
Introduction

Planning-Graph techniques rely on classical planning representation

These techniques introduce a new search space called Planning-Graph

Planning-Graph techniques provide plan as a sequence of sets of actions
I Plan-space produces plan as a partially ordered set of actions
I State-space produce plan as a sequence of actions
I =) Planning-Graph is less expressive that Plan-space but more than

State-space

Planning-Graph approach rely on two interrelated ideas:
1 Reachability analysis: addresses the issue of wether a state is reachable from

some given state
2 Disjunctive refinement: consists of addressing one or several flaws through a

disjunctive resolvers
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Reachability Trees

The planning-graph structure provides a e�cient way to estimate which set
of propositions is possible reachable from a state s0 with which actions

Definition (Reachability)

Given a set A of actions, a state s is reachable from some initial state s0, if there
is a sequence of actions in A that defines a path form s0 to s.

Reachability analysis consists in analysing which states can be reached from
s0 in some number of steps and how to reach them

I can be used to defined heuristics in state-space planning

Reachability can be computed exactly through a reachability tree that gives
�̂(s0), or it can be approximated though planning graph developped
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Example: Reachability Trees

Consider a simpled DWR domain with no piles and no cranes where robots
can load and unload autonomously containers where locations locations can
contain an unlimited number of robots

loc2loc1

robr

conta

robq

contb

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 92 / 245



Example: Reachability Trees
Operators

move(r , l , l 0) ;; robot r at location l moves at a connected location l 0

precond: at(r , l), adjacent(l , l 0)
e↵ects: at(r ,l 0), ¬at(r , l)

load(c , r , l) ;; robot r at location l loads container c
precond: at(r , l), in(c,l), unloaded(r)
e↵ects: loaded(r ,c), ¬in(c, l), ¬unloaded(r)

unload(c , r , l) ;; robot r at location l unloads container c
precond: at(r , l), loaded(r , c)
e↵ects: unloaded(r), in(c,l), ¬loaded(r , c)

Here the set of actions A has 20 actions corresponding to the operators
move, load and unload

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 93 / 245



Example: Reachability Trees
Notation

To simplify representation, let us denote atoms by propositional symbols:
I r1 and r2 stand for at(robr,loc1) and at(robr,loc2)
I q1 and q2 stand for at(robq,loc1) and at(robq,loc2)
I a1, a2, ar and aq stand for int(conta,loc1), in(conta,loc2), loaded(conta,robr)

and loaded(conta,robq)
I b1, b2, br and bq stand for int(contb,loc1), in(contb,loc2), loaded(contb,robr)

and loaded(contb,robq)

Let us also denote the 20 actions in A:
I Mr12 is the action move(robr,loc1,loc2), Mr21 is the opposite, and Mq12 and

Mq21 are the similar move action for robot robq
I Lar1 is the action load(conta,robr,loc1) Lar2, Laq1 and Laq2 are the other

load actions for conta in loc2 with contb. Lbr1, Lbr2, Lbq1 and Lbq2 are the
load actions for contb

I Uar1, Uar2, Uaq1, Uaq2, Ubr1, Ubr2, Ubq1, and Ubq2 are the unload actions
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Example: Reachability Trees
Graphic representation
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Reachability Trees

A reachability tree is a tree T whose
I Nodes are states of ⌃
I Edges corresponds to action of ⌃

The root node of T is the state s0

The children of a node s are all the state in �(s)

A complete reachability tree from s0 give �̂(s0)

A reachability tree developed down to depth d solves all planning problems
with s0 and A, for every goal that is reachable in d of fewer actions:

I a goal is reachable from s0 in at most d steps i↵ it appears in some node of
the tree

The size of T blows up in O(kd), where k is the number of valid action per
state

Some nodes of T can be reached by di↵erent paths
=) reachability tree can be factorized into a graph
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Example: Reachability graph
Graphic representation
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Reachability with Planning Graphs

A major contribution of Graphplan planner is a relaxation of the reachability
analysis

The approach provides an incomplete condition of reachability through a
planning graph

I A goal is reachable from s0 only if it appears in some node of the planning
graph : this is not a su�cient condition anymore

I This weak reachability condition is compensated for a low complexity
I The planning graph is of polynomial size and can be build in polynomial time

in the size of the input
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Reachability with Planning Graphs
Basic Idea

Basic Idea
The basic idea in a planning graph is to consider at every level of this structure
not individual states but, to a first approximation, the union of sets of
propositions in serveral states

