
LP-based Heuristics
for Cost-optimal Classical Planning

Florian Pommerening Gabriele Röger Malte Helmert

Based on: ICAPS 2015 Tutorial

March 2017



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Linear Programs



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Linear Programs and Integer Programs

Linear Program

A linear program (LP) consists of:

a finite set of real-valued variables V

a finite set of linear inequalities (constraints) over V

an objective function, which is a linear combination of V

which should be minimized or maximized.

Integer program (IP): ditto, but with integer-valued variables



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Linear Program: Example

Example:

maximize 2x − 3y + z subject to

x + 2y + z ≤ 10
x − z ≤ 0

x ≥ 0, y ≥ 0, z ≥ 0

 unique optimal solution:
x = 5, y = 0, z = 5 (objective value 15)



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Solving Linear Programs and Integer Programs

Complexity:

LP solving is a polynomial-time problem.

Finding solutions for IPs is NP-complete.

Common idea:

Approximate IP solution with corresponding LP
(LP relaxation).



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Three Key Ideas



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Cost Partitioning

Idea 1: Cost Partitioning

create copies Π1, . . . ,Πn of planning task Π

each has its own operator cost function costi

(otherwise identical to Π)

for all o: require cost1(o) + · · ·+ costn(o) ≤ cost(o)

 sum of solution costs in copies is admissible heuristic:
h∗Π1

+ · · ·+ h∗Πn
≤ h∗Π

Motivation:

method for obtaining additive admissible heuristics

very general and powerful



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Operator Counting Constraints

Idea 2: Operator Counting Constraints

linear constraints whose variables denote
number of occurrences of a given operator

must be satisfied by every plan that solves the task

Examples:

Yo1 + Yo2 ≥ 1 “must use o1 or o2 at least once”

Yo1 − Yo3 ≤ 0 “cannot use o1 more often than o3”

Motivation:

declarative way to represent knowledge about solutions

allows reasoning about solutions to derive heuristic estimates



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Potential Heuristics

Idea 3: Potential Heuristics

Heuristic design as an optimization problem:

Define simple numerical state features f1, . . . , fn.

Consider heuristics that are linear combinations of features:

h(s) = w1f1(s) + · · ·+ wnfn(s)

with weights (potentials) wi ∈ R
Find potentials for which h is admissible and well-informed.

Motivation:

declarative approach to heuristic design

heuristic very fast to compute if features are fast to compute



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Connections

Three unrelated ideas?

No! It turns out they are closely connected.



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Lecture Structure

1 Introduction and Overview

2 Cost Partitioning

3 Operator Counting

4 Potential Heuristics



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Cost Partitioning



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Cost Partitioning

Idea 1: Cost Partitioning

create copies Π1, . . . ,Πn of planning task Π

each has its own operator cost function costi : O → R+
0

(otherwise identical to Π)

for all o: require cost1(o) + · · ·+ costn(o) ≤ cost(o)

 sum of solution costs in copies is admissible heuristic:
h∗Π1

+ · · ·+ h∗Πn
≤ h∗Π



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Cost Partitioning

for admissible heuristics h1, . . . , hn,
h(s) = h1,Π1(s) + · · ·+ hn,Πn (s)
is an admissible estimate

h(s) can be better or worse than any hi ,Π(s)
→ depending on cost partitioning

strategies for defining cost-functions

uniform: costi (o) = cost(o)/n
zero-one: full operator cost in one copy, zero in all others
. . .

Can we find an optimal cost partitioning?



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Optimal CP



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Optimal Cost Partitioning

Optimal Cost Partitioning with LPs

Use variables for cost of each operator in each task copy

Express heuristic values with linear constraints

Maximize sum of heuristic values subject to these constraints

LPs known for

abstraction heuristics

landmark heuristic



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Caution

A word of warning

optimization for every state gives
best-possible cost partitioning

but takes time

Better heuristic guidance often does not outweigh the overhead.



