

Multi-Goal Path Planning Dubins Planning Data Collection Planning Mobile Robotic Exploration (TSP-based)	Multi-Goal Path Planning Dubins Planning Data Collection Planning Mobile Robotic Exploration (TSP-based)
Traveling Salesman Problem (TSP)	Solutions of the TSP
Given a set of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city.	Efficient heuristics from the Operational
 The TSP can be formulated for a graph G(V, E), where V denotes a set of locations (cities) and E represents edges connecting two cities with the associated travel cost c (distance), i.e., for each v_i, v_j ∈ V there is an edge e_{ij} ∈ E, e_{ij} = (v_i, v_j) with the cost c_{ij}. If the associated cost of the edge (v_i, v_j) is the Euclidean distance 	 Research have been proposed LKH - K. Helsgaun efficient implementation of the Lin-Kernighan heuristic (1998) http://www.akira.ruc.dk/~keld/research/LKH/ Concorde - Solver with several heuristic and also optimal solver
 c_{ij} = (v_i, v_j) , the problem is called the Euclidean TSP (ETSP). In our case, v ∈ V represents a point in ℝ² and solution of the ETSP is a path in the plane. It is known, the TSP is NP-hard (its decision variant) and several algorithms can be found in literature. 	http://www.math.uwaterloo.ca/tsp/concorde.html Beside the heuristic and approximations algorithms (such as Christofides 3/2-approximation algorithm), other ("soft-computing") approaches have been proposed, e.g., based on genetic algorithms, and memetic approaches, ant colony optimization (ACO), and neural networks.
William J. Cook (2012) – In Pursuit of the Traveling Salesman: Math- ematics at the Limits of Computation	A B
Jan Faigl, 2016 A4M36PAH – Lecture 10: Multi-Goal Planning 6 / 62 Multi-Goal Path Planning Dubins Planning Data Collection Planning Mobile Robotic Exploration (TSP-based)	Jan Faigl, 2016 A4M36PAH – Lecture 10: Multi-Goal Planning 7 / 62 Multi-Goal Path Planning Dubins Planning Data Collection Planning Mobile Robotic Exploration (TSP-based)
Multi-Goal Path Planning (MTP) Problem	Multi-Goal Path Planning in Robotic Missions
Given a map of the environment \mathcal{W} , mobile robot \mathcal{R} , and a set of locations, what is the shortest possible collision free path that visits each location exactly once and returns to the origin location.	Multi-goal path planning It builds on a simple path and trajectory planning
MTP problem is de facto the TSP with the cost associated to the edges as the length of the <i>shortest</i> path connecting the locations	 It is a combinatorial optimization problem to determine the sequence to visit the given locations It allows to solve (or improve performance of) more complex problems such as
 For n locations, we need to compute up to n² shortest paths (solve n² motion planning problems) 	 Inspection planning - Find the shortest tour to see (inspect) the whole environment Data collection planning - Determine a cost efficient path to col-

- Data collection planning Determine a cost efficient path to collect data from the sensor stations (locations)
- <u>Robotic exploration</u> Create a map of unknown environment as quickly as possible

Visibility graph as the roadmap for a point robot provides a straight forward solution, but such a shortest path may not be necessarily feasible for more complex robots

• The paths can be found as the shortest path in

for the TSP can be constructed

a graph (roadmap), from which the G(V, E)

Inspection Planning

Motivations (examples)

- Periodically visit particular locations of the environment to check, e.g., for intruders, and return to the starting locations
- Based on available plans, provide a guideline how to search a building to find possible victims as quickly as possible (search and rescue scenario)



Multi-Goal Path Planning

Inspection Planning – Decoupled Approach

1. Determine sensing locations such that the whole environment would be inspected (seen) by visiting them

A solution of the Art Gallery Problem

- 2. Create a roadmap connecting the sensing location E.g., using visibility graph or randomized sampling based approaches
- 3. Find the inspection path visiting all the sensing locations as a solution of the multi-goal path planning

De facto solution of the TSP

Inspection planning is also called coverage path planning in literature.

Jan Faigl, 2016 A4M36PAH - Lecture 10: Multi-Goal Planning 10 / 62 Jan Faigl, 2016 A4M36PAH - Lecture 10: Multi-Goal Planning 11 / 62 Multi-Goal Path Planning **Dubins** Planning Data Collection Planning Mobile Robotic Exploration (TSP-based) Multi-Goal Path Planning Dubins Planning Data Collection Planning Mobile Robotic Exploration (TSP-based)

Example – Inspection Planning with AUV

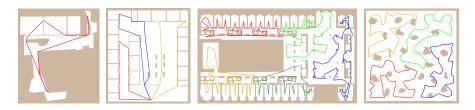
Determine shortest inspection path for Autonomous Underwater Vehicle (AUV) to inspect a propeller of the vessel

Three-dimensional coverage planning for an underwater inspection robot Brendan Englot and Franz S. Hover International Journal of Robotic Research, 32(9-10):1048-1073, 2013.

