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Lecture Goals

Provide an overview of the existing problem formulations in
robotic planning
Multi-Goal Path Planning a.k.a. robotic Traveling Salesman
Problem (TSP)
Inspection, exploration, and data collection missions
Challenges in planning for non-holonomic vehicle (Dubins vehicle)
Example of problem formulations suitable for
robotic data collection planning

During the lecture, several problems formulation will be defined. Most
of them are variants of the TSP. Each problem aims to address a
specific issue related to a particular robotic application.

The main goal of the lecture is to make you familiar with the key
challenges in the related problems and existing approaches.

The goal is not to memorize all the details and definitions!
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Multi-Goal Planning

Multi-Goal Path Planning

Dubins Planning

Data Collection Planning

Mobile Robotic Exploration (TSP-based)
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Multi-Goal Path Planning
Motivation

Having a set of locations (goals) to be visited, determine the cost
efficient path to visit them and return to a starting location.

Locations where a robotic arm performs some task
Locations where a mobile robot has to be navigated

To perform measurements such as scan the environment or
read data from sensors.

Alatartsev et al. (2015) – Robotic Task Sequencing Problem: A Survey
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Traveling Salesman Problem (TSP)
Given a set of cities and the distances between each pair of cities,
what is the shortest possible route that visits each city exactly once
and returns to the origin city.

The TSP can be formulated for a graph G (V ,E ), where V denotes
a set of locations (cities) and E represents edges connecting two
cities with the associated travel cost c (distance), i.e., for each
vi , vj ∈ V there is an edge eij ∈ E , eij = (vi , vj) with the cost cij .

If the associated cost of the edge (vi , vj) is the Euclidean distance
cij = |(vi , vj)|, the problem is called the Euclidean TSP (ETSP).

In our case, v ∈ V represents a point in R2 and solution of the ETSP
is a path in the plane.

It is known, the TSP is NP-hard (its decision variant) and several
algorithms can be found in literature.

William J. Cook (2012) – In Pursuit of the Traveling Salesman: Math-
ematics at the Limits of Computation
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Solutions of the TSP

Efficient heuristics from the Operational
Research have been proposed
LKH – K. Helsgaun efficient implementa-
tion of the Lin-Kernighan heuristic (1998)

http://www.akira.ruc.dk/~keld/research/LKH/

Concorde – Solver with several heuristic and
also optimal solver
http://www.math.uwaterloo.ca/tsp/concorde.html

Problem Berlin52 from the
TSPLIB

Beside the heuristic and approximations algorithms (such as Christofides
3/2-approximation algorithm), other („soft-computing”) approaches have
been proposed, e.g., based on genetic algorithms, and memetic approaches,
ant colony optimization (ACO), and neural networks.
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Multi-Goal Path Planning (MTP) Problem

Given a map of the environment W, mobile robot R, and a set
of locations, what is the shortest possible collision free path that
visits each location exactly once and returns to the origin location.

MTP problem is de facto the TSP with the
cost associated to the edges as the length of
the shortest path connecting the locations
For n locations, we need to compute up to n2

shortest paths (solve n2 motion planning prob-
lems)
The paths can be found as the shortest path in
a graph (roadmap), from which the G (V ,E )
for the TSP can be constructed
Visibility graph as the roadmap for a point robot provides a straight forward solution,
but such a shortest path may not be necessarily feasible for more complex robots
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Multi-Goal Path Planning in Robotic Missions

Multi-goal path planning
It builds on a simple path and trajectory planning
It is a combinatorial optimization problem to determine the se-
quence to visit the given locations
It allows to solve (or improve performance of) more complex prob-
lems such as

Inspection planning - Find the shortest tour to see (inspect) the
whole environment
Data collection planning – Determine a cost efficient path to col-
lect data from the sensor stations (locations)
Robotic exploration - Create a map of unknown environment as
quickly as possible
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Inspection Planning
Motivations (examples)

Periodically visit particular locations of the environment to check,
e.g., for intruders, and return to the starting locations
Based on available plans, provide a guideline how to search a
building to find possible victims as quickly as possible (search
and rescue scenario)
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Inspection Planning – Decoupled Approach

