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Dr. Álvaro Torralba
Saarland University, Saarbrücken, Germany
torralba@uni-saarland.de

Research Area: Search techniques for AI Planning

Symbolic search

Pruning techniques

Applications
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Classical Planning

Definition. A planning task is a 4-tuple Π = (V,A, I,G) where:

V is a set of state variables, each v ∈ V with a finite domain Dv.

A is a set of actions; each a ∈ A is a triple (prea, eff a, ca), of precondition
and effect (partial assignments), and the action’s cost ca ∈ R0+.

Initial state I (complete assignment), goal G (partial assignment).

Running Example: l1 l2 l3

V = {t, p1, p2, p3, p4}
with Dt = {l1, l2, l3} and Dpi

= {t, l1, l2, l3}.

A = {load(pi, x), unload(pi, x), drive(x, x′)}
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Semantics – The State Space of a Planning Task

Definition. Let Π = (V,A, I,G) be an FDR planning task. The state space of
Π is the labeled transition system ΘΠ = (S,L, c, T, I, SG) where:

The states S are the complete variable assignments.

The labels L = A are Π’s actions; the cost function c is that of Π.

The transitions are T = {s a−→ s′ | prea ⊆ s, s′ = s[[a]]}.
If prea ⊆ s, then a is applicable in s and, for all v ∈ V , s[[a]][v] := eff a[v]
if eff a[v] is defined and s[[a]][v] := s[v] otherwise.

If prea 6⊆ s, then s[[a]] is undefined.

The initial state I is identical to that of Π.

The goal states SG = {s ∈ S | G ⊆ s} are those that satisfy Π’s goal.

→ Solution (“Plan”): Action sequence mapping I into s ∈ SG.
Optimal plan: Minimum summed-up cost.
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A successful approach: Heuristic Search

goal
init

dist
anc

e est
imate

hdistance
estimate h

distance estimate h

distance estimate h

→ Forward state space search. Heuristic function h maps states s to an
estimate h(s) of goal distance.
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Alternatives to State Space Search (not covered here)

Planning as SAT: Extensions use, e. g., heuristics, symmetry breaking.
[KS92, KS96, EMW97, Rin98, Rin03, Rin12]

Property Directed Reachability
[Bra11, EMB11, Sud14]

Planning via Petri Net Unfolding
[GW91, McM92, ERV02, ELL04, HRTW07, BHHT08, BHK+14]

Partial-order Planning
[Sac75, KKY95, YS03, BGB13]

Factored Planning
[Kno94, AE03, BD06, KBHT07, BD08, BD13, FJHT10]

. . .
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State Space Explosion

goal
init

...

?...
...

Huge branching factor → state space explosion
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State Space Explosion

goal
init

...

?...
...

BDDs to the rescue!

g = 0

g = 1
g = 2

Huge branching factor → state space explosion
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Syntax of Propositional Logic

→ Atoms Σ in propositional logic = Boolean variables.

(Syntax of Propositional Logic). Let Σ be a set of atomic
propositions. Then:

1. ⊥ and > are Σ-formulas. (“False”, “True”)

2. Each P ∈ Σ is a Σ-formula. (“Atom”)

3. If ϕ is a Σ-formula, then so is ¬ϕ. (“Negation”)

If ϕ and ψ are Σ-formulas, then so are:

4. ϕ ∧ ψ (“Conjunction”)

5. ϕ ∨ ψ (“Disjunction”)

6. ϕ→ ψ (“Implication”)

7. ϕ↔ ψ (“Equivalence”)
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States as Logical Formulas

Propositions (atoms in STRIPS): 〈v, d〉 Does var v have value d?

How to represent a state as a logical formula?

l1 l2 l3

〈t, l1〉 ∧ 〈p1, l1〉 ∧ 〈p2, l1〉

Disclaimer: In propositional logic there is no closed-world assumption. In
our examples, we ignore state invariants: 〈t, l1〉 ↔ (¬〈t, l2〉 ∧ ¬〈t, l3〉).
Otherwise the state above would be written as:
〈t, l1〉 ∧ ¬〈t, l2〉 ∧ ¬〈t, l3〉∧ 〈p1, l1〉 ∧ ¬〈p1, l2〉 ∧ ¬〈p1, l3〉∧
〈p2, l1〉 ∧ ¬〈p2, l2〉 ∧ ¬〈p2, l3〉
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Sets of States as Logical Formulas

l1 l2 l3 〈t, l1〉 ∧ 〈p1, l1〉 ∧ 〈p2, l1〉
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l1 l2 l3 〈t, l1〉 ∧ 〈p1, l2〉 ∧ 〈p2, l2〉

∨

∨

∨

〈t, l1〉 ∧ (〈p1, l1〉 ∨ 〈p1, l2〉) ∧ (〈p2, l1〉 ∨ 〈p2, l2〉)
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Sets of States as Logical Formulas

Formulas represent sets of states.

