MONTE-CARLO (TREE) SEARCH

Stefan Edelkamp

PUI - CTU

MONTE-CARLO TREE SEARCH

General randomized heuristic search technique

Less problem-specific knowledge to be added

Protagonists

- UCB/UCT, best in many games like Go, Amazons, GGP, etc. (Auer et al. 2002, Kocsis & Szepesvari, 2006, Coulom 2006)
- Nested-Monte-Carlo Tree Search (Cazenave, 2009)
- Nested Rollout with Policy Adaptation (Rosin, 2011)

Input: iteration width (exploit), nestedness level (explore) **Policy:** (city-to-city) Mapping $N \times N \rightarrow IR$ to be learnt

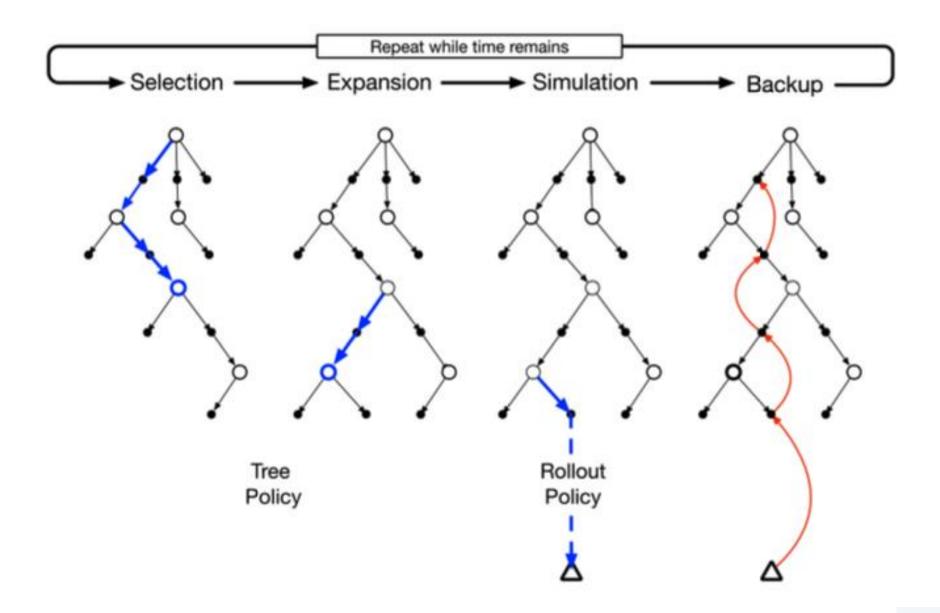
MONTE-CARLO SEARCH

Consider set of random walks from initial to terminal state

Set average reward

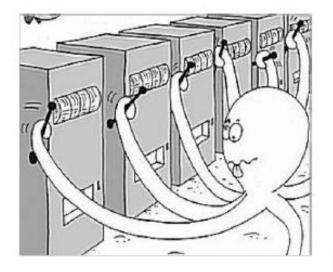
No further steering, no further knowledge

At end: Choose move with best evaluation



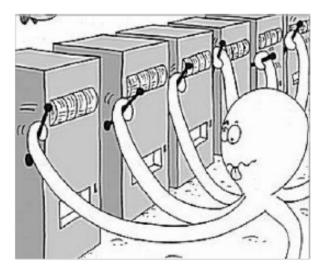
Multi-Arm Bandit Problem

- Statistical model of sequential experiments
 - Name comes from a traditional slot machine (one-armed bandit)
- Multiple actions $a_1, a_2, ..., a_n$
 - Each a_i provides a reward from an unknown (but stationary) probability distribution p_i
 - Objective: maximize expected utility of a sequence of actions
- Exploitation vs exploration dilemma:
 - Exploitation: choose action that has given you high rewards in the past
 - Exploration: choose action that you don't know much about, in hopes that it might produce a higher reward



UCB (Upper Confidence Bound) Algorithm

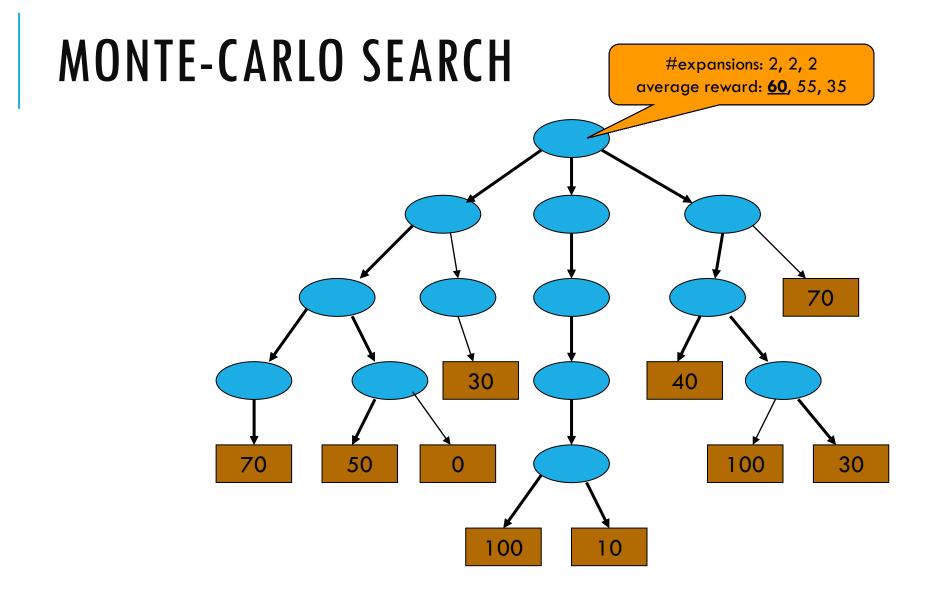
- Assume all rewards are between 0 and 1
 - If they aren't, normalize them
- For each action a_i , let
 - r_i = average reward you've gotten from a_i
 - > t_i = number of times you've tried a_i
 - \succ $t = \sum_i t_i$