1. Determine sensing locations such that the whole environment
would be inspected (seen) by visiting them

A solution of the Art Gallery Problem

2. Create a roadmap connecting the sensing location
E.g., using visibility graph or randomized sampling based approaches

3. Find the inspection path visiting all the sensing locations as a
solution of the multi-goal path planning

De facto solution of the TSP

Inspection planning is also called coverage path planning in literature.
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Example – Inspection Planning with AUV

Determine shortest inspection path for Autonomous Underwater
Vehicle (AUV) to inspect a propeller of the vessel

Three-dimensional coverage planning for an underwater inspection robot
Brendan Englot and Franz S. Hover
International Journal of Robotic Research, 32(9-10):1048–1073, 2013.
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Inspection Planning – “Continuous Sensing ”

If we do not prescribe a discrete set of sensing locations, we can
formulate the problem as the Watchman route problem

Given a map of the environment W determine the shortest, closed,
and collision free path, from which the whole environment is covered
by an omnidirectional sensors with the radius ρ.

Approximate Solution of the Multiple Watchman Routes Problem with
Restricted Visibility Range
Jan Faigl
IEEE Transactions on Neural Networks, 21(10):1668–1679, 2010.
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Self-Organizing Maps based Solution of the TSP

Kohonen’s type of unsupervised two-layered neural network

Neurons’ weights represent nodes
N = {ν1, . . . , νm}) in a plane.

Nodes are organized into a ring.

Sensing locations S = {s1, . . . sn} are pre-
sented to the network in a random order.

Nodes compete to be winner according to
their distance to the presented goal s

ν∗ = argminν∈N |D(ν, s)|

The winner and its neighbouring nodes are
adapted (moved) towards the city accord-
ing to the neighbouring function
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Best matching unit ν to the presented pro-
totype s is determined according to dis-
tance function |D(ν, s)|
For the Euclidean TSP, D is the Euclidean
distance

However, for problems with obstacles, the
multi-goal path planning, D should corre-
spond to the length of the shortest, colli-
sion free path.
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SOM for the Multi-Goal Path Planning
Unsupervised learning procedure
N ← initialization(ν1, . . . , νm)
repeat

error ← 0
foreach g ∈ Π(S) do

ν∗ ←
selectWinner argminν∈N |S(g , ν)|
adapt(S(g , ν), µf (σ, l)|S(g , ν)|)
error ← max{error , |S(g , ν?)|}

σ ← (1− α) · σ
until error ≤ δ

For multi-goal path planning – the selectWinner and adapt
procedures are based on the solution of the path planning problem

An Application of Self-Organizing Map in the non-Euclidean Traveling
Salesman Problem
Jan Faigl, Miroslav Kulich, Vojtěch Vonásek and Libor Přeučil
Neurocomputing, 74(5):671–679, 2011.
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SOM for the TSP in the Watchman Route Problem
During the unsupervised learning, we can compute coverage of W
from the current ring (solution represented by the neurons) and
adapt the network towards uncovered parts of W
Convex cover set of W created on top of a triangular mesh
Incident convex polygons with a straight line segment are found by
walking in a triangular mesh technique

Jan Faigl (2010), TNN
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Multi-Goal Path Planning with Goal Areas

It may be sufficient to visit a goal region instead of the particular
point location

E.g., to take a sample measurement at each goal

Snapshot of the goal area

Camera for

navigation

Camera for

navigation

Snapshot of the goal areaSnapshot of the goal areaSnapshot of the goal area

Camera for sampling

the goal area

Camera for sampling

the goal area

Camera for sampling

the goal area

Camera for

navigation

Camera for

navigation

the goal area

Camera for sampling

Snapshot of the goal area

Camera for

navigation

Not only a sequence of goals visit has to be determined, but also an
appropriate sensing location for each goal need to be found.

The problem with goal regions can be considered as a variant of the
Traveling Salesman Problem with Neighborhoods (TSPN).
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Traveling Salesman Problem with Neighborhoods

Given a set of n regions (neighbourhoods), what is the shortest
closed path that visits each region.

