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Markov Decision Process

based on slides of Branislav Bosansky and Jan Mrkos



Markov Decision Processes NI
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* Main formal model

« (S,A,D,T,R)
« states — a finite set of states of the world
 actions — a finite set of actions the agent can perform
« horizon — a finite/infinite set of time steps (1,2, ...)

transition function

e T:SXAXS—>[01;XesT(s,a,5") =1

reward function
e R:SXAXS->R
 typically bounded



MDP - policy i
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« history-dependent policy
e T:HXA—-[0,1];X4cam(h,a) =1

 for simple cases we do not need history and randomization
e Markov assumption
o finite-horizon MDPs
o infinite-horizon MDPs with reward discount factor 0 <y <1
« stochastic shortest path

e (... and some others)

« from now on, policy is an assignment of an action in each state and
time
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. stationary policy
« when the policy is same every time state s is visited

« otherwise — nonstationary policy

. positional policy

o deterministic and stationary policy
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« We can express an expected reward for every state and time-step
when specific policy is followed

. Vnk(S) = [E[ It(=0 Vt R(S¢, At Se41) [So = s,a¢ = T[(St)]

o optimal policy : m**(s) = argmax V¥ (s)
T

 for large (infinite) k we can approximate the value by dynamic
programming

e V() =0
e VE(S) =XsesT(s,a,8")[R(s,a,5") +yV 1 (s")] a =m(s)
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« we can exploit the concept of dynamic programming to find an
optimal policy

« basic algorithm for solving MDPs based on Bellman’s equation

« value iteration
e Vo(is)=0 VseS
. VE(s) = mg}z:s’esT(S' a,s') [R(S, as')+ ka_l(s’)]
a R/—/

. Q-function (Q (s, a))

o for k — oo values converge to optimum V¥ — /*



value Iteration algorithm

Basic algorithm for finding solution of Bellman Equations iteratively.

[ary

. initialize V4 arbitrarily for each state, e.gto 0, set n =10

2. Set n=n+1.

3. Compute Bellman Backup, i.e. for each s € S:
3.1 Vi(s) = maxaea > ges T(s,a,8")[R(s,a,s") +vVa_1(s")]
4. GOTO 2.

Question: Does it converge? How fast? When do we stop?
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« value iteration converges
« for finite-horizon MDPs: |D| steps

 for infinite-horizon: asymptotically

« we can measure residual r and stop if it is small enough
r=ed—=7v)/y)
o =max|Viy(s) = Vi(s)]
SES

« convergence depends on y



VI with stopping criterion

1. initialize V4 arbitrarily for each state, e.g to 0, set n =0
2. Set n=n+1.
3. Compute Bellman Backup, i.e. for each s € S:

3.1 Vi(s) = maxaea > ges T(s,a,8")[R(s,a,s") +vVa_1(s")]
3.2 Calculate residual Res = maxses |Vi(s) — Vo—1(s)|

4. if res > ¢ GOTO 2. else TERMINATE
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VI with stopping criterion

1. initialize V4 arbitrarily for each state, e.g to 0, set n =0
2. Set n=n+1.
3. Compute Bellman Backup, i.e. for each s € S:

3.1 Vi(s) = maxaea > ges T(s,a,8")[R(s,a,s") +vVa_1(s")]
3.2 Calculate residual Res = maxses |Vi(s) — Vo—1(s)|

4. if res > ¢ GOTO 2. else TERMINATE

Question: What is the policy?

e Greedy policy ¥ is the policy given as argmax of V,,.
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« value iteration calculates only values

« the optimal policy can be extracted by using a greedy approach

. mh(s) =arg mg}Zs'es T*(s,a,s") [Rk(s, as')+ )/Vk(s’)]
a

o alternative algorithm — policy iteration

o starts with an arbitrary policy

. policy evaluation: recalculates value of states given the current policy ¥

. policy improvement: calculates a new maximum expected utility policy
k+1
T

 until the strategy changes
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« value iteration is very simple
o updates all states during each iteration
« curse of dimensionality (huge state space)

« asynchronous VI
« select a single state to be updated in each iteration separately
. each state must be updated infinitely often to guarantee convergence

o lower memory requirements

e Q:Can we use some heuristics to improve the
convergence!?



Asynchronous VI

1. initialize V, arbitrarily for each state, e.g to 0
2. While Res” > ¢, do:

2.1 pick some state s
2.2 Bellman backup V/(s) <= maxaead g cs T(s,a,s")[R(s,a,s") +~vV(s')]
2.3 Update residual at s Res"(s) = |Voia(s) — Vhew(s)]
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Asynchronous VI

1. initialize V, arbitrarily for each state, e.g to 0
2. While Res” > ¢, do:

2.1 pick some state s
2.2 Bellman backup V/(s) <= maxaead g cs T(s,a,s")[R(s,a,s") +~vV(s')]
2.3 Update residual at s Res"(s) = |Voia(s) — Vhew(s)]

Question: Memory requirements compared to VI?

Question: Convergence condition?
e Asymptotic as VI under condition that every state visited oo often.
Question: How to pick s in 2.17

e Simplest is Gauss-Seidel VI, that is run AVI over all states iteratively
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o initial values can be assigned better

e We can use a heuristic function instead of 0

o Q:Can you think of any heuristic function?
. e.g.,remember FFReplan/Robust FF?

e We can use a single run of a planner on the determinized version

« Q:What if the valuesV are initialized incorrectly?
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o initialize I/ and a priority queue q
 select state s from the top of g and perform a Bellman backup
 add all possible predecessors of s to g

« repeat until convergence

« priorities: changes in utility, position in the graph, ...

« but, values are still updated regardless on the current values

« consider a typical probabilistic planning problem

o finite-horizon MDP with some goal states
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« we can further combine selective updates with heuristic search
o starts with admissible V(s) = V*(s) for all states

o select next state s’ that is:
o reachable from s, using current greedy policy 7y, and

o residual r(s') > ¢
o update s’

« repeat until such states exist

« many further improvements and algorithms ...



MDPs — Real-Time Dynamic Programming /)l

CENTER

 updates the values only on the path from the starting state to the
goal

 during one iteration updates one rollout/trial:
e start with s = s,
« evaluate all actions using Bellman’s Q-functions Q(s, a)
« select action that maximizes current value: argmax ,c40(s,a)
e setlV(s) « Q(s,a)
o get resulting state s’

o if s'is not goal, then s « s’ and go to step 2

« can be further improved with labeling (LRTDP) to identify solved
states