loop

if there are one or more actions that you haven't tried then choose an untried action a_i at random else choose an action a_i that has the highest value of $r_i + \sqrt{2(\ln t)/t_i}$ perform a_i

update r_i , t_i , t



MONTE-CARLO SEARCH

Advantage:

- Easy to implement
- Bettern than random
- Small memory requirement

Disadvantage:

- Repeated expansion of same states
 - Slowing down search
- No guidance
- Results potentially bad
- Information lost in further runs

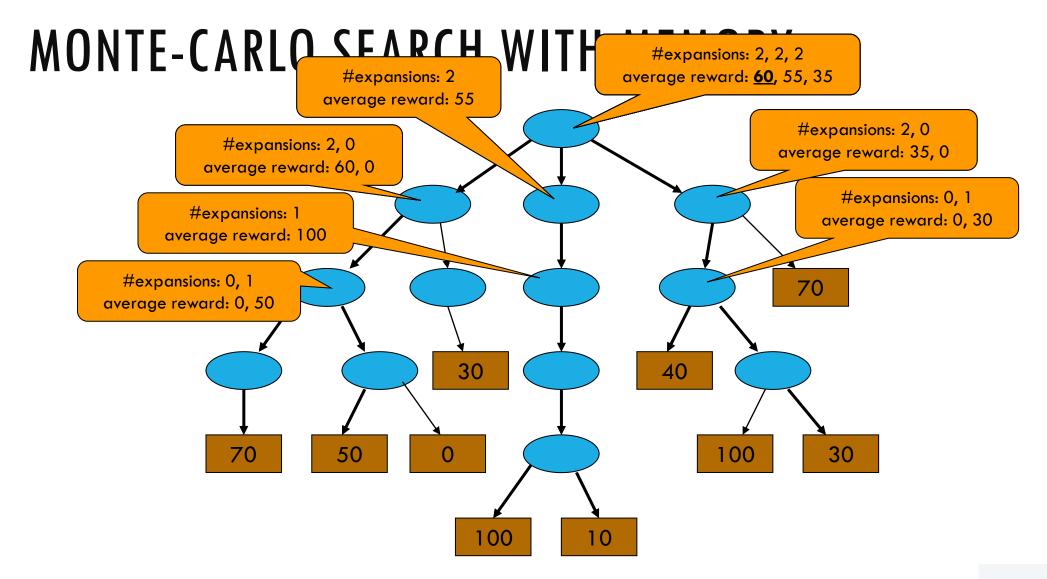
MONTE-CARLO SEARCH WITH MEMORY

first + last problem resolved by using an explicit tree

- Encapulation of memory
- Instead forgetting about everything after Monte-Carlo run, insert node in tree
- Only on nod at a time because of memory requirement

Search in the tree remains random

- Expansions faster if successor stored in tree schneller
- Update for all nodes in the tree
 - Stored node used later on in the search



MONTE-CARLO SEARCH WITH MEMORY

Advantages:

- Storage \rightarrow less expansions
- Information of successors can be used in upcoming moves

Disadvantages:

- More momory requirements
- Unguided search
- Results often not good

UCT [KOCSIS & SZEPESVÁRI, 2006]

"<u>Upper Confidence Bounds applied to Trees</u>"

Additional Information

In the Tree

- If \geq 1 unexpanded move, chose a random one
- Choose successor, maximizing UCT value

$$Q(s,m) + C_{\sqrt{\frac{\ln(N(s))}{N(s,m)}}}$$

- Q(s, m) average reward of move m in state s
- C: constant
- N(s): number visits of state s
- N(s, m): number visits of state s with chosen move m
- If leaf found
- Normal Monte-Carlo Suche d
- Backpropagate terminal evaluation up the tree.