The problem is NP-hard and APX-hard, it cannot be approximated
to within factor 2− ε, where ε > 0

Safra and Schwartz (2006) – Computational Complexity

Approximate algorithms exists for particular problem variants
E.g., Disjoint unit disk neighbourhoods

Flexibility of SOM for the TSP allows to generalize the unsupervised
learning procedure to address the TSPN

TSPN provides a suitable problem formulation for planning
various inspection and data collection missions
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SOM-based Solution of the Traveling Salesman Problem
with Neighborhoods (TSPN)

Polygonal Goals
n=9, T= 0.32 s

Convex Cover Set
n=106, T=5.1 s

Non-Convex Goals
n=5, T=0.1 s

Visiting Convex Regions in a Polygonal Map,
Jan Faigl, Vojěch Vonásek and Libor Přeučil
Robotics and Autonomous Systems, 61(10):1070–1083, 2013.
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Example – TSPN for Inspection Planning with UAV

Determine a cost efficient trajectory from which a given set of
target regions is covered
For each target region a subspace S ⊂ R3 from which the target
can be covered is determined S represents the neighbourhood

The PRM motion planning algorithm is utilized to construct a
motion planning roadmap (a graph)
SOM based solution of the TSP with a graph input is generalized
to the TSPN

Janoušek and Faigl, (2013) – ICRA

Jan Faigl, 2016 A4M36PAH – Lecture 10: Multi-Goal Planning 20 / 62

Multi-Goal Path Planning Dubins Planning Data Collection Planning Mobile Robotic Exploration (TSP-based)

Example – TSPN for Planning with Localization Uncertainty
Selection of waypoints from the neighbourhood of each location
P3AT ground mobile robot in an outdoor environment

TSP: L=184 m,
Eavg=0.57 m

TSPN: L=202 m,
Eavg=0.35 m

Real overall error at the goals decreased from 0.89 m → 0.58 m (about 35%)

Decrease localization error at the target locations (indoor)
Small UGV - MMP5

Error decreased from 16.6 cm → 12.8 cm

Small UAV - Parrot AR.Drone

Improved success of the locations’ visits 83%→95%

Faigl et al., (2012) – ICRA
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Multi-Goal Motion Planning

In the previous cases, we consider existing roadmap or relatively
“simple” collision free (shortest) paths in the polygonal domain
However, determination of the collision free path in a high dimen-
sional configuration space (C-space) can be a challenging problem
itself
Therefore, we can generalize the MTP to multi-goal motion plan-
ning (MGMP) considering motion (trajectory) planners in C-space.

An example of MGMP can be

Plan a cost efficient trajectory for
hexapod walking robot to visit a
set of target locations.
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Problem Statement – MGMP Problem

The working environment W ⊂ R3 is represented as a set of ob-
stacles O ⊂ W and the robot configuration space C describes all
possible configurations of the robot in W
For q ∈ C, the robot body A(q) at q is collision free if A(q)∩O = ∅
and all collision free configurations are denoted as Cfree
Set of n goal locations is G = (g1, . . . , gn), gi ∈ Cfree
Collision free path from qstart to qgoal is κ : [0, 1] → Cfree with
κ(0) = qstart and d(κ(1), qend) < ε, for an admissible distance ε
Multi–goal path τ is admissible if τ : [0, 1] → Cfree , τ(0) = τ(1)
and there are n points such that 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn,
d(τ(ti ), vi ) < ε, and

⋃
1<i≤n vi = G

The problem is to find path τ∗ for a cost function c such that
c(τ∗) = min{c(τ) | τ is admissible multi–goal path}
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MGMP – Examples of Solutions

We aim to avoid explicit determination of all paths connecting two
locations gi , gj ∈ G
Various approaches can be found in literature, e.g.,

Considering Euclidean distance as approximation in solution of the
TSP as the Minimum Spanning Tree (MST)

Saha et al. (2006), IJJR
Steering RRG roadmap expansion by unsupervised learning of SOM
for the TSP

Faigl (2016), WSOM
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Dubins Vehicle

Non-holonomic vehicle such as car-like or aircraft can be modeled
as the Dubins vehicle

Constant forward velocity
Limited minimal turning radius ρ
Vehicle state is represented by a triplet q = (x , y , θ), where
(x , y) ∈ R2, θ ∈ S2 and thus, q ∈ SE (2)