Inspection Planning – "Continuous Sensing"

If we do not prescribe a discrete set of sensing locations, we can formulate the problem as the Watchman route problem

Given a map of the environment \mathcal{W} determine the shortest, closed, and collision free path, from which the whole environment is covered by an omnidirectional sensors with the radius ρ .



Approximate Solution of the Multiple Watchman Routes Problem with **Restricted Visibility Range** Jan Faigl

IEEE Transactions on Neural Networks, 21(10):1668-1679, 2010.

12 / 62 Jan Faigl, 2016

Mobile Robotic Exploration (TSP-based)

Self-Organizing Maps based Solution of the TSP

Kohonen's type of unsupervised two-layered neural network

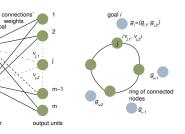
input lave

- Neurons' weights represent nodes $\mathcal{N} = \{\nu_1, \ldots, \nu_m\}$) in a plane.
- Nodes are organized into a ring.
- Sensing locations $S = \{s_1, \ldots, s_n\}$ are presented to the network in a random order.
- Nodes compete to be winner according to their distance to the presented goal s

 $\nu^* = \operatorname{argmin}_{\nu \in \mathcal{N}} |\mathcal{D}(\nu, s)|$

The winner and its neighbouring nodes are adapted (moved) towards the city according to the neighbouring function

 $f(\sigma, d) = \left\{ egin{array}{c} e^{-rac{d^2}{\sigma^2}} & ext{for } d < m/n_f, \ 0 & ext{otherwise}, \end{array}
ight.$

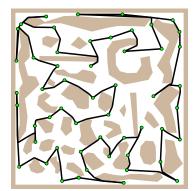


- Best matching unit ν to the presented prototype s is determined according to distance function $|\mathcal{D}(\nu, s)|$
- For the Euclidean TSP, \mathcal{D} is the Euclidean distance
- However, for problems with obstacles, the multi-goal path planning, \mathcal{D} should correspond to the length of the shortest, collision free path.

Multi-Goal Path Planning Dubins Planning Data Collection Planning Mobile Robotic Exploration (TSP-based)

SOM for the Multi-Goal Path Planning

Unsupervised learning procedure $\mathcal{N} \leftarrow \text{initialization}(\nu_1, \ldots, \nu_m)$ repeat error $\leftarrow 0$ foreach $g \in \Pi(S)$ do selectWinner $\operatorname{argmin}_{\nu \in \mathcal{N}} |S(g, \nu)|$ adapt($S(g, \nu), \mu f(\sigma, l) | S(g, \nu) |$) error $\leftarrow \max\{error, |S(g, \nu^*)|\}$ $\sigma \leftarrow (1 - \alpha) \cdot \sigma$ until error $< \delta$



- For multi-goal path planning the selectWinner and adapt procedures are based on the solution of the path planning problem
 - An Application of Self-Organizing Map in the non-Euclidean Traveling Salesman Problem Jan Faigl, Miroslav Kulich, Vojtěch Vonásek and Libor Přeučil Neurocomputing, 74(5):671-679, 2011.

Jan Faigl, 2016		A4M36PAH – Lecture 10:	Multi-Goal Planning	14 / 62	Jan Faigl, 2016		A4M36PAH – Lecture 10: N	Multi-Goal Planning	15 / 62
Multi-Goal Path Planning	Dubins Planning	Data Collection Planning	Mobile Robotic Exploration	(TSP-based)	Multi-Goal Path Planning	Dubins Planning	Data Collection Planning	Mobile Robotic Exploration (TSP-based)

Multi-Goal Path Planning with Goal Areas

It may be sufficient to visit a goal region instead of the particular point location

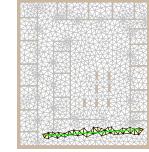
E.g., to take a sample measurement at each goal



Not only a sequence of goals visit has to be determined, but also an appropriate sensing location for each goal need to be found.

The problem with goal regions can be considered as a variant of the Traveling Salesman Problem with Neighborhoods (TSPN).

walking in a triangular	mesh technique



A4M36PAH - Lecture 10: Multi-Goal Planning

SOM for the TSP in the Watchman Route Problem

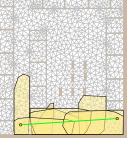
• Convex cover set of \mathcal{W} created on top of a triangular mesh

adapt the network towards uncovered parts of $\mathcal W$

During the unsupervised learning, we can compute coverage of W

from the current ring (solution represented by the neurons) and

Incident convex polygons with a straight line segment are found by



Jan Faigl (2010), TNN

Traveling Salesman Problem with Neighborhoods

Given a set of n regions (neighbourhoods), what is the shortest closed path that visits each region.