UCT Algorithm

- Recursive UCB computation to compute Q(s,a)
- Anytime algorithm: call repeatedly until time runs out
 - > Then choose action $\operatorname{argmin}_a Q(s, a)$

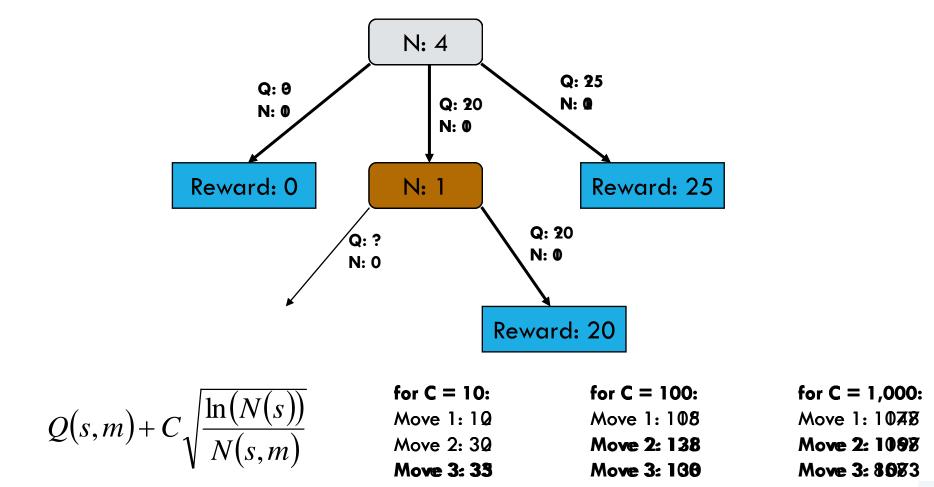
d4 UCT(s,h)if $s \in S_g$ then return 0 d2 d3 if h = 0 then return $V_0(s)$ if $s \notin Envelope$ then do d7 add s to *Envelope* $n(s) \leftarrow 0$ d6 for all $a \in Applicable(s)$ do $Q(s,a) \leftarrow 0; \ n(s,a) \leftarrow 0$ Start: $Untried \leftarrow \{a \in Applicable(s) \mid n(s, a) = 0\}$ $s_0 = d1(d1)$ d4 if $Untried \neq \emptyset$ then $\tilde{a} \leftarrow Choose(Untried)$ Goal: $S_{g} = \{ d4 \}$ else $\tilde{a} \leftarrow \operatorname{argmin}_{a \in \operatorname{Applicable}(s)} \{Q(s, a) - C \times [\log(n(s))/n(s, a)]^{\frac{1}{2}}\}$ $s' \leftarrow \mathsf{Sample}(\Sigma, s, \tilde{a})$ cost- $rollout \leftarrow cost(s, \tilde{a}) + UCT(s', h-1)$ $Q(s, \tilde{a}) \leftarrow [n(s, \tilde{a}) \times Q(s, \tilde{a}) + cost-rollout]/(1 + n(s, \tilde{a}))$ $n(s) \leftarrow n(s) + 1$ $n(s, \tilde{a}) \leftarrow n(s, \tilde{a}) + 1$ return cost-rollout

Stefan Edelkamp (cf. Book Automated Planning and Acting)

UCT in Two-Player Games

- Generate Monte Carlo rollouts using a modified version of UCT
- Main differences:
 - Instead of choosing actions that minimize accumulated cost, choose actions that maximize payoff at the end of the game
 - UCT for player 1 recursively calls UCT for player 2
 - Choose opponent's action
 - UCT for player 2 recursively calls UCT for player 1
- This produced the first computer programs to play go well
 - > ≈ 2008-2012
- Monte Carlo rollout techniques similar to UCT were used to train AlphaGo

UCT



IMPROVEMENTS UCT

[Finnsson & Björnsson, 2010]

- Move-Average Sampling Technique (MAST)
- Tree-Only MAST (TO-MAST)
- Predicate-Average Sampling Technique (PAST)
- Features-to-Action Sampling Technique (FAST)
- Rapid Action Value Estimation (RAVE)

MAST

ldea:

- In every UCT-run, refine knowledge about all the moves
- Use knowledge to improve knowledge to steer search outside the tree

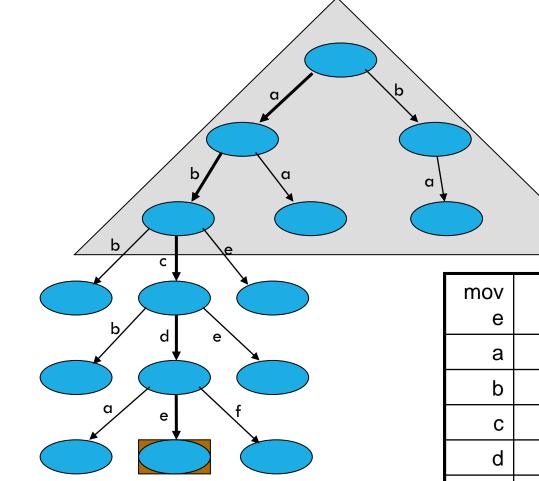
Maintain average reward for every move

Independent of state

After UCT-run: update average reward of all the moves

- Moves, chosen frequently (independent of state) receive better score
- Hope: Moves are often good if available
 - e..g. placement of a stone in the corner of Reversi
 - e.g. Taking an opponent stone before the own base in Breakthrough