Given a formula ψ, and a state s, is s ∈ Sψ?.

Example: ψ = (〈p1, l1〉 ∨ (〈t, l2〉 ∧ 〈p2, l2〉)) ∧ (〈t, l1〉 ∨ 〈p2, l2〉)

What is the more compact way of representing:

Set of all states:

>
Empty set: ⊥
Set of all states where the truck is at l1: 〈t, l1〉

→ Note that a very simple formula may represent exponentially many
states!
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Á. Torralba Symbolic State Space Search 14/56



Planning Symbolic Representation BDDs Symbolic Search Heuristic Search Abstraction Heuristics Conclusion

Sets of States as Logical Formulas

Formulas represent sets of states.

Given a formula ψ, and a state s, is s ∈ Sψ?.

Example: ψ = (〈p1, l1〉 ∨ (〈t, l2〉 ∧ 〈p2, l2〉)) ∧ (〈t, l1〉 ∨ 〈p2, l2〉)

What is the more compact way of representing:

Set of all states: >
Empty set: ⊥
Set of all states where the truck is at l1: 〈t, l1〉

→ Note that a very simple formula may represent exponentially many
states!
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Operating with Sets of States as Logical Formulas

Once we represent sets of states as logical formulas, we can also
operate on sets of states via performing operations on their
corresponding logical formulas.

Given two sets of states Sϕ and Sψ, represented by formulas ϕ and
ψ. How to compute their:

Union Sϕ ∪ Sψ:

ϕ ∨ ψ
Intersection Sϕ ∩ Sψ: ϕ ∧ ψ

Complement SCϕ : ¬ϕ
Difference Sϕ \ Sψ: ϕ ∧ ¬ψ
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Operations on Set of States: Search

So, what is missing for doing search via operations on logical formulas?

goal
init

...

?...
...

g = 0

g = 1
g = 2

→Successor generation: given the set of states with g = i, what is the
set of states with g = (i+ 1)? depends on the set of actions!
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Planning Actions as Logical Formulas

Action a = 〈pre(a), eff (a)〉
Precondition: An action is only applicable in a state if s |= pre(a)

Effect: changes the value of each variable v to eff (a)[v] if eff (a)[v]
is specified

Transition Relation: represents an action a as the relation (set of pairs of
states) containing (s, s′) where a is applicable in s resulting in s′.

We need to double all propositions: for s and s′

The transition relation is
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∧

v(x) 6∈eff (a)

(x↔ x′)
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Planning Actions as Logical Formulas
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Computing the Successors

Given a set of states S(X) over propositions X and a TR T (X,X ′)
generate the successor states

Image operation:

image(S(X), T (X,X ′)) = ∃x . S(X) ∧ T (X,X ′)[X ′ ↔ X]

1 S′ = S(X) ∧ T (X,X ′): Select pairs (s, s′) ∈ T such that s ∈ S
2 ∃xS′: Get all states s′ such that (s, s′) ∈ S′ (forget about the

predecessor states)

3 [X ′ ↔ X]: Replace X ′ by X so that the result is expressed by
propositions in X
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Example of Image Computation

image(S(x), T (x, x′)) = ∃x . S(x) ∧ T (x, x′)[x′ ↔ x]

S(x) :

t p1 p2

l1 l1 l1
l1 l1 l2
l2 l1 l3
l1 l3 l1

T (x, x′) :
(load(p1, l1))

t p1 p2 t′ p′1 p′2

l1 l1 l1 l1 t l1
l1 l1 l2 l1 t l2
l1 l1 l3 l1 t l3

Result:
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Computing the Predecessors (Pre-Image Computation)

Pre-image: Given a set of states S(x) and a TR T (x, x′) generate the
predecessor states

pre-image(S(x), T (x, x′)) = ∃x′ . S(x)[x′ ↔ x] ∧ T (x, x′)

Corresponds to regression [Rin08]
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Á. Torralba Symbolic State Space Search 22/56



Planning Symbolic Representation BDDs Symbolic Search Heuristic Search Abstraction Heuristics Conclusion

How to Represent Logical Formulas in Practice?

