
Markov Decision Process

based on slides of Branislav Bošanský and Jan Mrkos

Markov Decision Processes

• Main formal model

• 𝑆, 𝐴, 𝐷, 𝑇, 𝑅

 states – a finite set of states of the world

 actions – a finite set of actions the agent can perform

 horizon – a finite/infinite set of time steps (1,2, …)

 transition function

 𝑇: 𝑆 × 𝐴 × 𝑆 → 0,1 ;σ𝑠′∈𝑆 𝑇 𝑠, 𝑎, 𝑠′ = 1

 reward function

 𝑅: 𝑆 × 𝐴 × 𝑆 → ℝ

 typically bounded

MDP – policy

 history-dependent policy

 𝜋:𝐻 × 𝐴 → 0,1 ;σ𝑎∈𝐴𝜋(ℎ, 𝑎) = 1

 for simple cases we do not need history and randomization

 Markov assumption

 finite-horizon MDPs

 infinite-horizon MDPs with reward discount factor 0 ≤ 𝛾 < 1

 stochastic shortest path

 (… and some others)

 from now on, policy is an assignment of an action in each state and

time

MDP – policy (2)

 𝜋: 𝑆 → 𝐴

 stationary policy

 when the policy is same every time state s is visited

 otherwise – nonstationary policy

 positional policy

 deterministic and stationary policy

MDP – value of a policy

 we can express an expected reward for every state and time-step

when specific policy is followed

 𝑉𝜋
𝑘 𝑠 = 𝔼 σ𝑡=0

𝑘 𝛾𝑡 ⋅ 𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) |𝑠0 = 𝑠, 𝑎𝑡 = 𝜋(𝑠𝑡)

 optimal policy : 𝜋∗,𝑘 𝑠 = argmax
𝜋

𝑉𝜋
𝑘(𝑠)

 for large (infinite) 𝑘 we can approximate the value by dynamic

programming

 𝑉𝜋
0 𝑠 = 0

 𝑉𝜋
𝑘 𝑠 = σ𝑠′∈𝑆 𝑇(𝑠, 𝑎, 𝑠

′) 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋
𝑘−1 𝑠′ 𝑎 = 𝜋 𝑠

MDP – towards finding optimal policy

 we can exploit the concept of dynamic programming to find an

optimal policy

 basic algorithm for solving MDPs based on Bellman’s equation

 value iteration

 𝑉0 𝑠 = 0 ∀𝑠 ∈ 𝑆

 𝑉𝑘 𝑠 = max
𝑎∈𝐴

σ𝑠′∈𝑆 𝑇(𝑠, 𝑎, 𝑠
′) 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘−1 𝑠′

 Q-function (𝑄(𝑠, 𝑎))

 for 𝑘 → ∞ values converge to optimum 𝑉𝑘 → 𝑉∗

value Iteration algorithm

Basic algorithm for finding solution of Bellman Equations iteratively.

1. initialize V0 arbitrarily for each state, e.g to 0, set n = 0

2. Set n = n + 1.

3. Compute Bellman Backup, i.e. for each s ∈ S :

3.1 Vn(s) = maxa∈A
∑

s′∈S T (s, a, s′)[R(s, a, s′) + γVn−1(s′)]

4. GOTO 2.

Question: Does it converge? How fast? When do we stop?

6

MDP – convergence of value iteration

 value iteration converges

 for finite-horizon MDPs: |𝐷| steps

 for infinite-horizon: asymptotically

 we can measure residual r and stop if it is small enough

(r ≤ 𝜀(1 − 𝛾)/𝛾)

 𝑟 = max
𝑠∈𝑆

|𝑉𝑖+1 𝑠 − 𝑉𝑖 𝑠 |

 convergence depends on 𝛾

VI with stopping criterion

1. initialize V0 arbitrarily for each state, e.g to 0, set n = 0

2. Set n = n + 1.

3. Compute Bellman Backup, i.e. for each s ∈ S :

3.1 Vn(s) = maxa∈A
∑

s′∈S T (s, a, s′)[R(s, a, s′) + γVn−1(s′)]

3.2 Calculate residual Res = maxs∈S |Vn(s)− Vn−1(s)|

4. if res > ε GOTO 2. else TERMINATE

Question: What is the policy?

• Greedy policy πV
n is the policy given as argmax of Vn.

9

VI with stopping criterion

1. initialize V0 arbitrarily for each state, e.g to 0, set n = 0

2. Set n = n + 1.

3. Compute Bellman Backup, i.e. for each s ∈ S :

3.1 Vn(s) = maxa∈A
∑

s′∈S T (s, a, s′)[R(s, a, s′) + γVn−1(s′)]

3.2 Calculate residual Res = maxs∈S |Vn(s)− Vn−1(s)|

4. if res > ε GOTO 2. else TERMINATE

Question: What is the policy?

• Greedy policy πV
n is the policy given as argmax of Vn.

9

VI with stopping criterion

1. initialize V0 arbitrarily for each state, e.g to 0, set n = 0

2. Set n = n + 1.

3. Compute Bellman Backup, i.e. for each s ∈ S :

3.1 Vn(s) = maxa∈A
∑

s′∈S T (s, a, s′)[R(s, a, s′) + γVn−1(s′)]

3.2 Calculate residual Res = maxs∈S |Vn(s)− Vn−1(s)|

4. if res > ε GOTO 2. else TERMINATE

Question: What is the policy?