MOVE-AVERAGE SAMPLING TECHNIQUE



FEE CTU	$\mathbf{\mathbf{A}}$	AI CENTE FEE CTU
---------	-----------------------	---------------------

mov	average	#Visits
е		
а	<u>25</u> 41,67	×3
b	63,75	>3<4
С	≫5 35	∕∕∕3
d	85 83	*5
е	70 20,83	56
f	70	1

MOVE-AVERAGE SAMPLING TECHNIQUE

Within Monte-Carlo run (outside UCT tree) Choose move according to Gibbs sampling

$$P(m) = \frac{e^{Q_h(m)/\tau}}{\sum_{b=1}^{n} e^{Q_h(b)/\tau}}$$

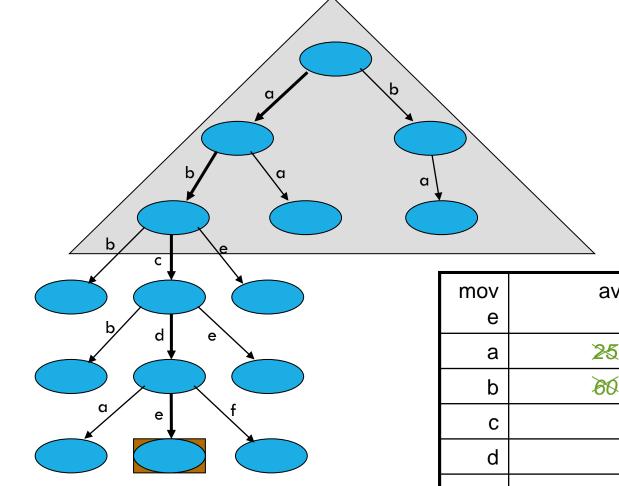
with

m: chosen move Q_h(m): average reward of m r: constant to tune (large value: closer to uniform disttribution)

TREE-ONLY MAST

(initial) Monte-Carlo runs random
may influence reward of actions negatively
Idea: use only results in UCT-tree
precise: apply UCT (with MAST) as before
but: update only moves, chosen within UCT tree
(ignore Monte-Carlo run)
In Monte-Carlo run: choose move according to MAST distribution

TO-MOVE-AVERAGE SAMPLING TECHNIQUE



mov	average	#visits
е		
а	25 41,67	≫3
b	80 63,75	>34
С	15	2
d	85	4
e	10	5
f	70	1

RAPID ACTION VALUE ESTIMATION

First used in UCT Go AI [Gelly & Silver, 2007]

known as all-moves-as-first geuristik

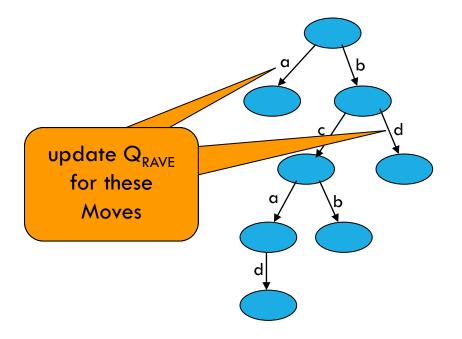
Accelerates learning withing UCT tree

Use later chosen moves, to derive more move samplings for the same but not chosen moves

RAPID ACTION VALUE ESTIMATION

Within UCT Tree

- update Q(s, m), if move m chosen in state s (as before)
- update Q_{RAVE}(s, m') for state s for non-chosen move m', if m' chosen later on in UCT tree



RAPID ACTION VALUE ESTIMATION

Issue: drift of average

- Good if less samples are available
- Choose only in case of higher variance in Q(s, m)
- Later on, Q(s, m) is more reliable
- Then ignore Q_{RAVE}(s, m)

→

Store RAVE values on top

• Choose weighted combination: $\beta(s) * Q_{RAVE}(s, m) + (1 - \beta(s)) * Q(s, m)$ in UCT choice

• with

$$\beta(s) = \sqrt{\frac{k}{3N(s) + k}}$$

- k: parameter (deciding after how many samples weighted is equal)
- N(s): number of visitis of s

COMPARISON

[Finnsson & Björnsson, 2010] Comparions UCT

Game	MAST win %	TO-MAST win %	PAST win %	RAVE win %	FAST win %
Breakthrough	$90.00 (\pm 3.40)$	85.33 (± 4.01)	$85.00 (\pm 4.05)$	63.33 (± 5.46)	81.67 (± 4.39)
Checkers	$56.00 (\pm 5.37)$	82.17 (± 4.15)	57.50 (± 5.36)	$82.00 (\pm 4.08)$	$50.33 (\pm 5.36)$
Othello	$60.83 (\pm 5.46)$	$50.17 (\pm 5.56)$	67.50 (± 5.24)	70.17 (± 5.11)	$70.83 (\pm 5.10)$
Skirmish	41.33 (± 5.18)	48.00 (± 5.29)	42.33 (± 5.16)	46.33 (± 5.30)	96.33 (± 1.86)

