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MONTE-CARLO TREE SEARCH



MONTE-CARLO SEARCH

Consider set of random walks from initial to terminal state

Set average reward

No further steering, no further knowledge

At end: Choose move with best evaluation
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MONTE-CARLO SEARCH
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MONTE-CARLO SEARCH

Advantage:

 Easy to implement

 Bettern than random

 Small memory requirement

Disadvantage:

 Repeated expansion of same states

 Slowing down search

 No guidance

 Results potentially bad

 Information lost in further runs



MONTE-CARLO SEARCH WITH MEMORY

first + last problem resolved by using an explicit tree

 Encapulation of memory

 Instead forgetting about everything after Monte-Carlo run, insert node in tree

 Only on nod at a time because of memory requirement

Search in the tree remains random

 Expansions faster if successor stored in tree schneller

 Update for all nodes in the tree  

 Stored node used later on in the search



MONTE-CARLO SEARCH WITH MEMORY
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MONTE-CARLO SEARCH WITH MEMORY

Advantages:

 Storage → less expansions

 Information of successors can be used in upcoming moves

Disadvantages:

 More momory requirements

 Unguided search

 Results often not good 



UCT [KOCSIS & SZEPESVÁRI, 2006]

“Upper Confidence Bounds applied to Trees”

Additional Information

 In the Tree

 If ≥ 1 unexpanded move, chose a random one

 Choose successor, maximizing UCT value

 Q(s, m) average reward of move m in state s

 C: constant

 N(s): number visits of state s

 N(s, m): number visits of state s with chosen move m

 If leaf found

 Normal Monte-Carlo Suche d

 Backpropagate terminal evaluation up the tree. 
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for C = 10:

Move 1: 10 

Move 2: 30

Move 3: 35

for C = 1,000:
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IMPROVEMENTS UCT

[Finnsson & Björnsson, 2010]
 Move-Average Sampling Technique (MAST)

 Tree-Only MAST (TO-MAST)

 Predicate-Average Sampling Technique (PAST)

 Features-to-Action Sampling Technique (FAST)

 Rapid Action Value Estimation (RAVE)
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MAST

Idea:

 In every UCT-run, refine knowledge about all the moves  

 Use knowledge to improve knowledge to steer search outside the tree

Maintain average reward for every move  

 Independent of state

After UCT-run: update average reward of all the moves

 Moves, chosen frequently (independent of state) receive better score

 Hope: Moves are often good if available  

 e..g. placement of a stone in the corner of Reversi

 e.g.  Taking an opponent stone before the own base in  Breakthrough
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MOVE-AVERAGE SAMPLING TECHNIQUE
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MOVE-AVERAGE SAMPLING TECHNIQUE

Within Monte-Carlo run (outside UCT tree)

Choose move according to Gibbs sampling

with

m: chosen move

Qh(m): average reward of m

r: constant to tune (large value: closer to uniform 

disttribution)
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TREE-ONLY MAST
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(initial) Monte-Carlo runs random

may influence reward of actions negatively  

Idea: use only results in UCT-tree

precise: apply UCT (with MAST) as before

but: update only moves, chosen within UCT tree

(ignore Monte-Carlo run)

In Monte-Carlo run: choose move according to MAST distribution
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RAPID ACTION VALUE ESTIMATION

First used in UCT Go AI [Gelly & Silver, 2007]

 known as all-moves-as-first geuristik

Accelerates learning withing UCT tree

Use later chosen moves, to derive more move samplings for the same but not chosen
moves
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RAPID ACTION VALUE ESTIMATION

Within UCT  Tree

 update Q(s, m), if move m chosen in state s (as before)

 update QRAVE(s, m‘) for state s for non-chosen move m‘, if m‘ chosen later on in UCT tree
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RAPID ACTION VALUE ESTIMATION

Issue: drift of average
 Good if less samples are available

 Choose only in case of higher variance in Q(s, m)

 Later on, Q(s, m) is more reliable

 Then ignore QRAVE(s, m)  

➔

 Store RAVE values on top

 Choose weighted combination: ß(s) * QRAVE(s, m) + (1 - ß(s)) * Q(s, m) in UCT choice

 with



 k: parameter (deciding after how many samples weighted is equal)

 N(s): number of visitis of s
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COMPARISON

[Finnsson & Björnsson, 2010] Comparions UCT

Comparison MAST
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RESULTS

[Finnsson & Björnsson, 2010]

UCT vs RAVE+MAST (RM) vs RAVE+FAST (RF)

MAST vs RAVE+MAST (RM) vs. RAVE+FAST (RF)



NESTED ROLLOUT POLICY ADAPTATION
Rosin 2011 IJCAI – Best Paper, Morpion Solitaire with new Record

MCS tree based on Complete Rollout and Recursive Search

Not really MCTS, No Search Tree.

In Each Level a Policy is Maintained, Updated and Refreshed 

Updating Policy based on better Solutions Coming in from below 

Policy in Turn Influences the Rollouts

Parameters: Level of Recursion, and Iteration Width

Effective for TSPTW and many other Approaches

Refinements: Beam / Diversity / Generalization
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NESTED MCS
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NMCS PSEUDO-CODE
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TYPICAL
NMCS
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TSP
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LEARNING CURVE
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NESTED ROLLOUT POLICY ADAPTATION
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Input: Iteration width (exploitation), nestedness (exploration)
Policy: (city-to-city) mapping NxN -> IR to be learnt

Stefan Edelkamp 36Stefan Edelkamp 36



NESTED ROLLOUT POLICY ADAPTATION
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NESTED ROLLOUT POLICY ADAPTATION

Input: Iteration width (exploitation), nestedness (exploration)
Policy: (city-to-city) mapping NxN -> IR to be learnt
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NRPA
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PLAYOUT
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ADAPT
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SEARCH

Stefan Edelkamp 42



THEORY…
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MONTE-CARLO
SEARCH
FOR VRP
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MONTE-CARLO SEARCH 4 HITTING SET



PRAXIS…
https://nms.kcl.ac.uk/stefan.edelkamp/lectures/pi1/programs/VRP.java
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SUMMARY

Monte Carlo Search is a simple algorithm that gives

state of the art results for multiple problems:

– Games

– Puzzles

– Snake in the box

– Pancake

– Logistics

– Multiple Sequence Alignement 

– RNA Inverse Folding
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