The problem is NP-hard and APX-hard, it cannot be approximated to within factor $2 - \epsilon$, where $\epsilon > 0$

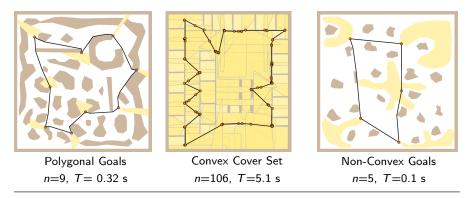
Safra and Schwartz (2006) – Computational Complexity

Approximate algorithms exists for particular problem variants

E.g., Disjoint unit disk neighbourhoods

- Flexibility of SOM for the TSP allows to generalize the unsupervised learning procedure to address the TSPN
- TSPN provides a suitable problem formulation for planning various inspection and data collection missions

SOM-based Solution of the Traveling Salesman Problem with Neighborhoods (TSPN)



Visiting Convex Regions in a Polygonal Map, Jan Faigl, Vojěch Vonásek and Libor Přeučil Robotics and Autonomous Systems, 61(10):1070–1083, 2013.

Jan Faigl, 2016		A4M36PAH – Lecture 10:	Multi-Goal Planning	18 / 62	Jan Faigl, 2016		A4M36PAH – Lecture 10:	Multi-Goal Planning	19 / 62
Multi-Goal Path Planning	Dubins Planning	Data Collection Planning	Mobile Robotic Exploration	(TSP-based)	Multi-Goal Path Planning	Dubins Planning	Data Collection Planning	Mobile Robotic Exploration	(TSP-based)

Example – TSPN for Inspection Planning with UAV

- Determine a cost efficient trajectory from which a given set of target regions is covered
- For each target region a subspace $S \subset \mathbb{R}^3$ from which the target can be covered is determined S represents the neighbourhood
- The PRM motion planning algorithm is utilized to construct a motion planning roadmap (a graph)
- SOM based solution of the TSP with a graph input is generalized to the TSPN

Janoušek and Faigl, (2013) - ICRA

Example – TSPN for Planning with Localization Uncertainty

- Selection of waypoints from the neighbourhood of each location
- P3AT ground mobile robot in an outdoor environment

TSP: *L*=184 m, $E_{avg} = 0.57 \text{ m}$

TSPN: L=202 m. $E_{avg} = 0.35 \text{ m}$

Real overall error at the goals decreased from 0.89 m \rightarrow 0.58 m (about 35%) Decrease localization error at the target locations (indoor)

Error decreased from 16.6 cm \rightarrow 12.8 cm

Improved success of the locations' visits $83\% {
ightarrow} 95\%$ Faigl et al., (2012) - ICRA

21 / 62

Jan Faigl, 2016

A4M36PAH - Lecture 10: Multi-Goal Planning

20 / 62 Jan Faigl, 2016

Multi-Goal Path Planning Dubins Planning Data Collection Planning

Mobile Robotic Exploration (TSP-based)

Multi-Goal Motion Planning

- In the previous cases, we consider existing roadmap or relatively "simple" collision free (shortest) paths in the polygonal domain
- However, determination of the collision free path in a high dimensional configuration space (C-space) can be a challenging problem itself
- Therefore, we can generalize the MTP to multi-goal motion planning (MGMP) considering motion (trajectory) planners in C-space.

We aim to avoid explicit determination of all paths connecting two

• Considering Euclidean distance as approximation in solution of the

Steering RRG roadmap expansion by unsupervised learning of SOM

■ Various approaches can be found in literature, e.g.,

TSP as the Minimum Spanning Tree (MST)

An example of MGMP can be

Plan a cost efficient trajectory for hexapod walking robot to visit a set of target locations.

MGMP – Examples of Solutions

locations $g_i, g_i \in \mathcal{G}$

Problem Statement – MGMP Problem

- The working environment $\mathcal{W} \subset \mathbb{R}^3$ is represented as a set of obstacles $\mathcal{O} \subset \mathcal{W}$ and the robot configuration space \mathcal{C} describes all possible configurations of the robot in $\mathcal W$
- For $q \in C$, the robot body $\mathcal{A}(q)$ at q is collision free if $\mathcal{A}(q) \cap \mathcal{O} = \emptyset$ and all collision free configurations are denoted as C_{free}
- Set of *n* goal locations is $\mathcal{G} = (g_1, \ldots, g_n), g_i \in \mathcal{C}_{free}$
- Collision free path from q_{start} to q_{goal} is $\kappa : [0,1] \rightarrow C_{free}$ with $\kappa(0) = q_{start}$ and $d(\kappa(1), q_{end}) < \epsilon$, for an admissible distance ϵ
- Multi-goal path τ is admissible if $\tau : [0,1] \to C_{free}, \tau(0) = \tau(1)$ and there are *n* points such that $0 \leq t_1 \leq t_2 \leq \ldots \leq t_n$, $d(\tau(t_i), v_i) < \epsilon$, and $\bigcup_{1 < i < n} v_i = \mathcal{G}$
- The problem is to find path τ^* for a cost function c such that $c(\tau^*) = \min\{c(\tau) \mid \tau \text{ is admissible multi-goal path}\}$

