
From one to many:
Multiagent Planning

Ronen Brafman, Carmel Domshlak, Raz Nissim

(Antońın Komenda, komenda@agents.fel.cvut.cz)



Multiagent systems

Overview

systems consisting of agents

an agent is a bounded entity

the entities interact with each other

generally no limitations on what an agent is (robots, humans,
programs, ...)

For scope of this lecture

agents ∼ intelligent programs

interaction ∼ message passing



Multiagent systems

Overview

systems consisting of agents

an agent is a bounded entity

the entities interact with each other

generally no limitations on what an agent is (robots, humans,
programs, ...)

For scope of this lecture

agents ∼ intelligent programs

interaction ∼ message passing



Multiagent systems

Technically

agents ∼ a computational thread or process running ideally on
its own processor (core)

interaction ∼ inter-process sending of messages (potentially
over network)



Constraint Satisfaction Problems (CSPs)

What is a CSP?

finite set of variables v1, v2, . . . , vk

non-empty domain of possible values for each variable
Dv1 ,Dv2 , . . . ,Dvk

finite set of constraints C1,C2, . . .Cm

each constraint Ci specifies allowable combinations of values
for subsets of variables

a solution is an assignment of values to all variables that
satisfies all constraints



Constraint Satisfaction Problems (CSPs)

Example

variables:

v1 ∈ {0, 1, 2} = Dv1

v2 ∈ {3, 4} = Dv2

v3 ∈ {5,6} = Dv3

v4 ∈ {5, 6} = Dv4

constraints:

C1 = {v1 = 0⇒ v2 = 4}
C2 = {v1 = 1⇒ v2 = 3}
C3 = {v2 = 3⇒ v3 = 5}
C4 = {v3 = 5⇒ v1 6= 0 ∧ v1 6= 2}
C5 = {v3 = v4}

solution:

?,+?



Distributed Constraint Satisfaction Problems (DisCSPs)

Distribution of CSP

each agent ϕi ∈ Φ is responsible for one variable vi

constraints are over more agents according to their variables

an agent interaction graph of the agents is based on their
variables and the constraints

Interaction graph of the previous example:



Detour to Graph theory

Graph tree-decomposition, width and tree-width



Graph tree-decomposition, width and tree-width

Definitions

a tree-decomposition of a graph G is (T ,W ), where T is a
tree and W = (Wt : t ∈ V (T )) satisfies:⋃

t∈V (T ) Wt = V (G ) (each graph vertex is associated with at

least one tree node)
∀uv ∈ E (G ) : ∃t ∈ V (T ) s.t. u, v ∈Wt (vertices are adjacent
in the graph only when the corresponding subtrees have a node
in common)
if t ′ ∈ T [t, t ′′] (path), then Wt ∩Wt′′ ⊆Wt′ (the nodes
associated with a vertex form a connected subset of T .)

the width of a graph is max(|Wt | − 1 : t ∈ V (T ))

the tree-width of G is the minimum width of a
tree-decomposition of G



Graph tree-decomposition, width and tree-width



Graph tree-decomposition, width and tree-width



Graph tree-decomposition, width and tree-width

Formally

tw(G ) = 1⇔ G is forest (or tree or a series) graph

tw(G ) = 2⇔ G is series-parallel graph

tw(G k×k−grid
n ) = k =

√
n for a grid graph of n vertices

[bigger homework (optional)]

tw(Kn) = n − 1 for a complete graph of n vertices

Informally

tree-width of a graph determines its “cliquishness“ (opposite
of linearity or “treeness”)

in the DisCSP problems the tree-width of the interaction
graph is related to coupling of the problem



End of the detour

(not end of the lecture, though)



Distributed Constraint Satisfaction Problems (DisCSPs)

Solving (Dis)CSP

more families of algorithms solving CSP

Adaptive Tree Consistency (ATC) – based on
tree-decomposition of the underlying constraint graph, can be
described as message passing among the variables (agents)