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Lecture Structure

1 Introduction and Overview

2 Cost Partitioning

3 Operator Counting

4 Potential Heuristics



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Operator-counting



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Operator Counting

Reminder:

Idea 2: Operator Counting Constraints

linear constraints whose variables denote
number of occurrences of a given operator

must be satisfied by every plan that solves the task

Examples:

Yo1 + Yo2 ≥ 1 “must use o1 or o2 at least once”

Yo1 − Yo3 ≤ 0 “cannot use o1 more often than o3”

Motivation:

declarative way to represent knowledge about solutions

allows reasoning about solutions to derive heuristic estimates



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Operator Counting Heuristics

Operator occurrences in potential plans

(0,0,1)

(3,0,2)

(1,1,2)

(3,2,2)

(1,2,0)
(2,2,0)

(1,3,1)

(1,2,1)

(3,1,0)

(2,1,0)

(0,0,0)

· · ·

(2,2,1)



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Operator Counting Heuristics

Operator occurrences in potential plans

“You need C
at least once” (0,0,1)

(3,0,2)

(1,1,2)

(3,2,2)

(1,2,0)
(2,2,0)

(1,3,1)

(1,2,1)

(3,1,0)

(2,1,0)

(0,0,0)

· · ·

(2,2,1)



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Operator Counting Heuristics

Operator occurrences in potential plans

“You need C
at least once”

“A and B together
cost at least 4”

(0,0,1)

(3,0,2)

(1,1,2)

(3,2,2)

(1,2,0)
(2,2,0)

(1,3,1)

(1,2,1)

(3,1,0)

(2,1,0)

(0,0,0)

· · ·

(2,2,1)



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Operator Counting Heuristics

Operator occurrences in potential plans

“You need C
at least once”

“A and B together
cost at least 4” “Use A once

more than C”

(0,0,1)

(3,0,2)

(1,1,2)

(3,2,2)

(1,2,0)
(2,2,0)

(1,3,1)

(1,2,1)

(3,1,0)

(2,1,0)

(0,0,0)

· · ·

(2,2,1)



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Operator Counting Heuristics

Operator occurrences in potential plans

“You need C
at least once”

“A and B together
cost at least 4” “Use A once

more than C”

(0,0,1)

(3,0,2)

(1,1,2)

(3,2,2)

(1,2,0)
(2,2,0)

(1,3,1)

(1,2,1)

(3,1,0)

(2,1,0)

(0,0,0)

· · ·

(2,2,1)



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Operator Counting Heuristics

Operator occurrences in potential plans

“You need C
at least once”

“A and B together
cost at least 4” “Use A once

more than C”

(0,0,1)

(3,0,2)

(1,1,2)

(3,2,2)

(1,2,0)
(2,2,0)

(1,3,1)

(1,2,1)

(3,1,0)

(2,1,0)

(0,0,0)

· · ·

(2,2,1)



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Operator-counting Heuristics

Operator-counting IP/LP Heuristic

Minimize
∑

o

Yo · cost(o) subject to

Yo ≥ 0 and some operator-counting constraints

Operator-counting constraint

Set of linear inequalities

For every plan π there is an LP-solution where
Yo is the number of occurrences of o in π .



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Properties of Operator-counting Heuristics

Admissibility

Operator-counting (IP and LP) heuristics are admissible.

Computation time

Operator-counting LP heuristics are solvable in polynomial time.

Adding constraints

Adding constraints can only make the heuristic more informed.



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

State-equation Heuristic



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

State-equation Heuristic (SEQ)

Main idea:

Facts can be produced (made true) or consumed (made false)
by an operator

Number of producing and consuming operators must balance
out for each fact



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

State-equation Heuristic

Net-change constraint for fact f

G (f )− S(f ) =
∑

f ∈ eff(o)

Yo −
∑

f ∈ pre(o)

Yo

Net-change constraint for fact f

G (f )− S(f ) =
∑

o produces f

Yo −
∑

o consumes f

Yo

Remark:

Assumes transition normal form (not a limitation)

Operator mentions same variables in precondition and effect
There is only one goal state which is defined over all variables
General form of constraints more complicated



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Lecture Structure

1 Introduction and Overview

2 Cost Partitioning

3 Operator Counting

4 Potential Heuristics



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Potential Heuristics



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Potential Heuristics

Reminder:

Idea 3: Potential Heuristics

Heuristic design as an optimization problem:

Define simple numerical state features f1, . . . , fn.

Consider heuristics that are linear combinations of features:

h(s) = w1f1(s) + · · ·+ wnfn(s)

with weights (potentials) wi ∈ R
Find potentials for which h is admissible and well-informed.

Motivation:

declarative approach to heuristic design

heuristic very fast to compute if features are



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Comparison to Previous Parts (1)

What is the same as in operator-counting constraints:

We again use LPs to compute (admissible) heuristic values
(spoiler alert!)