Jan Faigl, 2016		A4M36PAH – Lecture 10:	Multi-Goal Planning	22 / 62	Jan Faigl, 2016		A4M36PAH – Lecture 10:	Multi-Goal Planning	23 / 62
Multi-Goal Path Pl	anning Dubins Planning	Data Collection Planning	Mobile Robotic Exploration	n (TSP-based)	Multi-Goal Path Planning	Dubins Planning	Data Collection Planning	Mobile Robotic Exploration	(TSP-based)

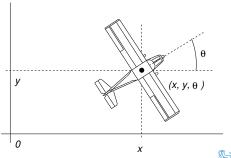
Dubins Vehicle

- Non-holonomic vehicle such as car-like or aircraft can be modeled as the Dubins vehicle
 - Constant forward velocity
 - Limited minimal turning radius ρ
 - Vehicle state is represented by a triplet $q = (x, y, \theta)$, where
 - (x, y) $\in \mathbb{R}^2$, $\theta \in \mathbb{S}^2$ and thus, $q \in SE(2)$

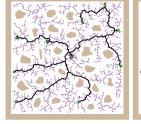
The vehicle motion can be described by the equation:

$$\left[\begin{array}{c} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{array} \right] = v \left[\begin{array}{c} \cos \theta \\ \sin \theta \\ \frac{u}{\rho} \end{array} \right], \quad |u| \leq 1,$$

where *u* is the control input.



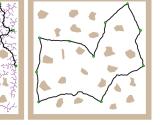
for the TSP



A4M36PAH - Lecture 10: Multi-Goal Planning

Faigl (2016), WSOM

Saha et al. (2006), IJJR



Jan Faigl, 2016

Data Collection Planning Mobile Robotic Exploration (TSP-based)

Optimal Maneuvers for Dubins Vehicle

- For two states $q_1 \in SE(2)$ and $q_2 \in SE(2)$ in the environment without obstacles $W = \mathbb{R}^2$ the optimal paths can be characterized as one of two main types
 - **CCC** type: LRL, RLR;
 - **CSC** type: LSL, LSR, RSL, RSR;

where S – straight line arc, C – circular arc oriented to left (L) or right (R) L. E. Dubins (1957) – American Journal of Mathematics

- The optimal paths are called **Dubins maneuvers**:
 - Constant velocity: v(t) = v and turning radius ρ
 - \blacksquare 6 types of trajectories connecting any configuration in $\mathbb{R}^2\times\mathbb{S}^1$
 - without obstacles
 - The control u is according to C and S type one of the three possible values $u \in \{-1, 0, 1\}$

<u>A</u>

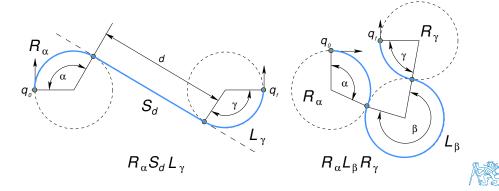
Parametrization of Dubins Maneuvers

Parametrization of each trajectory phase:

 $\{L_{\alpha}R_{\beta}L_{\gamma}, R_{\alpha}L_{\beta}R_{\gamma}, L_{\alpha}S_{d}L_{\gamma}, L_{\alpha}S_{d}R_{\gamma}, R_{\alpha}S_{d}L_{\gamma}, R_{\alpha}S_{d}R_{\gamma}\}$

for $lpha\in$ [0,2 π), $eta\in$ ($\pi,2\pi$), $d\ge$ 0

Notice the prescribed orientation at q_0 and q_f .



Jan Faigl, 2016		A4M36PAH – Lecture 10:	Multi-Goal Planning	27 / 62	Jan Faigl, 2016		A4M36PAH – Lecture 10:	Multi-Goal Planning	28 / 62
Multi-Goal Path Planning	Dubins Planning	Data Collection Planning	Mobile Robotic Exploration	(TSP-based)	Multi-Goal Path Planning	Dubins Planning	Data Collection Planning	Mobile Robotic Exploration	1 (TSP-based)

Planning with Dubins vehicle

 The optimal path connecting two configurations can be found analytically

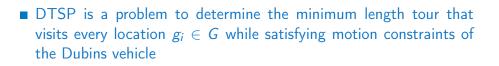
E.g., for UAVs that usually operates in environment without obstacles

- The Dubins maneuvers can be used in randomized-sampling based motion planners, such as RRT, in the control based sampling
- We can consider the model of Dubins vehicle in the multi-goal path planning
 - Surveillance, inspection or monitoring missions to periodically visits given target locations (areas)
- Dubins Traveling Salesman Problem DTSP

Given a set of locations, what is the shortest Dubins path that visits each location exactly once and returns to the origin location.