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 99 / 245



Reachability with Planning Graphs
Basic Idea

Reachability tree Planning Graph

• Actions branching out form a
node are mutually exclusive

• Actions are consideres as inclu-
sive disjunction from a node to the
next that contains all the e↵ects of
the actions

• A node is associated with the
proposition that necessarily hold
for that node

• A node contains proposition that
possibly hold at some point

• State is a consistent set of propo-
sitions

• The union of the sets of propo-
sitions for several states does not
preserve consistency =) solution
is to keep track incompatible ac-
tions and propositions
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Reachability with Planning Graphs
Informal Definition

A planning graph is a directed layered graph:
I arcs are permitted only from one layer to the next

Nodes in level 0 correspond to the set P0 of propositions denoting the initial
state s0 of the planning problem

Level 1 contains two layers:
1 an action level A1 that is the set of actions (ground instance of operators)

whose preconditions are nodes in P0

2 a proposition level P1 that is defined as the union of P0 and the sets of
positive e↵ects of action in A1

An action node in A1 is connected with :
I a incoming precondition arcs from its preconditions in P0

I a outgoing arcs to its positive e↵ects and to its negative e↵ects in P1

Outgoing arcs are labeled positive or negative
I Note that negative e↵ects are not deleted from P1, thus P0 ✓ P1

This process is pursued from one level to the next
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Reachability with Planning Graphs
Exemple: Planning Graph
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Reachability with Planning Graphs
Remarks

In accordance with the idea of inclusive disjunction in Ai and the union of
proposition in Pi , a plan associated to a planning graph is no longer a
sequence of actions corresponding directly to a path in ⌃

I A plan ⇧ is sequence of set of actions

⇧ = h⇡1, ⇡2, . . . , ⇡ki

I A plan is qualified as layered plan since it is is organized into levels
corresponding to those of the planning graph with ⇡i ✓ Ai

The first level ⇡1 is a subset of indepedent action in A1 that can be apply in
any order to the initial state and can lead to a state that is a subset of P1

and so forth until level k whose actions lead to a state meeting the goal
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Independent Actions
Definition

Definition (Independent Actions)

Two actions (a, b) are independent i↵:

e↵ects�(a) \ [ precond(b) [ e↵ect+(b) ] = ; and

e↵ects�(b) \ [ precond(a) [ e↵ect+(a) ] = ; and

A set of actions ⇡ is independent when every pair of ⇡ is independent

Conversely, two actions a and b are dependent if:
I a deletes a precondition of b or

F the ordering a � b will not be permitted
I a deletes a positive e↵ect of b or

F the resulting state will depend on their order
I symetrically for negative e↵ects of b with respect to a

F b deletes a precondition on a positive e↵ect of a
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Independent Actions
Example: independent actions
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Independent Actions
Example: dependent actions
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Independent Actions
Remarks

1 The independence of action is not specific to a particular planning problem
2 It is intrinsic property of the actions of a domain that can be computed

beforehand for all problems of that domain
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Independent Actions
Applicable Actions

Definition (Actions Applicable)

A set ⇡ of independent actions is applicable to a state s i↵ precond(⇡) ✓ s. The
result of applying the set ⇡ to s is defined as:

�(s,⇡) = (s � e↵ects�(⇡)) [ e↵ects+(⇡)

where

precond(⇡) =
S {precond(a) | 8a 2 ⇡},

e↵ects+(⇡) =
S {e↵ects+(a) | 8a 2 ⇡}, and

e↵ects�(⇡) =
S {e↵ects�(a) | 8a 2 ⇡}.
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Independent Actions
Applicable Actions’ Set

Proposition (Applicable Actions’ Set)

If a set ⇡ of independent actions is applicable to s then, for any permutation
ha1, . . . , aki of the elements of ⇡, the sequence ha1, . . . , aki is applicable to s, and
the state resulting from the application of ⇡ to s is such that

�(s,⇡) = �(. . . �(�(s, a1), a2), . . . ak)

Note
This proposition allow to go back to the standard semantics pf a plan in a
state-transition system from the initial state to goal
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Layered Plan
Definition

Definition (Layered Plan)

A layered plan is a sequence of set of actions. The layered plan ⇧ = h⇡1, . . . ,⇡ni
is a solution to a problem (O, s0, g) i↵ :

each set ⇡ 2 ⇧ is applicable to �(s0,⇡1, . . .) and

g ✓ �(. . . �(�(s,⇡1),⇡2), . . . ⇡n).

