
MONTE-CARLO (TREE) SEARCH

Stefan Edelkamp

PUI - CTU

STEFAN EDELKAMP .

STEFAN EDELKAMP .

MONTE-CARLO TREE SEARCH

MONTE-CARLO SEARCH

Consider set of random walks from initial to terminal state

Set average reward

No further steering, no further knowledge

At end: Choose move with best evaluation

STEFAN EDELKAMP .

Stefan Edelkamp (cf. Book Automated Planning and Acting)

Stefan Edelkamp (cf. Book Automated Planning and Acting)

MONTE-CARLO SEARCH

70 50 0

100 10

40

70

100 30

30

#expansions: 0, 0, 0

average reward: 0, 0, 0

#expansions: 0, 1, 0

average reward: 0, 10, 0

#expansions: 1, 1, 0

average reward: 70, 10, 0

#expansions: 1, 1, 1

average reward: 70, 10, 40

#expansions: 1, 1, 2

average reward: 70, 10, 35

#expansions: 2, 1, 2

average reward: 60, 10, 35

#expansions: 2, 2, 2

average reward: 60, 55, 35

#expansions: 2, 2, 2

average reward: 60, 55, 35

MONTE-CARLO SEARCH

Advantage:

 Easy to implement

 Bettern than random

 Small memory requirement

Disadvantage:

 Repeated expansion of same states

 Slowing down search

 No guidance

 Results potentially bad

 Information lost in further runs

MONTE-CARLO SEARCH WITH MEMORY

first + last problem resolved by using an explicit tree

 Encapulation of memory

 Instead forgetting about everything after Monte-Carlo run, insert node in tree

 Only on nod at a time because of memory requirement

Search in the tree remains random

 Expansions faster if successor stored in tree schneller

 Update for all nodes in the tree

 Stored node used later on in the search

MONTE-CARLO SEARCH WITH MEMORY

70 50 0

100 10

40

70

100 30

30

#expansions: 0, 0, 0

average reward: 0, 0, 0

#expansions: 0, 1, 0

average reward: 0, 10, 0

#expansions: 1, 1, 0

average reward: 70, 10, 0

#expansions: 1, 1, 1

average reward: 70, 10, 40

#expansions: 1, 1, 2

average reward: 70, 10, 35

#expansions: 2, 1, 2

average reward: 60, 10, 35

#expansions: 2, 2, 2

average reward: 60, 55, 35

#expansions: 2, 2, 2

average reward: 60, 55, 35

#expansions: 1, 0

average reward: 40, 0

#expansions: 1

average reward: 10

#expansions: 1, 0

average reward: 70, 0

#expansions: 0, 1

average reward: 0, 30#expansions: 1

average reward: 100

#expansions: 0, 1

average reward: 0, 50

#expansions: 2

average reward: 55

#expansions: 2, 0

average reward: 60, 0

#expansions: 2, 0

average reward: 35, 0

MONTE-CARLO SEARCH WITH MEMORY

Advantages:

 Storage → less expansions

 Information of successors can be used in upcoming moves

Disadvantages:

 More momory requirements

 Unguided search

 Results often not good

UCT [KOCSIS & SZEPESVÁRI, 2006]

“Upper Confidence Bounds applied to Trees”

Additional Information

 In the Tree

 If ≥ 1 unexpanded move, chose a random one

 Choose successor, maximizing UCT value

 Q(s, m) average reward of move m in state s

 C: constant

 N(s): number visits of state s

 N(s, m): number visits of state s with chosen move m

 If leaf found

 Normal Monte-Carlo Suche d

 Backpropagate terminal evaluation up the tree.

()
()()

()msN

sN
CmsQ

,

ln
, +

Stefan Edelkamp (cf. Book Automated Planning and Acting)

Stefan Edelkamp (cf. Book Automated Planning and Acting)

Q: 20

N: 1

Q: ?

N: 0

UCT
N: 0

N: 0

Q: ?

N: 0

Q: ?

N: 0

N: 0

N: 0

Q: ?

N: 0
Q: ?

N: 0

Reward: 20

Q: 20

N: 1

N: 1

N: 1N: 1

Reward: 25

Q: 25

N: 1

N: 2

Reward: 0

N: 2

Q: 0

N: 1

N: 3N: 3

Q: 25

N: 2

N: 4N: 4

()
()()

()msN

sN
CmsQ

,

ln
, +

for C = 10:

Move 1: 10

Move 2: 30

Move 3: 35

for C = 1,000:

Move 1: 1048

Move 2: 1068

Move 3: 1073

for C = 1,000:

Move 1: 1177

Move 2: 1197

Move 3: 858

for C = 10:

Move 1: 12

Move 2: 32

Move 3: 33

for C = 100:

Move 1: 105

Move 2: 125

Move 3: 130

for C = 100:

Move 1: 118

Move 2: 138

Move 3: 108

for C = 10:

Move 1: 10

Move 2: 30

Move 3: 35

for C = 1,000:

Move 1: 1048

Move 2: 1068

Move 3: 1073

for C = 100:

Move 1: 105

Move 2: 125

Move 3: 130

for C = 1,000:

Move 1: 1177

Move 2: 1197

Move 3: 858

for C = 10:

Move 1: 12

Move 2: 32

Move 3: 33

for C = 100:

Move 1: 118

Move 2: 138

Move 3: 108

IMPROVEMENTS UCT

[Finnsson & Björnsson, 2010]
 Move-Average Sampling Technique (MAST)

 Tree-Only MAST (TO-MAST)

 Predicate-Average Sampling Technique (PAST)

 Features-to-Action Sampling Technique (FAST)

 Rapid Action Value Estimation (RAVE)

STEFAN EDELKAMP .

MAST

Idea:

 In every UCT-run, refine knowledge about all the moves

 Use knowledge to improve knowledge to steer search outside the tree

Maintain average reward for every move

 Independent of state

After UCT-run: update average reward of all the moves

 Moves, chosen frequently (independent of state) receive better score

 Hope: Moves are often good if available

 e..g. placement of a stone in the corner of Reversi

 e.g. Taking an opponent stone before the own base in Breakthrough

STEFAN EDELKAMP .

20

a

a

ab

b

MOVE-AVERAGE SAMPLING TECHNIQUE

75

b

b d

a

c

e

e

e

f

mov

e

average #Visits

a 25 2

b 60 3

c 15 2

d 85 4

e 10 5

f 70 1

mov

e

average #Visits

a 25 2

b 60 3

c 15 2

d 85 4

e 10 20,83 5 6

f 70 1

mov

e

average #Visits

a 25 2

b 60 3

c 15 2

d 85 83 4 5

e 10 20,83 5 6

f 70 1

mov

e

average #Visits

a 25 2

b 60 3

c 15 35 2 3

d 85 83 4 5

e 10 20,83 5 6

f 70 1

mov

e

average #Visits

a 25 2

b 60 63,75 3 4

c 15 35 2 3

d 85 83 4 5

e 10 20,83 5 6

f 70 1

mov

e

average #Visits

a 25 41,67 2 3

b 60 63,75 3 4

c 15 35 2 3

d 85 83 4 5

e 10 20,83 5 6

f 70 1

21

MOVE-AVERAGE SAMPLING TECHNIQUE

Within Monte-Carlo run (outside UCT tree)

Choose move according to Gibbs sampling

with

m: chosen move

Qh(m): average reward of m

r: constant to tune (large value: closer to uniform

disttribution)

()
()

()
 =

=
n

b

bQ

mQ

h

h

e

e
mP

1

/

/





TREE-ONLY MAST

STEFAN EDELKAMP .

(initial) Monte-Carlo runs random

may influence reward of actions negatively

Idea: use only results in UCT-tree

precise: apply UCT (with MAST) as before

but: update only moves, chosen within UCT tree

(ignore Monte-Carlo run)

In Monte-Carlo run: choose move according to MAST distribution

23

a

a

ab

b

TO-MOVE-AVERAGE SAMPLING TECHNIQUE

75

b

b d

a

c

e

e

e

f

mov

e

average #visits

a 25 2

b 60 3

c 15 2

d 85 4

e 10 5

f 70 1

mov

e

average #visits

a 25 2

b 60 63,75 3 4

c 15 2

d 85 4

e 10 5

f 70 1

mov

e

average #visits

a 25 41,67 2 3

b 60 63,75 3 4

c 15 2

d 85 4

e 10 5

f 70 1

24

RAPID ACTION VALUE ESTIMATION

First used in UCT Go AI [Gelly & Silver, 2007]

 known as all-moves-as-first geuristik

Accelerates learning withing UCT tree

Use later chosen moves, to derive more move samplings for the same but not chosen
moves

25

RAPID ACTION VALUE ESTIMATION

Within UCT Tree

 update Q(s, m), if move m chosen in state s (as before)

 update QRAVE(s, m‘) for state s for non-chosen move m‘, if m‘ chosen later on in UCT tree

a b

c

a

d

b

d

aktualisiere

QRAVE for these

Moves

aktualisiere

QRAVE for these

Moves

update QRAVE

for these

Moves

RAPID ACTION VALUE ESTIMATION

Issue: drift of average
 Good if less samples are available

 Choose only in case of higher variance in Q(s, m)

 Later on, Q(s, m) is more reliable

 Then ignore QRAVE(s, m)

➔

 Store RAVE values on top

 Choose weighted combination: ß(s) * QRAVE(s, m) + (1 - ß(s)) * Q(s, m) in UCT choice

 with



 k: parameter (deciding after how many samples weighted is equal)