Comparison MAST

Game	TO-MAST win %	PAST win %	RAVE win %	FAST win %
Breakthrough	52.33 (± 5.66)	$45.67 (\pm 5.65)$	$20.33 (\pm 4.56)$	$39.67 (\pm 5.55)$
Checkers	$82.00 (\pm 4.18)$	55.83 (± 5.35)	78.17 (± 4.36)	46.17 (± 5.33)
Othello	$40.67 (\pm 5.47)$	49.17 (± 5.60)	58.17 (± 5.49)	56.83 (± 5.55)
Skirmish	56.00 (± 5.31)	43.33 (± 5.26)	59.83 (± 5.15)	97.00 (± 1.70)

RESULTS

[Finnsson & Björnsson, 2010]

UCT vs RAVE+MAST (RM) vs RAVE+FAST (RF)

Game	RM win %	RF win %
Breakthrough	89.00 (± 4.35)	$76.50 (\pm 5.89)$
Checkers	$84.50 (\pm 4.78)$	$77.00 (\pm 5.37)$
Othello	79.75 (± 5.52)	81.00 (± 5.32)
Skirmish	45.00 (± 6.55)	96.00 (± 2.34)

MAST vs RAVE+MAST (RM) vs. RAVE+FAST (RF)

Game	RM win %	RF win %
Breakthrough	50.50(+6.95)	38.50 (+ 6.76)
Checkers	83.50 (± 4.87)	$74.00(\pm 5.81)$
Othello	73.75 (± 6.01)	$66.00 (\pm 6.43)$
Skirmish	53.00 (± 6.47)	97.00 (± 2.04)

Rosin 2011 IJCAI – Best Paper, Morpion Solitaire with new Record

MCS tree based on Complete Rollout and Recursive Search

Not really MCTS, No Search Tree.

In Each Level a Policy is Maintained, Updated and Refreshed

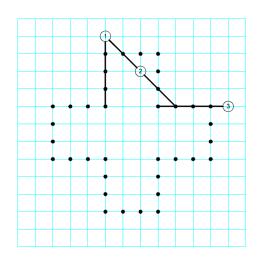
Updating Policy based on better Solutions Coming in from below

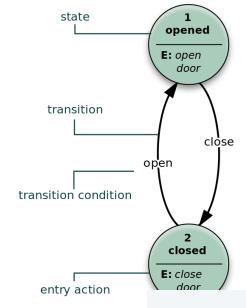
Policy in Turn Influences the Rollouts

Parameters: Level of Recursion, and Iteration Width

Effective for TSPTW and many other Approaches

Refinements: Beam / Diversity / Generalization

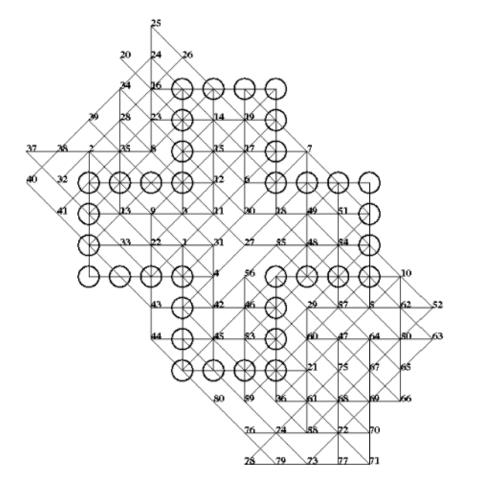




NEW RECORD

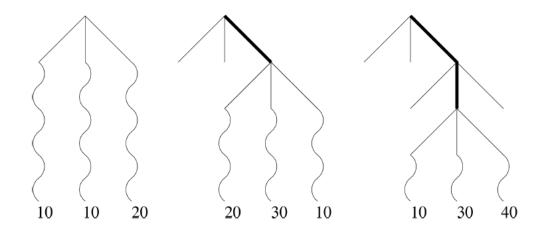
Morpion Solitaire

• 80 moves :



NESTED MCS

Nested Monte-Carlo Search



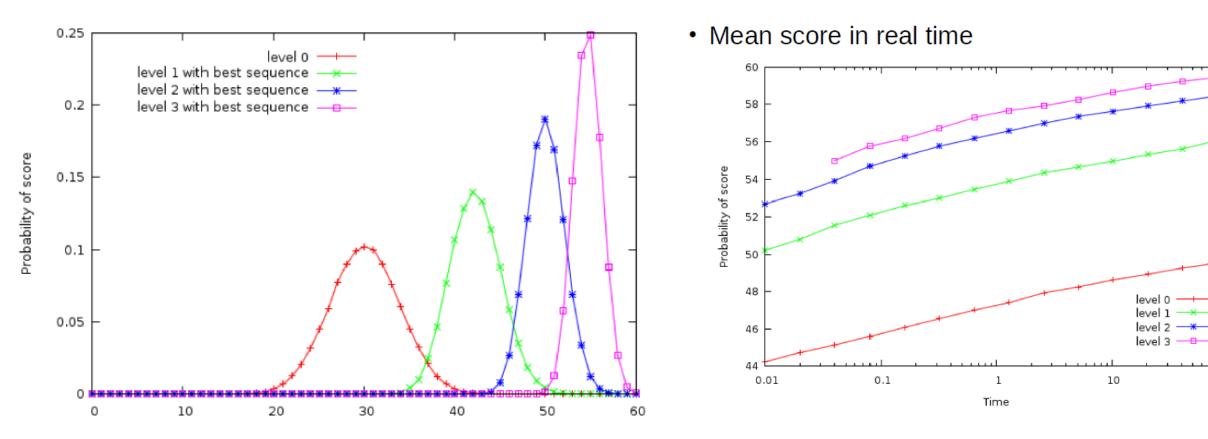
Nested Monte-Carlo Search

- Play random games at level 0
- For each move at level n+1, play the move then play a game at level n
- Choose to play the move with the greatest associated score
- Important : memorize and follow the best sequence found at each level