Proposition (Layered Plan Concurrency)

If ⇧ = h⇡1, . . . ,⇡ni is a solution plan to a problem (O, s0, g), then a sequence of
actions coresponding to any permutation of the elements of ⇡1, followed by any
permutation of ⇡2, . . ., follow by any permutation of ⇡n is a path from s0 to a
goal state.

This proposition follows directly the actions concurrency proposition.
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Mutual Exclusion Relations
Overview

The union of the sets of propositions for several states does not preserve
consistency

Some actions in a action layer are not independent

How to capture incompatibility between actions and propositions ?

Solution
The solution is to keep track incompatible actions and propositions also called
mutual exclusion relations based on action independent criteria
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Mutual Exclusion Relations
Proposition Mutex

1 Two dependent actions in an action layer cannot appear simultaneously,
hence the positive e↵ects of two dependent actions are incompatible unless
these propositions are also positive e↵ects of some other independent actions

I Two propositions are incompatible in the sens where they cannot be reached
through a single level

2 Negative and positive e↵ects of an action are also incompatible propositions
I to deal with this second type of incompatibility, it is convenient to introduce

for each proposition p a dummy action called no-op, noted ↵p, whose
precondition and sole e↵ect is p

I if an action a has p as a negative e↵ect, then according to our definition, a
and ↵p are independent actions (positive e↵ects incompatible)
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Mutual Exclusion Relations
Example: Proposition Mutex case 1
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and Lar1 are not indepent in  A1, 

hence r2 and ar are mutex.
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Mutual Exclusion Relations
Example: Proposition Mutex case 2
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Mutual Exclusion Relations
Action Mutex and Mutex Propagation

Dependency between actions in an action level Ai of the planning graph leads
to incompatible proposition in a level Pi

Conversely, incompatible propositions in a level pi lead to additionnal
incompatible actions in the following level Ai+1

These are actions whose preconditions are incompatible
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Mutual Exclusion Relations
Example: Action Mutex and Mutex Propagation

r1

q2

a1

b2

ur

uq

r1

r2

q2

a1

q1

b2

ar

ur

uq

bq

r1

r2

q2

a1

q1

ar

b2

br

aq

ur

uq

bq

r1

r2

q2

a1

q1

ar

b1

br

aq

ur

uq

bq

a2

b2

Mr12

Mq21

Lar1

Lbq2

Mr12

Mq21

Lar1

Lbq2

Mr21

Mq12

Lbr2

Laq1

Uar1

Ubq2

Mr12

Mq21

Lar1

Lbq2

Mr21

Mq12

Lbr2

Laq1

Ubq2

Ubr2

Uar1

Uar2

Uaq1

Ubq1

P0 P1 P2 P3A1 A2 A3

Additionnal action incompatibility 

and mutex propagation

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 116 / 245



Mutual Exclusion Relations
Definition

Definition (Mutual Exclusion Relation)

Two actions a and b in level Ai are mutex if :
1 a and b are dependent or
2 a precondition of a is mutex with a precondition of b

Two propositions p and q in Pi are mutex if:
1 every action in Ai that has p as positive e↵ect (including no-op actions) is

mutex with every action that produces q and
2 there is no action in Ai that produces both p and q

Note
Dependent actions are necessarily mutex

Dependency is an intrinsic property of the actions in a domain, while the
mutex relation takes into account additionnal constraints of the problem

For a same problem, a paire of actions may be mutex in some action level Ai

and become non-mutex in some latter level Aj of a planning graph
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Mutual Exclusion Relations
Example1

Level Mutex elements

A1 {Mr12}⇥ {Lar1}
{Mq21}⇥ {Lbq2}

P1 {r2}⇥ {r1, ar}
{q1}⇥ {q2, br}
{ar}⇥ {a1, ur}
{bq}⇥ {b2, uq}

A2 {Mr12}⇥ {Mr21, Lar1,Uar1}
{Mr21}⇥ {Lbr2, Lar1⇤,Uar1⇤}
{Mq12}⇥ {Mq21, Laq1, Lbq2⇤,Ubq2⇤}
{Mq21}⇥ {Lbq2,Ubq2}
{Lar1}⇥ {Uar1, laq1, Lbr2}
{Lbr2}⇥ {Ubq2, Lbq2,Uar1,Mr12⇤}
{Laq1}⇥ {Uar1,Ubq2, Lbq2,Mq21⇤}
{Lbq2}⇥ {Ubq2}

P2 {br}⇥ {r1, b2, ur , bq, ar}
. . . . . .