The vehicle motion can be
described by the equation:



ẋ
ẏ

θ̇
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cos θ
sin θ
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where u is the control input.
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Optimal Maneuvers for Dubins Vehicle

For two states q1 ∈ SE (2) and q2 ∈ SE (2) in the environment
without obstacles W = R2 the optimal paths can be characterized
as one of two main types

CCC type: LRL, RLR;
CSC type: LSL, LSR, RSL, RSR;

where S – straight line arc, C – circular arc oriented to left (L) or
right (R) L. E. Dubins (1957) – American Journal of Mathematics

The optimal paths are called Dubins maneuvers:
Constant velocity: v(t) = v and turning radius ρ
6 types of trajectories connecting any configuration in R2 × S1

without obstacles
The control u is according to C and S type one of the three
possible values u ∈ {−1, 0, 1}
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Parametrization of Dubins Maneuvers

Parametrization of each trajectory phase:

{LαRβLγ ,RαLβRγ , LαSdLγ , LαSdRγ ,RαSdLγ ,RαSdRγ}

for α ∈ [0, 2π), β ∈ (π, 2π), d ≥0
Notice the prescribed orientation at q0 and qf .

αSd L γ R αL βR γ
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Planning with Dubins vehicle

The optimal path connecting two configurations can be found
analytically

E.g., for UAVs that usually operates in environment without obstacles

The Dubins maneuvers can be used in randomized-sampling based
motion planners, such as RRT, in the control based sampling
We can consider the model of Dubins vehicle in the multi-goal
path planning

Surveillance, inspection or monitoring missions to periodically visits
given target locations (areas)

Dubins Traveling Salesman Problem DTSP

Given a set of locations, what is the shortest Dubins path that visits
each location exactly once and returns to the origin location.
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Dubins Traveling Salesman Problem (DTSP)

Let have Dubins vehicle with minimal turning
radius ρ
Let the given set of n target locations be
G = {g1, . . . , gn}
Let Σ = (σ1, . . . , σn) be a permutation of
{1, . . . , n}
Let P be projection form SE (2) to R2 such
that P(qi ) = (xi , yi ), qi ∈ SE (2) and
gi = (xi , yi ).

DTSP is a problem to determine the minimum length tour that
visits every location gi ∈ G while satisfying motion constraints of
the Dubins vehicle
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DTSP – Optimization Criterion

DTSP is an optimization problem over all permutations Σ and
headings Θ = {θσ1 , . . . , θσn} for the states (qσ1 , . . . , qσn) such
that qσi = (gσi , θσi )

minimize Σ,Θ

n−1∑

i=1

L(qσi , qσi+1) + L(qσn , qσ1) (1)

subject to qi = (gi , θi ) i = 1, . . . , n (2)

L(qσi , qσj ) is the length of the shortest possible Dubins maneuver
connecting the states qσi and qσj .
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Challenges of the Dubins Traveling Salesman Problem

The key difficulty of the DTSP is that the path length mutually
depends on

Order of the visits to the locations
Headings at the target locations

We need the sequence to determine headings, but headings may influence the sequence
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Algorithms for the DTSP

Two fundamental approaches can be found in literature
Considering a sequence of the visits is given

E.g., found by a solution of the Euclidean TSP

Sampling the headings at the locations into discrete sets of values
and considering the problem as the variant of the Generalized TSP

Sampling based approaches

Besides, further approaches are
Approximation algorithms; optimal solutions for restricted variants
Soft-computing technique such as genetic and memetic technique or
neural networks
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DTSP – Alternating Algorithm

Alternating Algorithm (AA) provides a solution of the DTSP for
an even number of targets n

Savla et al. (2005)

1. Solve the related
Euclidean TSP

Relaxed motion constraints

2. Establish headings for
even edges using straight
line segments

3. Determine optimal
maneuvers for odd edges

Solution of the ETSP

p 1

p 2

p 3p 4

p 5

p 6

Courtesy of P. Váňa

AA is heuristic algorithm which solutions can be bounded by
LTSPκdn/2eπρ, where LTSP is the length of the optimal so-
lution of the ETSP and κ < 2.658.
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DTSP with the Given Sequence of the Visits to the Targets

If the sequence of the visits Σ to the target locations is given
the problem is to determine the optimal heading at each location
We call the problem as the Dubins Touring Problem (DTP)

Váňa and Faigl (2016)

Let for each location gi ∈ G sample possible heading to k values,
i.e., for each gi the set of headings be hi = {θ1

1, . . . , θ
k
1}.