Complexity of ATC

proven that time complexity of ATC is
O(kDω+1)

k corresponds to number of CSP variables and therefore
number of agents in DisCSP

D = maxki=1 Di , i.e., size of the largest domain (because of
asymptotic complexity)

ω is tree-width of the constraint graph (corresponds to the
agent interaction graph)



Planning for loosely coupled multiagent systems

[R. Brafman, C. Domshlak: From one to many: Planning for loosely coupled
multiagent systems, In Proceedings of ICAPS’08, 2008]



Motivation

Logistics planning

Deliver packages using vehicles (trucks, airplanes, ships)
operating in/between different countries/regions/cities

Classical benchmark for “single-agent” planning

Classic example of a distributed system ; vehicle = agent

(Informal) Question

Can we exploit the fact that the domain describes a naturally
distributed system to make planning more efficient?

(Ultimate) Answer

YES, we can solve distributed components independently



Motivation

Logistics planning

Deliver packages using vehicles (trucks, airplanes, ships)
operating in/between different countries/regions/cities

Classical benchmark for “single-agent” planning

Classic example of a distributed system ; vehicle = agent

(Informal) Question

Can we exploit the fact that the domain describes a naturally
distributed system to make planning more efficient?

(Ultimate) Answer

YES, we can solve distributed components independently



Basic Motivation/Intuition
k-agents MA Systems (Logistics domain example)

Fully decoupled

Vehicles are a priori responsible for different packages

Same as planning k times for a single agent
; linear time-complexity growth

(exp(k) time-complexity reduction)

Fully coupled

Vehicles have to move the same packages and maybe coordinate on

loads/unloads

Same as planning for a single “k-times larger” agent
; exp(k) time-complexity growth

(no reduction in time-complexity)



Main Ideas

A New Graphical Model

Potential (positive and negative) interactions between the
agents’ individual abilities (= actions)

System coupling-level

Define an interaction graph of the system

Nodes = agents

Edges = agents need (to coordination with) each other

Parameter ω ; tree-width of interaction graph



Main Ideas

A New Graphical Model

Potential (positive and negative) interactions between the
agents’ individual abilities (= actions)

System coupling-level

Parameter ω ; tree-width of interaction graph

Problem coupling-level

Some problems require more coordination than others!

Parameter δ ; minmax number of times a single agent needs
some other agent to do something for it



Main Ideas

System coupling-level

Parameter ω ; tree-width of interaction graph

Problem coupling-level

Parameter δ ; minmax number of times a single agent needs
some other agent to do something for it

Algorithm

Fix the agents’ commitments to each other
; careful selection of language matters!

Let each agent independently plan “in-between”
commitments

Use iterative deepening to extend the number of per-agent
commitments if needed



Agent Actions

Logistics planning

Deliver packages using vehicles (trucks, airplanes, ships)
operating in/between different countries/regions/cities

Actions move(v, from, to), load(p, v, at), unload(p, v, at)

Agents: vehicles

Vehicle agent actions:
moving it, loading into it, unloading from it

From strips to ma-strips

Everything is the same, except that
actions are partitioned between the agents



From strips to ma-strips

Definition

A strips problem is given by a quadruple Π = 〈P,A, I,G〉,
where:

P is a finite set of atoms, I ⊆ P is the initial situation,
and G ⊆ P encodes the goal situations,

Each action a ∈ A is given by 〈pre(a), add(a), del(a)〉.



From strips to ma-strips

Definition

An ma-strips problem for a system of agents Φ = {ϕi}k
i=1 is

given by a quadruple Π = 〈P, {Ai}k
i=1, I, G〉, where:

P is a finite set of atoms, I ⊆ P is the initial situation,
and G ⊆ P encodes the goal situations,

For 1 ≤ 1 ≤ k, Ai is the set of actions that the agent ϕi is
capable of performing. Each action a ∈ A=

⋃
Ai is given

by 〈pre(a), add(a), del(a)〉.