1
A star (⇤) denotes mutex actions that are independent but have mutex preconditions
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Mutual Exclusion Relations
Notation

We note the set of mutex pairs in Ai as µAi and the set of mutex pairs in Pi

as µPi

Let us remark that:
1 dependency between actions as well as mutex between actions or propositions

are symmetrically relations
2 for 8i : Pi�1 ✓ Pi and Ai�1 ✓ Ai
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Mutual Exclusion Relations
Planning Graph Monotonicity

Proposition (Monotonicity)

If two propropositions p and q are in Pi�1 and (p, q) 62 µPi�1, then (p, q) 62 µPi

and if two actions a and b are in Ai�1 and (a, b) 62 µAi�1, then (a, b) 62 µAi .

Proof
Every proposition p in a level Pi is supported by at least its no-op action ↵p. Two
no-op actions are necessarily independent. If p and q in Pi�1 are such that
(p, q) 62 µPi�1, then (↵p,↵q) 62 µAi . Hence, a non-mutex pair of propositions
remains non-montex in the following level. Similarly, if (a, b) 62 µAi�1, then a and
b are independent and their preconditions in Pi�1 are not mutex; both properties
remain valid at the following level.
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Mutual Exclusion Relations
Planning Graph Monotonicity

According to this result,
I propositions and actions in a planning graph monotonically increase from one

level to the next
I mutex pairs monotonically decrease

These monotonicity properties are essential to the complexity and the
terminaison of the planning graph techniques

Proposition (Weak Reachability)

A set g of propositions is reachable from s0 only if:

there is in the corresponding planning graph a proposition layer Pi such that
g 2 Pi and

no pair of propositions in q are in µPi
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The Graphplan Planner

The Graphplan algorithm performs a procedure close to interative deepening,
discovering a new part of the search space at each iteration. It iteratively:

1 expands the planning graph by one level and
2 searches backward form the last level of this graph for a solution

The fisrt extraction, proceeds to level Pi in which all of the goal propositions
are included and no paires of them are mutex

I it does not make sens to start searching a graph that does not meet the
necessary condition of the weak reachability

The iterative loop of graph expansion and search is pursued until either a
plan is found or a failure terminaison condition is met
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Expanding the Planning Graph
Planning Graph

Let (O, s0, g) be a planning problem in the classical representation such that
s0 and g are set of propositions, and operators in O have no negated literals
in their preconditions

Let A be the union of all ground instances of operators in O and of all no-op
actions ↵p for every proposition p of that problem

I the no-op action for p is defined as
F precond(↵p) = e↵ects+(↵p), and
F e↵ects�(↵p) = ;

A planning graph for a planning problem expanded up to level i is a sequence
of layers of nodes and of mutex pairs:

G = hP0,A1, µA1,P1, µP1, . . . ,Ai , µAi ,Pi , µPi i
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Expanding the Planning Graph
Procedure

The planning graph does not depend on g
I it can be used for di↵erent planning problem that have the same set of

planning operators O and initial state s0

The expansion of G starts initially from P0 ! s0

The expansion procedure correspond to generate the set Ai , Pi , µAi and µPi ,
respectively from the elements in the previous level i � 1
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Expanding the Planning Graph
Procedure

Algorithm (Expand(hP0, A1, µA1, . . . , Ai�1, µAi�1, Pi�1, µPi�1i))
Ai  {a 2 A | precond(a) 2 Pi�1 and precond(a) \µPi�1 = ;}
Pi  {p | 9a 2 Ai : p 2 e↵ects+(a)}
µAi  {(a, b) 2 Ai , a 6= b | a, b are dependent

or 9(p, q) 2 µPi�1 : p 2 precond(a) and q 2 precond(b) }
µPi  {(p, q) 2 Pi , p 6= q | 8a, b 2 Ai , a 6= b :

p 2 e↵ects+(a) and q 2 e↵ects+(b) ) (a, b) 2 µAi}
foreach a 2 Ai do

link a with a precondition arcs to precond(a) in Pi�1

link a with a positive arcs to e↵ects+(a) in Pi

link a with a negative arcs to e↵ects�(a) in Pi

end

return hP0,A1, µA1, . . . ,Pi�1, µPi�1,Ai , µAi ,Pi , µPi i
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Expanding the Planning Graph
Complexity

Proposition
The size of a planning graph down to level k and the time required to expand it to
that level are polynomial in the size of the planning problem.