Since Σ is given, we can construct a graph connecting two
consecutive locations in the sequence by all possible headings
For such a graph and particular headings {h1, . . . , hn}, we can find
an optimal headings and thus, the optimal solution of the DTP.
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DTSP as a Solution of the DTP
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The first layer is duplicated layer to support the forward search method

The edge cost corresponds to the length of Dubins maneuver
Better solution of the DTP can be found for more samples, which
will also improve the DTSP but only for the given sequence

Two questions arise for a practical solution of the DTP
How to sample the headings? Since more samples makes finding
solution more demanding

We need to sample the headings in a “smart” way.

What is the solution quality? Is there a tight lower bound?
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Dubins Interval Problem
Dubins Interval Problem (DIP) is a generalization of Dubins
maneuvers to the shortest path connecting two points pi and pj
In the DIP, an leaving interval Θi at pi and arrival interval Θj at
pj are allowed
The optimal solution can be found analytically

Manyam et al. (2015)

RSR maneuver

Solution of the DIP is a tight lower bound for the DTP
Manyam and Rathinam (2015)

Solution of the DIP is not a feasible solution of the DTP
Notice, for Θi = Θj = 〈0, 2π) the optimal maneuver for DIP is straight
line segment
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The DIP-based Sampling of Headings in the DTP
A similar graph as for DTP can be used for heading intervals
The solution of the DIP is a lower bound of the DTP
It can be used to inform how to splitting heading intervals
The ratio between the lower bound and feasible solution of the
DTP provides estimation of the solution quality
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DTSP – Sampling-based Approach

Sampled heading values can be directly utilized to find the sequence
as a solution of the Generalized Traveling Salesman Problem
(GTSP) Also called Set TSP or Covering Salesman Problem

Notice For Dubins vehicle, it is the Generalized Asymmetric TSP (GATSP)

The problem is to determine a shortest tour in a graph that visits
all specified subsets of the graph’s vertices.

The TSP is a special case of the GTSP when each subset to be visited
consists just a single vertex.

GATSP → ATSP
Noon and Bean (1991)

ATSP can be solved by LKH
ATSP → TSP, which can be
solved optimally

E.g., by Concorde
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Dubins Traveling Salesman Problem with Neighborhoods

In surveillance planning, it may be required to visit a set of target
regions G = {R1, . . . ,Rn} by the Dubins vehicle
Then, for each target region Ri , we have to determine a particular
point of the visit pi ∈ Ri and DTSP becomes the Dubins Traveling
Salesman Problem with Neighborhoods (DTSPN)

In addition to Σ and headings Θ, locations P have to be determined.
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DTSPN – Optimization Criterion

DTSPN is an optimization problem over all permutations Σ,
headings Θ = {θσ1 , . . . , θσn} and points P = (pσ1 , . . . , pσn) for
the states (qσ1 , . . . , qσn) such that qσi = (pσi , θσi ) and pσi ∈ Rσi :

minimize Σ,Θ,P

n−1∑

i=1

L(qσi , qσi+1) + L(qσn , qσ1) (3)

subject to qi = (pi , θi ), pi ∈ Ri i = 1, . . . , n (4)

L(qσi , qσj ) is the length of the shortest possible Dubins maneuver
connecting the states qσi and qσj .
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DTSPN – Examples of Solution

Váňa and Faigl (2015), (IROS)

Faigl and Váňa (2016)
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Autonomous Data Collection

Having a set of sensors (sampling sta-
tions), we aim to determine a cost effi-
cient path to retrieve data from the in-
dividual sensors

E.g., Sampling stations on the ocean floor

The planning problem is a variant of
the Traveling Salesman Problem

Two practical aspects of the data collection can be identified
1. Data from particular sensors may be of different importance
2. Data from the sensor can be retrieved using wireless communication