Solving ma-strips Problems

Standard Approaches

1 Compile into a single-agent strips problem

/ Lose all structure and obtain k-times larger “agent”
/ Worst-case complexity exponential in description size or

shortest plan (depending on search strategy)

2 Try to solve as much as possible locally and compose the
resulting individual agent plans

/ What can we say about it?



Solving ma-strips Problems

Standard Approaches

1 Compile into a single-agent strips problem

/ Lose all structure and obtain k-times larger “agent”
/ Worst-case complexity exponential in description size or

shortest plan (depending on search strategy)

2 Try to solve as much as possible locally and compose the
resulting individual agent plans

/ What can we say about it?



A Closer Look at Agent Actions

Private vs. Non-Private

Private affect and depend only on that agent

Non-Private all the rest

Logistic planning

Move actions are private
(influence and influenced only by vehicle location)

Loading into/unloading from a vehicle is non-private
; except if the package location is private to the vehicle!



A Closer Look at Agent Subplans

Private vs. Non-Private

Private affect and depend only on that agent

Non-Private all the rest

global plan

local plan

local plan from inside

non-private actions in the plan ; coordination points

arbitrarily long sequences of private actions between
adjacent non-private actions



Example: Logistics

Logistics

imagine vehicles moving on a large map

each vehicle has a service region

; between each load/unload action, there are multiple move
actions by the vehicle



Main Idea

“Algorithm”

1 Find a good choice of coordination points

2 Solve k local planning problems over the private actions of
the agents only



Main Idea

“Algorithm”

1 Find a good choice of coordination points

2 Solve k local planning problems over the private actions of
the agents only



Main Idea

“Algorithm”

1 Find a good choice of coordination points

2 Solve k local planning problems over the private actions of
the agents only



Main Idea

“Algorithm”

1 Find a good choice of coordination points

Iterative deepening on δ — # of coord-points per agent
For each choice of δ

Define a CSP whose solutions are consistent assignments
to the coordination points

2 Solve k local planning problems over the private actions

ID



Main Idea

“Algorithm”

1 Find a good choice of coordination points
2 Solve k local planning problems over the private actions

purely independent phase ; unary constraints
can be reduced to regular strips planning

ID



Complexity

The complexity is derived from

number of agents k in set Φ with public actions Apub
i

maximal complexity of the local planning I with a cost
function for switching from regular planning f (·)
number of “coordination” CSPs we have to solve (corresponds
to δ)

solving each “coordination” CSP O(kDω+1)

length of the “coordination” plan kδ

The idea of kδ:

α :
β :

(
aα1 ∗ aα2 ∗ aα3 ∗
∗ aβ1 ∗ aβ2 ∗ aβ3

)
.



Complexity

Size of agent’s domain is:

|Di | =
δ∑

d=1

(
kδ
d

)
· |Apub

i |
d = O((kδ|Apub

i |)
δ+1).

Terms(
kδ
d

)
represents all possible combinations of d virtual time

points for the public actions (e.g., for d = 2,kδ = 6 there are
15 of them {(1, 2), (1, 3), . . . , (1, 6), (2, 3), (2, 4), . . . , (5, 6)})
|Apub

i |d represents all possible public action sequences of

length d (e.g, for d = 2 and |Apub
i | = 2 they are

{a1a1, a1a2, a2a1, a2a2})
the summed up result represent the number of all possible
coordination sequences for one agent.