Proof
If the planning problem (O, s0, g) has a total of n propositions and m actions,
then 8i : |Pi |  n, and |Ai |  m + n (including no-op actions), µAi  (m + n)2,
and |µPi |  n2. The steps involved in the generation of these set are of
polynomial complexity in the size of the sets.
Furthermore, n and m are polynomial in the size of the problem (O, s0, g). This is
the case because, according to classical planning assumptions, operators cannot
create new constant symbols. Hence, if c is the number of constant symbols given
in the problem, e = maxo2O{|e↵ects+(o)}, and ↵ is an upper bound on the
number of parameters of any operators, then m  |O|⇥ c↵, and
n  |s0| + e ⇥ |O|⇥ c↵.
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Expanding the Planning Graph
Planning Graph Fixed-point

The number of distinct levels in a planning graph is bounded

At some stage, the graph reached a fixed-point

Definition (Fixed-point Level)

A fixed-point level in a planning graph G is a level  such that for 8i , i > , level
i of G is identical to level , i.e., Pi = P, µPi = µP, Ai = A and µAi = µA.

Proposition
Every planning graph G has a fixed-poiny level , which is the smallest k such
that |Pk�1| = |Pk | and |µPk�1| = |µPk |.

Proof
To do . . .
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Searching the Planning Graph

The search for a solution plan in a planning graph proceeds back from a level
Pi that includes all goal proposition, no pair of which is mutex, i.e., g 2 Pi

and g \ µPi = ;.
The search procedure looks for a set ⇡ 2 Ai of non-mutex actions that
achieve these propositions.

Preconditions of elements of ⇡ becomes the new goal for levem i � 1 and
so on

A failure to meet the goal of some level j leads to a backward over other
subsets of Aj+1

If level 0 is successfully reached, then the corresponding sequence h⇡1, . . . ,⇡i i
is a solution plan
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Searching the Planning Graph
Example
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Searching the Planning Graph
Remark

The extraction of a plan from a planning graph corresponds to a search in an
AND/OR subgraph of the planning graph:

I From a proposition in goal g , OR-branches are arcs from all actions in the
preceding action level that support this proposition, i.e., positive arcs to that
proposition

I From an action node, AND-branches are its preconditions arcs
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Searching the Planning Graph
No-goods

The mutex relation between propositions provides only forbidden pairs, not
tuples

The search may show that a tuple or more that two propositions
corresponding to an intermediate subgoal fails

I Because of the backtracking and iterative deepening, the search may have to
analyse that same tuple more than once

Recording tuples that failed may save time in future searched
I This recording is performed into a no-good hash-table denoted r
I This hash-table is indexed by the level of the fail goal because goal g may fail

at level i and succeed at j > i
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Searching the Planning Graph
Extract Procedure

The extract procedure takes as input:
I a planning graph G
I a current set of goal propositions g and
I a level i

The procedure extracts a set of actions ⇡ ✓ Ai that achieves propositions of
g by recursively a other procedure that try to establish g at level i

If the procedure succeeds in reaching level 0, then it returns an empty
sequence, from which pending recursions successfully return a solution plan

It records failes tuples into r table, and it check each current goal with
respect to recorded tuples

I Note: a tuple g is added to the no-good table at level i only if the call to
establish g at level i fails
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Searching the Planning Graph
Extract Procedure

Algorithm (Extract(G , g , i))

if i = 0 then return hi
if g 2 r(i) then return failure

⇡  GP-Search(G , g , ;, i)
if ⇡ 6= failure then return ⇡
r(i) r(i) [ {g}
return failure
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Searching the Planning Graph
GP-Search Procedure

The GP-Search procedure selects each goal proposition p at a time, in some
heuristic order

Then, it nondeterministically chooses among the the resolvers of p one action
a that tentatively extends the current subset ⇡

I The resolvers are actions that achieve p and that are not mutex with action
already selected at that level

Then it recursively calls the same procedure
I The recursive call is done on a subset of goals minus p and minus all positive

e↵ect of a in g
I A failure for this non-deterministic choice is a backtracking further up if all

resolvers of p have been tried

When g is empty, then ⇡ is complete and the search recursively tries to
extract a solution for the folowing level i � 1
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Searching the Planning Graph
GP-Search Procedure