Dubins Traveling Salesman Problem (DTSP)

- \blacksquare Let have Dubins vehicle with minimal turning radius ρ
- Let the given set of *n* target locations be $G = \{g_1, \dots, g_n\}$
- Let $\Sigma = (\sigma_1, \dots, \sigma_n)$ be a permutation of $\{1, \dots, n\}$
- Let \mathcal{P} be projection form SE(2) to \mathbb{R}^2 such that $\mathcal{P}(q_i) = (x_i, y_i), q_i \in SE(2)$ and $g_i = (x_i, y_i)$.



DTSP – Optimization Criterion

Dubins Planning

Multi-Goal Path Planning

• DTSP is an optimization problem over all permutations Σ and headings $\Theta = \{\theta_{\sigma_1}, \dots, \theta_{\sigma_n}\}$ for the states $(q_{\sigma_1}, \dots, q_{\sigma_n})$ such that $q_{\sigma_i} = (g_{\sigma_i}, \theta_{\sigma_i})$

$$minimize_{\Sigma,\Theta} \qquad \sum_{i=1}^{n-1} \mathcal{L}(q_{\sigma_i}, q_{\sigma_{i+1}}) + \mathcal{L}(q_{\sigma_n}, q_{\sigma_1}) \qquad (1)$$

Data Collection Planning Mobile Robotic Exploration (TSP-based)

subject to $q_i = (g_i, \theta_i) \ i = 1, \dots, n$ (2)

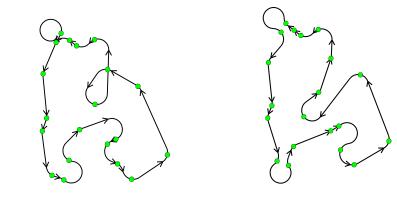
A4M36PAH - Lecture 10: Multi-Goal Planning

■ L(q_{σi}, q_{σj}) is the length of the shortest possible Dubins maneuver connecting the states q_{σi} and q_{σi}.

Challenges of the Dubins Traveling Salesman Problem

- The key difficulty of the DTSP is that the path length mutually depends on
 - Order of the visits to the locations
 - Headings at the target locations

We need the sequence to determine headings, but headings may influence the sequence



32 / 62

Jahr algi, 2010 Atimor Alf – Lecture 10. Multi-Goal Flaining 31 / 02	San raigi, 2010 Adivisor Ari – Lecture 10. Multi-Goal Flamming 52 / 02
Multi-Goal Path Planning Dubins Planning Data Collection Planning Mobile Robotic Exploration (TSP-based)	Multi-Goal Path Planning Dubins Planning Data Collection Planning Mobile Robotic Exploration (TSP-based)
Algorithms for the DTSP	DTSP – Alternating Algorithm
Two fundamental approaches can be found in literature	Alternating Algorithm (AA) provides a solution of the DTSP for an even number of targets <i>n</i> Savla et al. (2005)
 Considering a sequence of the visits is given E.g., found by a solution of the Euclidean TSP Sampling the headings at the locations into discrete sets of values and considering the problem as the variant of the Generalized TSP Sampling based approaches Besides, further approaches are Approximation algorithms; optimal solutions for restricted variants Soft-computing technique such as genetic and memetic technique or 	 Solve the related Euclidean TSP <i>Relaxed motion constraints</i> Establish headings for even edges using straight line segments Determine optimal maneuvers for odd edges
neural networks	AA is heuristic algorithm which solutions can be bounded by $L_{TSP}\kappa \lceil n/2 \rceil \pi \rho$, where L_{TSP} is the length of the optimal solution of the ETSP and $\kappa < 2.658$.