Complexity

Time complexity of the unary internal-planning constraints:

O(f (I) · k ·max
i∈Φ
|Di |) = O(f (I) · k(kδ|Apub|)δ+1) = Oipc ,

Terms

f (I) · k the internal planning has to be run by each agent

asymptotically (in worst case) max
i∈Φ
|Di | domains has to be

planned by all agents

asymptotically (in worst case) |Apub
i | for all agents are all

public actions |Apub|



Complexity

Time complexity of the coordination constraints:

O(k ·max
i∈Φ
|Di |ω+1) = O(k(kδ|Apub|)δω+ε) = Occ ,

Terms

based on ATC algorithm time complexity O(kDω+1)

D =max
i∈Φ
|Di |

ε = δ + ω + 1 is dominated by δω

asymptotically (in worst case) |Apub
i | for all agents are all

public actions |Apub|



Final Complexity

Time final time complexity bound of the multiagent planning:
Oipc + Occ = O(f (I) · k(kδ|Apub|)δ+1 + k(kδ|Apub|)δω+ε).

The exponential bounds can be therefore expressed as:

f (I) · exp(δ) + exp(δω)

Exponentially does not depend on

Algorithm complexity has no direct exponential dependence on the
number of agents k , has no direct exponential dependence on the
length of the individual plans of the agents and has no direct
exponential dependence on the size of the original planning
problem.

Exponentially depends on

Algorithm complexity is exponentially dependent on number of
coordination points, i.e., length of the coordination plan and on
tree-width of the agent interaction graph.



Multiagent A∗

[R. Nissim, R. Brafman: Multi-Agent A* for Parallel and Distributed Systems,
In Proceedings of HDIP Workshop (ICAPS), 2012]



Multiagent Distributed/Parallel A*

Overview

based on partition of actions from the previous slides

private/public actions (respecting privacy)

A* expansion only of agent’s own actions

distributed optimal search

distributed termination detection

currently most efficient distributed planning approach (2012)
 2015
PSM planner (winner of the Competition of DMAP planners)



Main contributions and results The model & our approach Properties of MA-A* Experiments & future work

Our approach – optimal forward search

Each agent runs an A∗-like search separately, using its own
open/closed list. In each iteration, the agent performs:

MA-A∗

Receive messages and insert states into open list.
Retrieve first node n from open list.
If n is a solution, perform distributed optimality check.
Expand n using the agent’s own actions only.
Compute h-value and add to open list all children n′.
If n′ was obtained by applying a public action

then send n′ to all agents to which n′ is relevant.

Messages contain the full state n′, its g and h-values, and its
creating action.

Nissim & Brafman MA-A∗for Parallel and Distributed Systems 9/25



Main contributions and results The model & our approach Properties of MA-A* Experiments & future work

Running example

Nissim & Brafman MA-A∗for Parallel and Distributed Systems 10/25



Main contributions and results The model & our approach Properties of MA-A* Experiments & future work

Running example

Nissim & Brafman MA-A∗for Parallel and Distributed Systems 10/25



Main contributions and results The model & our approach Properties of MA-A* Experiments & future work

Running example

Nissim & Brafman MA-A∗for Parallel and Distributed Systems 10/25



Main contributions and results The model & our approach Properties of MA-A* Experiments & future work

Running example

Nissim & Brafman MA-A∗for Parallel and Distributed Systems 10/25



Main contributions and results The model & our approach Properties of MA-A* Experiments & future work

Running example

Nissim & Brafman MA-A∗for Parallel and Distributed Systems 10/25



Main contributions and results The model & our approach Properties of MA-A* Experiments & future work

Running example

Nissim & Brafman MA-A∗for Parallel and Distributed Systems 10/25



Main contributions and results The model & our approach Properties of MA-A* Experiments & future work

Relevancy of messages

A state s is relevant to an agent if it has a public action for
which all public preconditions hold in s.
When some agent performs a private action, other agents’
view of the system relevant to them has not changed!
Sending only states for which the creating action is public,
maintains optimality.
This effectively prunes many equivalent parts of the search
space =⇒ may result in fewer expansions than
centralized A∗.

Nissim & Brafman MA-A∗for Parallel and Distributed Systems 11/25



Main contributions and results The model & our approach Properties of MA-A* Experiments & future work

Experimental results

Nissim & Brafman MA-A∗for Parallel and Distributed Systems 13/25




















