 N(s): number of visitis of s

()
() ksN

k
s

+
=

3


27

COMPARISON

[Finnsson & Björnsson, 2010] Comparions UCT

Comparison MAST

28

RESULTS

[Finnsson & Björnsson, 2010]

UCT vs RAVE+MAST (RM) vs RAVE+FAST (RF)

MAST vs RAVE+MAST (RM) vs. RAVE+FAST (RF)

NESTED ROLLOUT POLICY ADAPTATION
Rosin 2011 IJCAI – Best Paper, Morpion Solitaire with new Record

MCS tree based on Complete Rollout and Recursive Search

Not really MCTS, No Search Tree.

In Each Level a Policy is Maintained, Updated and Refreshed

Updating Policy based on better Solutions Coming in from below

Policy in Turn Influences the Rollouts

Parameters: Level of Recursion, and Iteration Width

Effective for TSPTW and many other Approaches

Refinements: Beam / Diversity / Generalization

Stefan Edelkamp 29

NEW
RECORD

STEFAN EDELKAMP .

NESTED MCS

STEFAN EDELKAMP .

NMCS PSEUDO-CODE

STEFAN EDELKAMP .

TYPICAL
NMCS

STEFAN EDELKAMP .

TSP

STEFAN EDELKAMP .

LEARNING CURVE

Stefan Edelkamp 35

NESTED ROLLOUT POLICY ADAPTATION

STEFAN EDELKAMP 36

Input: Iteration width (exploitation), nestedness (exploration)
Policy: (city-to-city) mapping NxN -> IR to be learnt

Stefan Edelkamp 36Stefan Edelkamp 36

NESTED ROLLOUT POLICY ADAPTATION

Input: Iteration width (exploitation), nestedness (exploration)
Policy: (city-to-city) mapping NxN -> IR to be learnt

Stefan Edelkamp 37

NESTED ROLLOUT POLICY ADAPTATION

Input: Iteration width (exploitation), nestedness (exploration)
Policy: (city-to-city) mapping NxN -> IR to be learnt

Stefan Edelkamp 38

NRPA

STEFAN EDELKAMP .

PLAYOUT

Stefan Edelkamp 40

ADAPT

Stefan Edelkamp 41

SEARCH

Stefan Edelkamp 42

THEORY…

Stefan Edelkamp 43

MONTE-CARLO
SEARCH
FOR VRP

STEFAN EDELKAMP .

MONTE-CARLO SEARCH 4 HITTING SET

PRAXIS…
https://nms.kcl.ac.uk/stefan.edelkamp/lectures/pi1/programs/VRP.java

Stefan Edelkamp 46

SUMMARY

Monte Carlo Search is a simple algorithm that gives

state of the art results for multiple problems:

– Games

– Puzzles

– Snake in the box

– Pancake

– Logistics

– Multiple Sequence Alignement

– RNA Inverse Folding

STEFAN EDELKAMP .

	Folie 1: Monte-Carlo (Tree) Search
	Folie 2
	Folie 3: Monte-Carlo Search
	Folie 4
	Folie 5
	Folie 6
	Folie 7: Monte-Carlo Search
	Folie 8: Monte-Carlo Search
	Folie 9: Monte-Carlo Search With Memory
	Folie 10: Monte-Carlo Search With Memory
	Folie 11: Monte-Carlo Search With Memory
	Folie 12: UCT [Kocsis & Szepesvári, 2006]
	Folie 13
	Folie 16
	Folie 17: UCT
	Folie 18: Improvements UCT
	Folie 19: MAST
	Folie 20: Move-Average Sampling Technique
	Folie 21: Move-Average Sampling Technique
	Folie 22: Tree-Only Mast
	Folie 23: TO-Move-Average Sampling Technique
	Folie 24: Rapid Action Value Estimation
	Folie 25: Rapid Action Value Estimation
	Folie 26: Rapid Action Value Estimation
	Folie 27: Comparison
	Folie 28: Results
	Folie 29: Nested Rollout Policy Adaptation
	Folie 30: New Record
	Folie 31: Nested MCS
	Folie 32: NMCS Pseudo-Code
	Folie 33: Typical NMCS
	Folie 34: TSP
	Folie 35: Learning Curve
	Folie 36: Nested Rollout Policy Adaptation
	Folie 37: Nested Rollout Policy Adaptation
	Folie 38: Nested Rollout Policy Adaptation
	Folie 39: NRPA
	Folie 40: Playout
	Folie 41: Adapt
	Folie 42: Search
	Folie 43: Theory…
	Folie 44: Monte-Carlo Search for VRP
	Folie 45: Monte-Carlo Search 4 Hitting Set
	Folie 46: Praxis…
	Folie 47: Summary