Algorithm (GP-Search(G , g , ⇡, i))

if g = ; then

⇧ Extract(G,
S{precond(a) | 8a 2 ⇡}, i � 1)

if ⇧ = failure then return failure

return ⇧.h⇡i
else

select any p 2 g
resolvers  {a 2 Ai | p 2 e↵ects+(a) and 8b 2 ⇡ : (a, b) 62 µAi}
if resolvers = ; then return failure

nondeterministically choose a 2 resolvers
return GP-Search(G , g� e↵ects+(a),⇡ [ {a}, i)

end

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 135 / 245



Searching the Planning Graph
Graphplan Procedure

Graphplan performs an initial graph expansion until
1 it reaches a level containing all goal propositions without mutex or
2 it arrives at a fixed-point level in G

If condition 2 happens first, then the goal is not achievable

Otherwise, a search for a solution is performed and if no solution is found at
this stage, the algorithm iteratively expands and then searches the graph G

This iteractive deepening is pursued even after a fixed-point level has been
reached until

1 success or
2 the terminaison condition is satisfied

F This terminaison condition requires that the number of no-goods tuples in r()
at the fixed-point level , stabilizes after two successive failures
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Searching the Planning Graph
Graphplan Procedure

Algorithm (Graphplan(A, s0, g))

i  0, r  ;, P0  s0, G  hP0i
repeat

i  i + 1, G  Expand(G , g , i)
until [g ✓ Pi or g \ µPi = ;] or Fixedpoint(G)
if g 6✓ Pi or g \ Pi 6= ; then return failure

⇧ Extract(G , g , i)
if Fixedpoint(G) then ⌘  |r()| else ⌘  0
while ⇧ = failure do

i  i + 1, G  Expand(G , g , i), ⇧ Extract(G , g , i)
if ⇧ = failure and Fixedpoint(G) then

if ⌘ = |r()| then return failure

end

⌘  |r()|
end

return ⇧
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Analysis of Graphplan
Soundness, Completeness, and Terminaison

We must analyse how the no-goods table evolves along successive deepening
stages of G

Let rj(i) be the set of no-good tuples found at level i after the successful
completion of a deepening state down to a level j > i

The failure of stage j means that
I any plan j or fewer steps must make at least one of the goal tuples in rj(i)

true at level i and
I none of these tuples is achievable in i levels

Proposition

8i , j such that j > i ,rj(i) ✓ rj+1(i)
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Analysis of Graphplan
Soundness, Completeness, and Terminaison

Proof
A tuple of goal proposition g is added as a no-good in rj(i) only when Graphplan
has performed an exhaustive search for all ways to achieve g with the actions in Ai

and tit fails : each set of actions in Ai that provides g is either mutex or involves
a tuple of preconditions g 0 that was shown to be a no-good at the previous level
rk(i � 1), for i < k  j . In other words, only the levels from 0 to i in G are
responsible for the failure of the tuple g at level i . By iterative deepening, the
algorithm may find that g is solvable at some level i 0 > i , but regardless of how
many iterative deepening stages are performed, once g is in rj(i), it remains in
rj+1(i) and in the no-good table at level i in all subsequent deepening stages.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 139 / 245



Analysis of Graphplan
Soundness, Completeness, and Terminaison

Proposition
The Graphplan algorithm is sound and complete, and it terminates. It returns
failure i↵ the planning problem (O, s0, g) has no solution; otherwise, it returns a
sequence of sets of actions ⇧ that is a solution plan to the problem.

Proof
To do . . . (use previous proposition)
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Analysis of Graphplan
Remarks

1 The mutex relation on incompatible pairs of actions and propositions, and
weak reachability condition, o↵er a very good insight about the interaction
between the goals of a problem and about which goals are possibly achievable
at some level

2 Because of the monotonic properties of the planning graph, the algorithm is
guaranteed to terminate

3 The fixe-point feature together with reachability condition provide an e�cient
failure terminaison condition

I In particular, when the goal propositions without mutex are not reachable, no
search at all is performed
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Analysis of Graphplan
Conclusion

Because of its backward constraint-directed search, Graphplan bought a
significant speed-up and contributed to the scalability of planning

Evidently, Graphplan does not change the intrinsic complexity of planning,
which is pspace-complete in the set-theorie representation

Since the expansion of the planning graph is in polynomial time, this means
that the costly part of the algorithm is in the search of the planning graph

The memory requirement of the planning graph data structure can be a
significant limiting factor

Severals techniques and heuristics have been devised to speed-up the search
and to improve the memory management of its data structure
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