NMCS PSEUDO-CODE

```
Algorithm 4 The NMCS algorithm.
  NMCS (state, level)
  if level == 0 then
    return playout (state, uniform)
  end if
  BestSequenceOfLevel \leftarrow \emptyset
  while state is not terminal do
     for m in possible moves for state do
       s \leftarrow play (state, m)
       NMCS (s, level - 1)
       update BestSequenceOfLevel
     end for
     bestMove \leftarrow move of the BestSequenceOfLevel
     state \leftarrow play (state, bestMove)
  end while
```

TYPICAL NMCS



STEFAN EDELKAMP

100

Given a map, compute a minimum-cost round trip visiting certain cities

Graph reduction: Precompute all-pairs-shortest-paths

Given a distance matrix, compute a *minimum-cost* trip

- Model problem as an IP and call solver (CPLEX, IPSolve,...)
- Neighborhood search (xOPT: SA; GA; AA; PSO; LNS,...)
- (Depth-First) Branch and Bound with

....

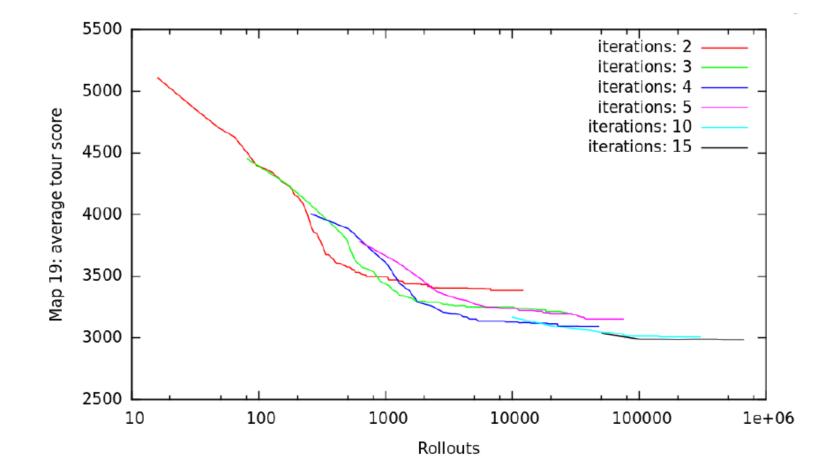
TSP

DFBnB₀ No Heuristic – incremental O(1) time

DFBnB₁ Column/Row Minima – incremental O(1) time

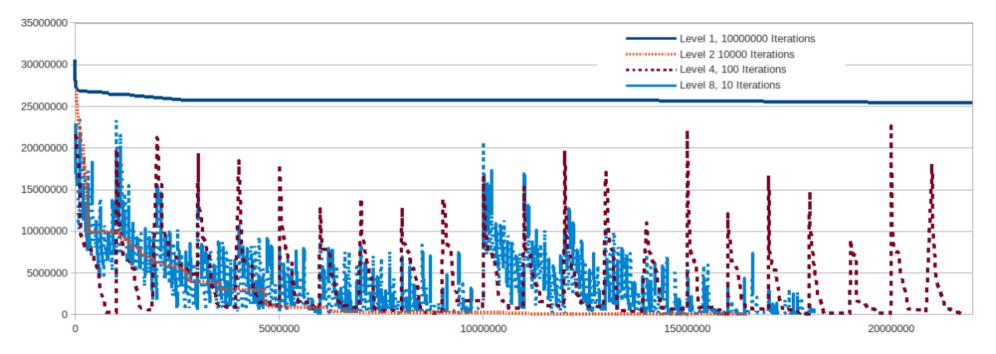
DFBnB₂ Assignment Problem – incremental $O(n^2)$ time

LEARNING CURVE

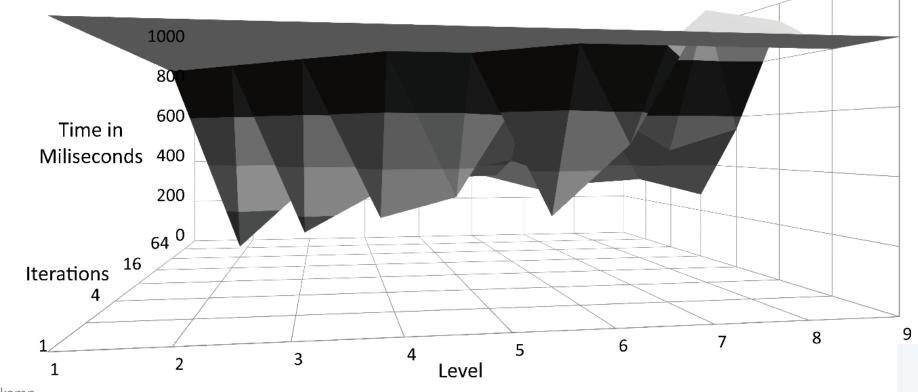


Stefan Edelkamp

Input: Iteration width (exploitation), nestedness (exploration) **Policy:** (city-to-city) mapping NxN -> IR to be learnt