These two aspects can be considered in Prize-Collecting Traveling
Salesman Problem (PC-TSP) and Orienteering Problem (OP) and
their extensions with neighborhoods.
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Prize-Collecting Traveling Salesman Problem with
Neighborhoods (PC-TSPN)

Let n sensors be located in R2 at the locations S = {s1, . . . , sn}
Each sensor has associated penalty ζ(si ) ≥ 0 characterizing
additional cost if the data are not retrieved from si

Let the data collecting vehicle operates in R2 with the motion cost
c(p1, p2) for all pairs of points p1, p2 ∈ R2

The data from si can be retrieved within δ distance from si
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PC-TSPN – Optimization Criterion
The PC-TSPN is a problem to

Determine a set of unique locations G = {g1, . . . , gk}, k ≤ n,
gi ∈ R2, at which data readings are performed
Find a cost efficient tour T visiting G such that the total cost
C (T ) of T is minimal

C(T ) =
∑

(gli ,gli+1 )∈T
c(gli , gli+1) +

∑

s∈S\ST
ζ(s), (5)

where ST ⊆ S are sensors such that for each si ∈ ST there is glj on
T = (gl1 , . . . , glk−1 , glk ) and glj ∈ G for which |(si , glj )| ≤ δ.

PC-TSPN includes other variants of the TSP
for δ = 0 it is the PC-TSP
for ζ(si ) = 0 and δ ≥ 0 it is the TSPN
for ζ(si ) = 0 and δ = 0 it is the ordinary TSP
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PC-TSPN – Example of Solution
Ocean Observatories Initiative (OOI) scenario
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Orienteering Problem

The Orienteering Problem (OP) originates from the orienteering
outdoor sport
The problem is to collect as many rewards as possible within the
given travel budget

It is similar to the PC-TSP, but the tour length must not exceed
the prescribed maximize tour length Tmax

In OP, the starting and termination locations are prescribed, and
they can be different

The solution may not be a closed tour as in the TSP
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Orienteering Problem – Specification

Let the given set of n sensors be located
in R2 with the locations S = {s1, . . . , sn},
si ∈ R2

Each sensor si has an associated score ςi
characterizing the reward if data from si are
collected
The vehicle is operating in R2 and the travel
cost is the Euclidean distance
The starting and termination locations are
prescribed

We aim to determine a subset of k locations Sk ⊆ S that maximizes
the sum of the collected rewards while the travel cost to visit them
is below Tmax .
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Orienteering Problem – Optimization Criterion
Let Σ = (σ1, . . . , σk) be a permutation of k sensor labels, 1 ≤ σi ≤
n and σi 6= σj for i 6= j

Σ defines a tour T = (sσ1 , . . . , sσk ) visiting the selected sensors Sk
Let the start and end points of the tour be σ1 = 1 and σk = n

The Orienteering problem (OP) is to determine the number of
sensors k , the subset of sensors Sk , and their sequence Σ such that

maximizek,Sk ,Σ R =
k∑

i=1

ςσi

subject to
k∑

i=2

|(sσi−1 , sσi )| ≤ Tmax and

sσ1 = s1, sσk = sn.

(6)

The OP combines the problem of determining the most valuable locations Sk with
finding the shortest tour T visiting the locations Sk . It is NP-hard, since for s1 = sn
and particular Sk it becomes the TSP.
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Orienteering Problem – Example of Solutions

Heuristic algorithms have been proposed
E.g., Ramesh et al. (1991), Chao et. al. (1996)

Tmax=80, R=1248 Tmax=80, R =1278 Tmax=45, R=756

Tmax=95, R=1395 Tmax=95, R=1335 Tmax=60, R=845
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Orienteering Problem with Neighborhoods

Similarly to the TSP with Neighborhoods and PC-TSPN we can
formulate the Orienteering Problem with Neighborhoods.

