First-Search (rather than UCT

Depth-First-Search)

UCT*