• Greedy policy πV
n is the policy given as argmax of Vn.

9

MDP – extracting policy and policy iteration

 value iteration calculates only values

 the optimal policy can be extracted by using a greedy approach

 𝜋𝑘 𝑠 = argmax
𝑎∈𝐴

σ𝑠′∈𝑆𝑇
𝑘(𝑠, 𝑎, 𝑠′) 𝑅𝑘 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′

 alternative algorithm – policy iteration

 starts with an arbitrary policy

 policy evaluation: recalculates value of states given the current policy 𝜋𝑘

 policy improvement: calculates a new maximum expected utility policy

𝜋𝑘+1

 until the strategy changes

MDP –VI/PI improvements

 value iteration is very simple

 updates all states during each iteration

 curse of dimensionality (huge state space)

 asynchronous VI

 select a single state to be updated in each iteration separately

 each state must be updated infinitely often to guarantee convergence

 lower memory requirements

 Q: Can we use some heuristics to improve the

convergence?

Asynchronous VI

1. initialize V0 arbitrarily for each state, e.g to 0

2. While ResV > ε, do:

2.1 pick some state s

2.2 Bellman backup V (s)← maxa∈A
∑

s′∈S T (s, a, s′)[R(s, a, s′) + γV (s′)]

2.3 Update residual at s ResV (s) = |Vold(s)− Vnew(s)|

Question: Memory requirements compared to VI?

Question: Convergence condition?

• Asymptotic as VI under condition that every state visited ∞ often.

Question: How to pick s in 2.1?

• Simplest is Gauss-Seidel VI, that is run AVI over all states iteratively

12

Asynchronous VI

1. initialize V0 arbitrarily for each state, e.g to 0

2. While ResV > ε, do:

2.1 pick some state s

2.2 Bellman backup V (s)← maxa∈A
∑

s′∈S T (s, a, s′)[R(s, a, s′) + γV (s′)]

2.3 Update residual at s ResV (s) = |Vold(s)− Vnew(s)|

Question: Memory requirements compared to VI?

Question: Convergence condition?

• Asymptotic as VI under condition that every state visited ∞ often.

Question: How to pick s in 2.1?

• Simplest is Gauss-Seidel VI, that is run AVI over all states iteratively

12

Asynchronous VI

1. initialize V0 arbitrarily for each state, e.g to 0

2. While ResV > ε, do:

2.1 pick some state s

2.2 Bellman backup V (s)← maxa∈A
∑

s′∈S T (s, a, s′)[R(s, a, s′) + γV (s′)]

2.3 Update residual at s ResV (s) = |Vold(s)− Vnew(s)|

Question: Memory requirements compared to VI?

Question: Convergence condition?

• Asymptotic as VI under condition that every state visited ∞ often.

Question: How to pick s in 2.1?

• Simplest is Gauss-Seidel VI, that is run AVI over all states iteratively

12

Asynchronous VI

1. initialize V0 arbitrarily for each state, e.g to 0

2. While ResV > ε, do:

2.1 pick some state s

2.2 Bellman backup V (s)← maxa∈A
∑

s′∈S T (s, a, s′)[R(s, a, s′) + γV (s′)]

2.3 Update residual at s ResV (s) = |Vold(s)− Vnew(s)|

Question: Memory requirements compared to VI?

Question: Convergence condition?

• Asymptotic as VI under condition that every state visited ∞ often.

Question: How to pick s in 2.1?

• Simplest is Gauss-Seidel VI, that is run AVI over all states iteratively

12

MDP –VI/PI heuristics

 initial values can be assigned better

 we can use a heuristic function instead of 0

 Q: Can you think of any heuristic function?

 e.g., remember FFReplan/Robust FF?

 we can use a single run of a planner on the determinized version

 Q: What if the values V are initialized incorrectly?

MDP –VI/PI with priority

 initialize 𝑉 and a priority queue 𝑞

 select state 𝑠 from the top of 𝑞 and perform a Bellman backup

 add all possible predecessors of 𝑠 to 𝑞

 repeat until convergence

 priorities: changes in utility, position in the graph, …

 but, values are still updated regardless on the current values

 consider a typical probabilistic planning problem

 finite-horizon MDP with some goal states

MDPs – Find and Revise

 we can further combine selective updates with heuristic search

 starts with admissible 𝑉 𝑠 ≥ 𝑉∗(𝑠) for all states

 select next state 𝑠′ that is:

 reachable from 𝑠0 using current greedy policy 𝜋𝑉, and

 residual 𝑟 𝑠′ > 𝜀

 update 𝑠′

 repeat until such states exist

 many further improvements and algorithms …

MDPs – Real-Time Dynamic Programming

 updates the values only on the path from the starting state to the

goal

 during one iteration updates one rollout/trial:

 start with s = 𝑠0

 evaluate all actions using Bellman’s Q-functions 𝑄(𝑠, 𝑎)

 select action that maximizes current value: argmax 𝑎∈𝐴𝑄(𝑠, 𝑎)

 set 𝑉 𝑠 ← 𝑄 𝑠, 𝑎

 get resulting state 𝑠′

 if 𝑠′ is not goal, then 𝑠 ← 𝑠′ and go to step 2

 can be further improved with labeling (LRTDP) to identify solved

states