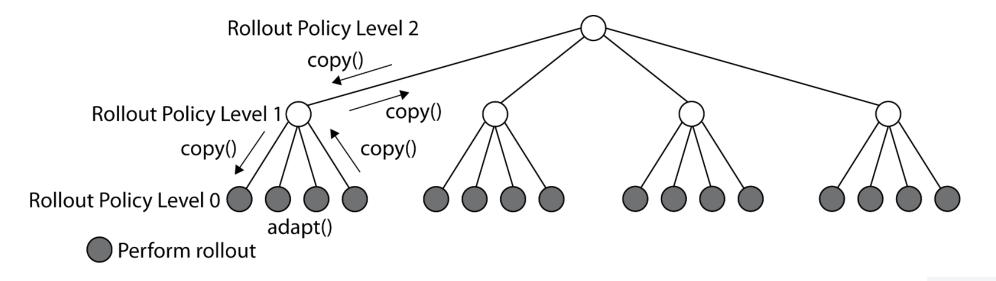


Input: Iteration width (exploitation), nestedness (exploration) **Policy:** (city-to-city) mapping NxN -> IR to be learnt



AI CENTER

Input: Iteration width (exploitation), nestedness (exploration) **Policy:** (city-to-city) mapping NxN -> IR to be learnt



NRPA(level) best.score = MAX; if (level == 0) best = ROLLOUT(); else backup[level] = global; for (i=0; i<iterations; i++)</pre> current = NRPA(level-1); if (current.score < best.score)</pre> best = current; ADAPT(best); global = backup[level]; return best; **Rollout Policy Level 2** copy() copy() Rollout Policy Level 1 copy() copy() Rollout Policy Level 0

NRPA

PLAYOUT

Algorithm 1 The playout algorithm
1: playout (<i>state</i> , <i>policy</i>)
2: sequence \leftarrow []
3: while true do
4: if <i>state</i> is terminal then
5: return (score (<i>state</i>), <i>sequence</i>)
6: end if
7: $z \leftarrow 0.0$
8: for m in possible moves for state do
9: $z \leftarrow z + \exp(policy [code(m)])$
10: end for
11: choose a <i>move</i> with probability $\frac{exp(policy[code(move)])}{z}$
12: $state \leftarrow play (state, move)$
13: $sequence \leftarrow sequence + move$
14: end while

ADAPT

Alg	gorithm 2 The Adapt algorithm
1:	Adapt (policy, sequence)
2:	$polp \leftarrow policy$
3:	$state \leftarrow root$
4:	for move in sequence do
5:	$polp [code(move)] \leftarrow polp [code(move)] + \alpha$
6:	$z \leftarrow 0.0$
7:	for m in possible moves for $state$ do
8:	$z \leftarrow z + \exp(policy [code(m)])$
9:	end for
10:	for m in possible moves for state do
11:	$polp [code(m)] \leftarrow polp [code(m)] - \alpha * \frac{exp(policy[code(m)])}{z}$
12:	end for
13:	$state \leftarrow play (state, move)$
14:	end for
15:	$policy \leftarrow polp$

SEARCH

Al	gorithm 3 The NRPA algorithm.
1:	NRPA (level, policy)
2:	if level == 0 then
3:	return playout (root, <i>policy</i>)
4:	else
5:	$bestScore \leftarrow -\infty$
6:	for N iterations do
7:	$(result, new) \leftarrow NRPA(level - 1, policy)$
8:	if result \geq bestScore then
9:	$bestScore \leftarrow result$
10:	$seq \leftarrow new$
11:	end if
12:	policy \leftarrow Adapt (policy, seq)
13:	end for
14:	return (bestScore, seq)
15:	end if

THEORY...

The probability p_{ik} of choosing the move m_{ik} in a playout is the softmax function:

$$p_{ik} = \frac{e^{w_{ik}}}{\sum_j e^{w_{ij}}}$$

The cross-entropy loss for learning to play move m_{ib} is $C_i = -log(p_{ib})$. In order to apply the gradient we calculate the partial derivative of the loss: $\frac{\delta C_i}{\delta p_{ib}} = -\frac{1}{p_{ib}}$. We then calculate the partial derivative of the softmax with respect to the weights:

$$\frac{\delta p_{ib}}{\delta w_{ij}} = p_{ib}(\delta_{bj} - p_{ij})$$

Where $\delta_{bj} = 1$ if b = j and 0 otherwise. Thus the gradient is:

ŀ

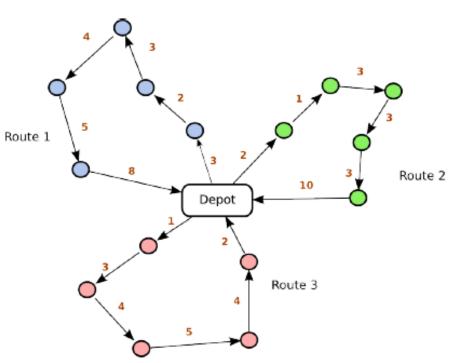
$$\nabla w_{ij} = \frac{\delta C_i}{\delta p_{ib}} \frac{\delta p_{ib}}{\delta w_{ij}} = -\frac{1}{p_{ib}} p_{ib} (\delta_{bj} - p_{ij}) = p_{ij} - \delta_{bj}$$

If we use α as a learning rate we update the weights with:

$$w_{ij} = w_{ij} - \alpha (p_{ij} - \delta_{bj})$$

Stefan Edelkamp

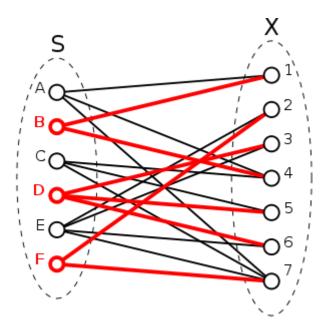
MONTE-CARLO SEARCH FOR VRP



- No additional knowledge needed: rollout function fits in paper.
- Solving Solomon's 100-city problem R101 optimally in 10min (score: 1650.7823, rollouts: 3240000), new highscore in R102
- Very particular benchmark: Even number precision matters.
- Solving Homberger's r2_2_4 (200 packages, 4 vehicles), r2_2_8 (200 packages, 8 vehicles), and r2_4_4 (400 packages, 4 vehicles) in 2h

MONTE-CARLO SEARCH 4 HITTING SET

Given a bipartite graph G = (V, E) with $V = V_1 \cup V_2$, $V_1 \cap V_2 = \emptyset$, and $E \subseteq (V_1 \times V_2)$, find a subset V' of V_1 of minimal cardinality, so that all nodes in V_2 are covered, i.e., for every $v_2 \in V_2$ there is a $v_1 \in V_1$ such that $(v_1, v_2) \in E$.



```
class Game {
 public:
  int length, size;
  Move rollout [MaxPlayoutLength];
  Game () {
   for (int j=0; j<SET; j++) visited[j] = 0;</pre>
   for (int j=0; j<HITTING; j++) chosen[j] = 0;</pre>
   length = size = 0;
  int code (Move m) { return m; }
  bool terminal() { return size >= SET*ALPHA; }
  double score() { return length - size*100; }
  void play(Move m) {
    rollout[length++] = m;
    chosen[m] = 1;
    for (int j = 0; j < SET; j++)
      if (visited[j] == 0 && adjacent[m][j]) {
        visited[j] = 1;
        size++;
  int legalMoves(Move moves[MaxLegalMoves]) {
    int succs = 0;
    for (int m = 0; m < HITTING; m++)</pre>
      if (chosen[m] == 0) moves[succs++] = m;
    return successors;
};
```


PRAXIS...

https://nms.kcl.ac.uk/stefan.edelkamp/lectures/pi1/programs/VRP.java

🐼 Blue): Konsole - Einführung CV	_		×		: Mill.Pair	1. 1.
Optionen Level: 2,13, score: 2502165.1351650227, runs: 883320 Level: 2,18, score: 2502164.690862609, runs: 883470 Level: 2,0, score: 2502195.3907905878, runs: 883830 Level: 2,29, score: 2502189.536582865, runs: 884700 Level: 2,0, score: 2502180.811441709, runs: 884730 Level: 2,13, score: 2502177.7208089014, runs: 885120 Level: 2,0, score: 2502187.4106493737, runs: 885630				double score int[] assignment	2502119.8597814734	Inspiziere Hole
Level: 2,1, score: 2502186.3647505976, runs: 885660 Level: 2,0, score: 2502178.3200165667, runs: 886530 Level: 2,7, score: 2502177.7208089014, runs: 886740 Level: 2,0, score: 2502177.7208089014, runs: 887430				Zeige statische Variabler	assignment : int[]	Schließen
Level: 2,3, score: 2502165.1351650227, runs: 887520 Level: 2,12, score: 2502160.826497041, runs: 887790 Level: 2,0, score: 2502178.3200165667, runs: 888330 Level: 2,3, score: 2502165.1351650227, runs: 888420 Level: 2.0. score: 2502165.1351650227, runs: 889230 Can only enter input while your programming is running			0	int length	101 0 1 2	Inspiziere Hole
Mill				[3] [4] [5] [6]	3 0 0 0	
mill1: Mill				[7] [8] [9] [10]	3 3 2 0	
mill : Mill	8 🎽	•	-Z	*	^ ∎ € ¢	^{17:13} 28.04.2020

Stefan Edelkamp

SUMMARY

Monte Carlo Search is a simple algorithm that gives state of the art results for multiple problems:

- Games
- Puzzles
- Snake in the box
- Pancake
- Logistics
- Multiple Sequence Alignement
- RNA Inverse Folding