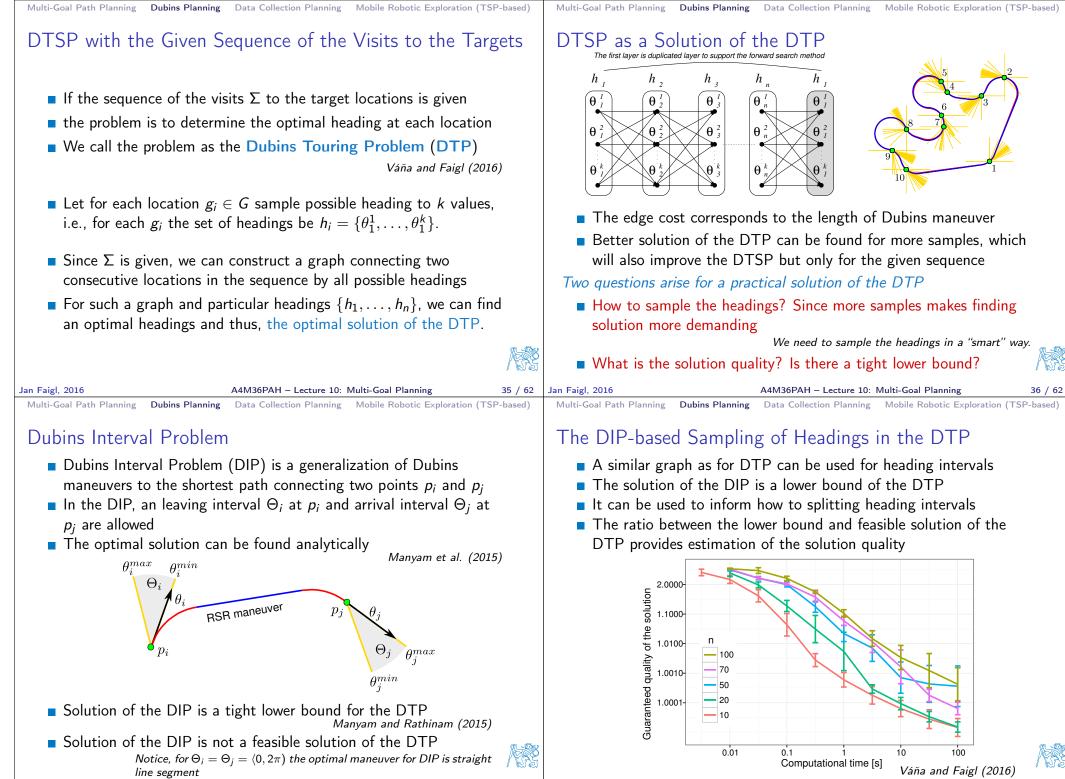
A.R.

31 / 62 Jan Faigl. 2016

Jan Faigl, 2016

33 / 62 Jan Faigl, 2016

11595

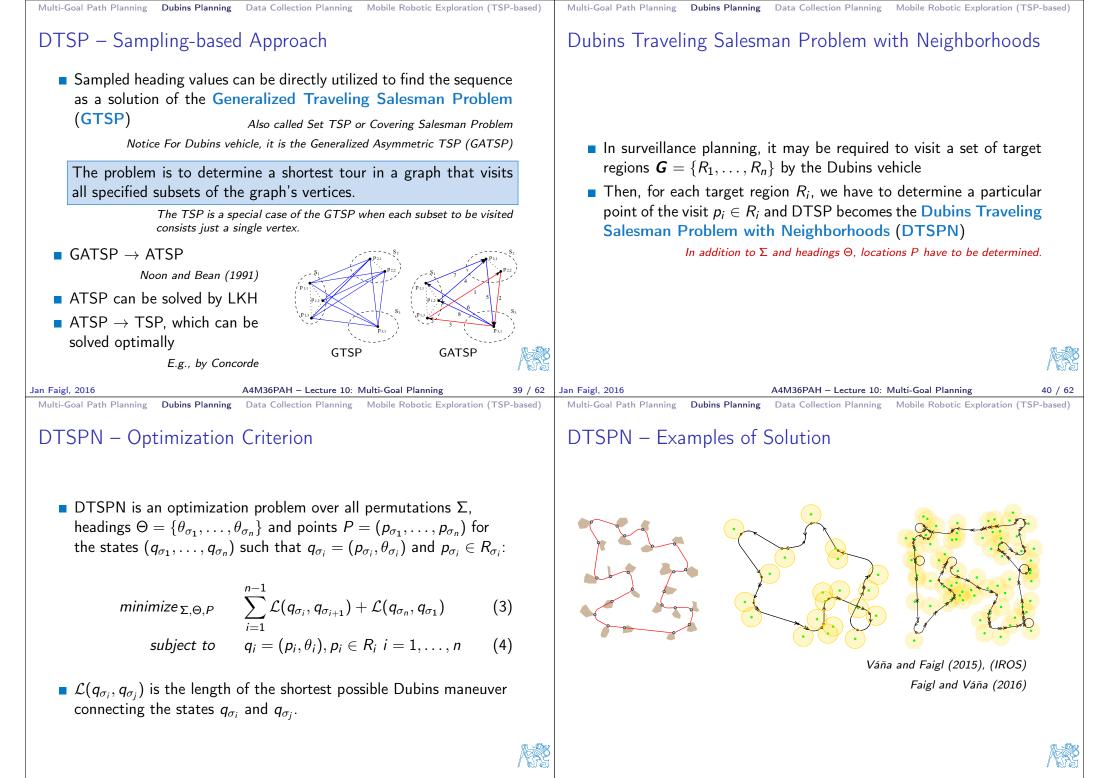


Jan Faigl, 2016

A4M36PAH - Lecture 10: Multi-Goal Planning

A4M36PAH – Lecture 10: Multi-Goal Planning

38 / 62



Autonomous Data Collection

Having a set of sensors (sampling stations), we aim to determine a cost efficient path to retrieve data from the individual sensors