Tmax=60, δ=1.5, R=1600 Tmax=45, δ=1.5, R=1344
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Mobile Robot Exploration

Create a map of the environment
Frontier-based approach

Yamauchi (1997)

Occupancy grid
Moravec and Elfes (1985)

Laser scanner sensor
Next-best-view approach

Select the next robot goal

Performance metric:
Time to create the map of the whole environment

search and rescue mission
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Distance Cost Variants
Simple robot–goal distance

Evaluate all goals using the robot–goal distance
a length of the path from the robot po-
sition to the goal candidate

Greedy goal selection
Select the closest goal candidate

TSP distance cost
On Distance Utility in the Exploration Task
Miroslav Kulich, Jan Faigl and Libor Přeučil
ICRA, 2011, 4455-4460.

Consider visitations of all goals
Solve the associated traveling salesman
problem (TSP)

A length of the tour visiting all goals
Goal representatives

TSP distance cost improves performance about 10-30%
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Multi-Robot Exploration Strategy

A set of m robots at positions R =
{r1, r2, . . . , rm}
At time t, let a set of n goal candidates be
G (t) = {g1, . . . , gn}

e.g., frontiers

The exploration strategy (at the planning step t):
Select a goal g ∈ G (t) for each robot r ∈ R that will
minimize the required time to explore the environment.

The problem is formulated as the task-allocation problem

(〈r1, gr1〉, . . . , 〈rm, grm〉) = assign(R,G (t),M),

whereM is the current map

We consider only the distance cost for the assignment
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Multi-Robot Exploration – Problem Definition
A problem of creating a grid map of the unknown environment by a
set of m robots R = {r1, r2, . . . , rm}.

Exploration is an iterative procedure:

1. Collect new sensor measurements
2. Determinate a set of goal candidates

G (t) = {g1, g2, . . . , gn}
e.g., frontiers

3. At time step t, select next goal for each
robot as the task-allocation problem

(〈r1, gr1〉, . . . , 〈rm, grm〉) = assign(R,G (t),M(t))
using the distance cost function

4. Navigate robots towards goal
5. If |G (t)| > 0 go to Step 1; otherwise terminate
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Proposed Multiple Traveling Salesman Approach

Consider the task-allocation problem as the Multiple Traveling
Salesman Problem (MTSP)
MTSP heuristic 〈cluster–first, route–second 〉
1. Cluster the goal candidates G to m clusters

C = {C1, . . . ,Cm},Ci ⊆ G
using K-means

2. For each robot ri ∈ R, i ∈ {1, . . .m} select the next goal gi from
Ci using the TSP distance cost

Kulich et at., ICRA (2011)

Solve the TSP on the set Ci ∪ {ri}
the tour starts at ri

The next robot goal gi is the first goal of the found TSP tour

Goal Assignment using Distance Cost in Multi-Robot Exploration
Jan Faigl, Miroslav Kulich and Libor Přeučil
IROS, 2012, 3741–3741.
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Comparison – Goal Assignment Strategies

1. Greedy Assignment
Yamauchi B, Robotics and Autonomous Systems 29, 1999

Randomized greedy selection of the closest goal candidate

2. Iterative Assignment
Werger B, Mataric M, Distributed Autonomous Robotic Systems 4, 2001

Centralized variant of the broadcast of local eligibility algorithm
(BLE)

3. Hungarian Assignment
Optimal solution of the task-allocation problem for assignment of
n goals and m robots in O(n3)

Stachniss C, C implementation of the Hungarian method, 2004

4. MTSP Assignment
〈cluster–first, route–second〉, the TSP distance cost

In all strategies, we use the identical selection of the
goal candidates from the frontiers.
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Statistical Evaluation of the Exploration Strategies

Evaluation for the number of robots m and sensor range ρ

ρ m
Iterative Hungarian MTSP

vs vs vs
Greedy Iterative Hungarian

3.0 3 + = +
3.0 5 + = +
3.0 7 + = +
3.0 10 + + –
4.0 3 + = +
4.0 5 + = =
4.0 7 + = +
4.0 10 + + –
5.0 3 + = +
5.0 5 + = +
5.0 7 + = +
5.0 10 + + –

Total number of trials 14 280
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Performance of the MTSP vs Hungarian Algorithm

Replanning as quickly as possible; m = 3, ρ = 3 m

The MTSP assignment provides better performance
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Summary

Introduction to multi-goal path planning
Robotic TSP

Overview of Dubins planning and DTSP
Data collection planning
Overview of multi-robot exploration based on the TSP
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