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Comparison to Previous Parts (2)

What is different from operator-counting constraints
(computationally):

With potential heuristics, solving one LP defines the entire
heuristic function, not just the estimate for a single state.

Hence we only need one LP solver call,
making LP solving much less time-critical.



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Comparison to Previous Parts (3)

What is different from operator-counting constraints
(conceptually):

axiomatic approach for defining heuristics:

What should a heuristic look like mathematically?
Which properties should it have?

define a space of interesting heuristics

use optimization to pick a good representative



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Features

Definition (feature)

A (state) feature for a planning task is a numerical function
defined on the states of the task: f : S → R.



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Potential Heuristics

Definition (potential heuristic)

A potential heuristic for a set of features F = {f1, . . . , fn}
is a heuristic function h defined as a linear combination
of the features:

h(s) = w1f1(s) + · · ·+ wnfn(s)

with weights (potentials) wi ∈ R.

 cf. evaluation functions for board games like chess



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Atomic Potential Heuristics

Atomic features test if some proposition is true in a state:

Definition (atomic feature)

Let X = x be an atomic proposition of a planning task.

The atomic feature fX =x is defined as:

fX =x (s) =

{
1 if variable X has value x in state s

0 otherwise

We only consider atomic potential heuristics,
which are based on the set of all atomic features.

Example for a task with state variables X and Y :

h(s) = 3fX =a + 1
2 fX =b − 2fX =c + 5

2 fY =d



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Finding Good Potential Heuristics



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

How to Set the Weights?

We want to find good atomic potential heuristics:

admissible

consistent

well-informed

How to achieve this? Linear programming to the rescue!



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Admissible and Consistent Potential Heuristics

Constraints on potentials characterize (= are necessary and
sufficient for) admissible and consistent atomic potential heuristics:

Goal-awareness (i.e., h(s) = 0 for goal states)∑
goal facts f

wf = 0

Consistency∑
f consumed

by o

wf −
∑

f produced
by o

wf ≤ cost(o) for all operators o

Remarks:

assumes transition normal form (not a limitation)

goal-aware and consistent = admissible and consistent



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Well-Informed Potential Heuristics

How to find a well-informed potential heuristic?

 encode quality metric in the objective function
and use LP solver to find a heuristic maximizing it

Examples:

maximize heuristic value of a given state (e.g., initial state)

maximize average heuristic value of all states
(including unreachable ones)

maximize average heuristic value of some sample states

minimize estimated search effort



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Connections



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Connections

So what does this have to do with what we talked about before?

Theorem (Pommerening et al., AAAI 2015)

For state s, let hmaxpot(s) denote the maximal heuristic value
of all admissible and consistent atomic potential heuristics in s.

Then hmaxpot(s) = hSEQ(s) = hgOCP(s).

hSEQ: state equation heuristic a.k.a. flow heuristic

hgOCP: optimal general cost partitioning of atomic projections

proof idea: compare dual of hSEQ(s) LP
to potential heuristic constraints optimized for state s



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

Connections

So what does this have to do with what we talked about before?

Theorem (Pommerening et al., AAAI 2015)

For state s, let hmaxpot(s) denote the maximal heuristic value
of all admissible and consistent atomic potential heuristics in s.

Then hmaxpot(s) = hSEQ(s) = hgOCP(s).

hSEQ: state equation heuristic a.k.a. flow heuristic

hgOCP: optimal general cost partitioning of atomic projections

proof idea: compare dual of hSEQ(s) LP
to potential heuristic constraints optimized for state s



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

What Do We Take From This?

general cost partitioning, operator-counting constraints
and potential heuristics: facets of the same phenomenon

study of each reinforces understanding of the others

potential heuristics: fast admissible approximations of hSEQ

clear path towards generalization beyond hSEQ:
use non-atomic features



Linear Programs Three Key Ideas Cost Partitioning Optimal CP Operator-counting State-equation Heuristic Potential Heuristics Finding Good Potential Heuristics Connections

The End

1 Introduction and Overview

2 Cost Partitioning

3 Operator Counting

4 Potential Heuristics

Thank you for your attention!


	Linear Programs
	Three Key Ideas
	Cost Partitioning
	Optimal CP
	Operator-counting
	State-equation Heuristic
	Potential Heuristics
	Finding Good Potential Heuristics
	Connections