E.g., Sampling stations on the ocean floor

The planning problem is a variant of the Traveling Salesman Problem

AS Compared and State of Weights Compared and State of State of State of State Participation of State of State

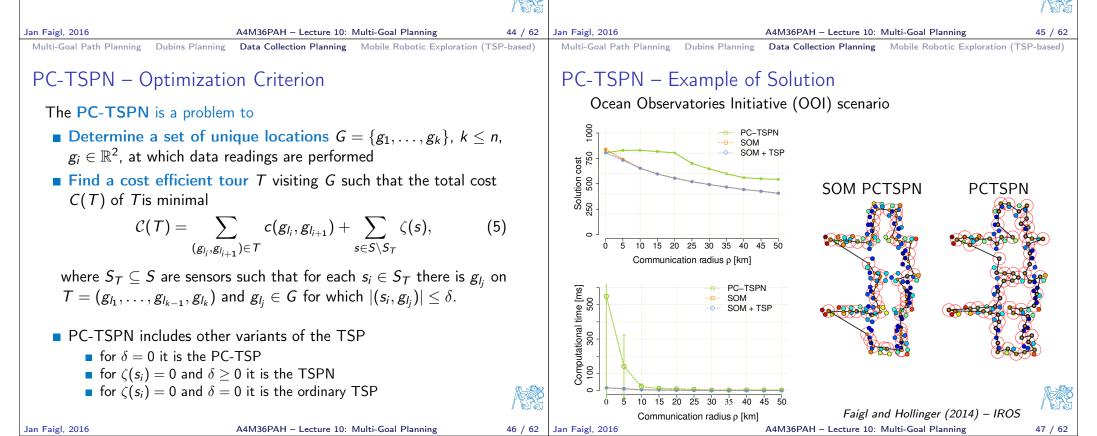
Two practical aspects of the data collection can be identified

- 1. Data from particular sensors may be of different importance
- 2. Data from the sensor can be retrieved using wireless communication

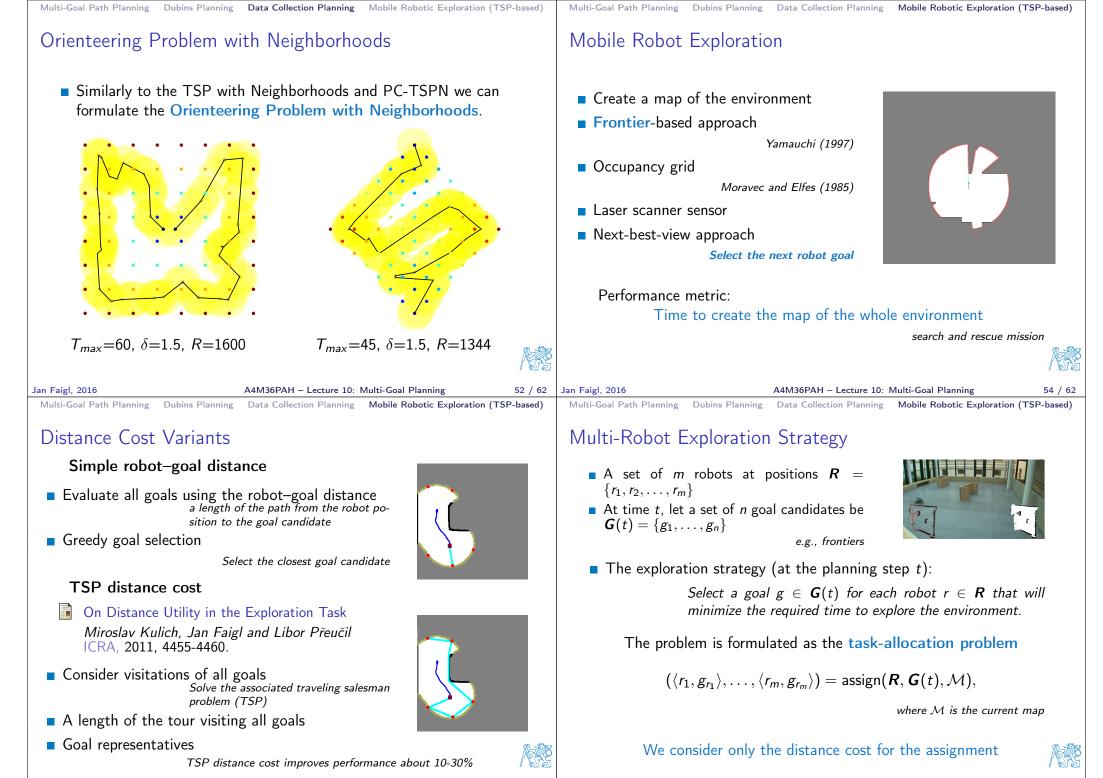
These two aspects can be considered in Prize-Collecting Traveling Salesman Problem (PC-TSP) and Orienteering Problem (OP) and their extensions with neighborhoods.

Prize-Collecting Traveling Salesman Problem with Neighborhoods (PC-TSPN)

- Let *n* sensors be located in \mathbb{R}^2 at the locations $S = \{s_1, \ldots, s_n\}$
- Each sensor has associated penalty ζ(s_i) ≥ 0 characterizing additional cost if the data are not retrieved from s_i
- Let the data collecting vehicle operates in \mathbb{R}^2 with the motion cost $c(p_1, p_2)$ for all pairs of points $p_1, p_2 \in \mathbb{R}^2$
- The data from s_i can be retrieved within δ distance from s_i



Multi-Goal Path Planning Dubins Planning Data Collection Planning Mobile Robotic Exploration (TSP-based)	Multi-Goal Path Planning Dubins Planning Data Collection Planning Mobile Robotic Exploration (TSP-based)
Orienteering Problem	Orienteering Problem – Specification
 The Orienteering Problem (OP) originates from the orienteering outdoor sport The problem is to collect as many rewards as possible within the given travel budget 	 Let the given set of n sensors be located in ℝ² with the locations S = {s₁,, s_n}, s_i ∈ ℝ² Each sensor s_i has an associated score s_i characterizing the reward if data from s_i are collected
 It is similar to the PC-TSP, but the tour length must not exceed the prescribed maximize tour length T_{max} In OP, the starting and termination locations are prescribed, and they can be different 	 The vehicle is operating in R² and the travel cost is the Euclidean distance The starting and termination locations are prescribed
The solution may not be a closed tour as in the TSP	• We aim to determine a subset of k locations $S_k \subseteq S$ that maximizes the sum of the collected rewards while the travel cost to visit them is below T_{max} .
Jan Faigl, 2016 A4M36PAH – Lecture 10: Multi-Goal Planning 48 / 62 Multi-Goal Path Planning Dubins Planning Data Collection Planning Mobile Robotic Exploration (TSP-based)	Jan Faigl, 2016 A4M36PAH – Lecture 10: Multi-Goal Planning 49 / 62 Multi-Goal Path Planning Dubins Planning Data Collection Planning Mobile Robotic Exploration (TSP-based)
Orienteering Problem – Optimization Criterion	Orienteering Problem – Example of Solutions
Let $\Sigma = (\sigma_1, \dots, \sigma_k)$ be a permutation of k sensor labels, $1 \le \sigma_i \le n$ and $\sigma_i \ne \sigma_j$ for $i \ne j$	 Heuristic algorithms have been proposed E.g., Ramesh et al. (1991), Chao et. al. (1996)
 Σ defines a tour T = (s_{σ1},, s_{σk}) visiting the selected sensors S_k Let the start and end points of the tour be σ₁ = 1 and σ_k = n The Orienteering problem (OP) is to determine the number of sensors k, the subset of sensors S_k, and their sequence Σ such that maximize_{k,Sk},Σ R = Σ^k ς_{σi} 	
subject to $\sum_{i=2}^{k} (s_{\sigma_{i-1}}, s_{\sigma_i}) \leq T_{max} \text{ and}$ $s_{\sigma_1} = s_1, s_{\sigma_k} = s_n.$	T_{max} =80, R=1248 T_{max} =80, R =1278 T_{max} =45, R=756
The OP combines the problem of determining the most valuable locations S_k with finding the shortest tour T visiting the locations S_k . It is NP-hard, since for $s_1 = s_n$ and particular S_k it becomes the TSP.	$T_{max}=95, R=1395$ $T_{max}=95, R=1335$ $T_{max}=60, R=845$
Jan Faigl, 2016A4M36PAH – Lecture 10: Multi-Goal Planning50 / 62	Jan Faigl, 2016A4M36PAH – Lecture 10: Multi-Goal Planning51 / 62



Jan Faigl, 2016

A4M36PAH – Lecture 10: Multi-Goal Planning

55 / 62 Jan Faigl, 2016

A4M36PAH – Lecture 10: Multi-Goal Planning

56 / 62