To take advantage of the symbolic representations of sets of states,
one needs an efficient representation

The same set of states can be represented by very different
formulas, e.g., the set of all states can be represented by > or by:

(〈t, l1〉 ∧ 〈p1, l1〉 ∧ 〈p2, l1〉) ∨ (〈t, l1〉 ∧ 〈p1, l1〉 ∧ 〈p2, l2〉) ∨ (〈t, l1〉 ∧ 〈p1, l1〉 ∧ 〈p2, t〉)∨
(〈t, l1〉 ∧ 〈p1, l2〉 ∧ 〈p2, l1〉) ∨ (〈t, l1〉 ∧ 〈p1, l2〉 ∧ 〈p2, l2〉) ∨ (〈t, l1〉 ∧ 〈p1, l2〉 ∧ 〈p2, t〉)∨
(〈t, l1〉 ∧ 〈p1, t〉 ∧ 〈p2, l1〉) ∨ (〈t, l1〉 ∧ 〈p1, t〉 ∧ 〈p2, l2〉) ∨ (〈t, l1〉 ∧ 〈p1, t〉 ∧ 〈p2, t〉)∨

(〈t, l2〉 ∧ 〈p1, l1〉 ∧ 〈p2, l1〉) ∨ (〈t, l2〉 ∧ 〈p1, l1〉 ∧ 〈p2, l2〉) ∨ (〈t, l2〉 ∧ 〈p1, l1〉 ∧ 〈p2, t〉)∨
(〈t, l2〉 ∧ 〈p1, l2〉 ∧ 〈p2, l1〉) ∨ (〈t, l2〉 ∧ 〈p1, l2〉 ∧ 〈p2, l2〉) ∨ (〈t, l2〉 ∧ 〈p1, l2〉 ∧ 〈p2, t〉)∨
(〈t, l2〉 ∧ 〈p1, t〉 ∧ 〈p2, l1〉) ∨ (〈t, l2〉 ∧ 〈p1, t〉 ∧ 〈p2, l2〉) ∨ (〈t, l2〉 ∧ 〈p1, t〉 ∧ 〈p2, t〉)∨

→How to choose the “best” representation? →As usual, it involves a
trade-off between memory and time efficiency
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How to Represent Logical Formulas in Practice?

Normal Form/Decision Diagram

∨ ∧ ¬ σ ≡ > σ ≡ ⊥ σ ≡ σ′

Negation NF (NNF)

P P P co-NP NP co-NP

Disjunctive NF (DNF)

P E E co-NP P co-NP

Conjunctive NF (CNF)

E P E P NP co-NP

Binary DD (BDD) [Bry86]

E/P E/P P P P P

Zero-sup DD (ZDD) [Min93]

E/P E/P P P P P

Sentential DD (SDD) [Dar11]

E/P∗ E/P∗ P P P P

Determ. DNNF (d-DNNF) [Dar02]

P E E co-NP P co-NP

Decomp. NNF (DNNF) [Dar01]

P E E co-NP P co-NP

∗: In SDDs, ∨ and ∧ with compression is not polynomial.

P: polynomial in the size of the representation
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Binary Decision Diagrams (BDDs)

A function can be represented by a decision tree (e.g. x2 → x3)

x1

x2 x3

x3 x3 x2 x2

T T F T T F T T

x1

x2

x3

T T F T F T T T

x1

x2

x3

T F

x1

x2

x3

T F

x1

x2

x3

T F

x1

x2

x3

T F

→Each node decomposes the formula according to one variable:

ψ = (xi ∧ ϕ) ∨ (¬xi ∧ ϕ′)

1 Assume fixed variable ordering
2 Represent each node only once (each ψ has a single node)
3 Remove nodes if all children are the same (xi ∧ ϕ) ∨ (¬xi ∧ ϕ) = ϕ

Á. Torralba Symbolic State Space Search 25/56



Planning Symbolic Representation BDDs Symbolic Search Heuristic Search Abstraction Heuristics Conclusion

Binary Decision Diagrams (BDDs)

A function can be represented by a decision tree (e.g. x2 → x3)

x1

x2 x3

x3 x3 x2 x2

T T F T T F T T

x1

x2

x3

T T F T F T T T

x1

x2

x3

T F

x1

x2

x3

T F

x1

x2

x3

T F

x1

x2

x3

T F

→Each node decomposes the formula according to one variable:

ψ = (xi ∧ ϕ) ∨ (¬xi ∧ ϕ′)

1 Assume fixed variable ordering

2 Represent each node only once (each ψ has a single node)
3 Remove nodes if all children are the same (xi ∧ ϕ) ∨ (¬xi ∧ ϕ) = ϕ
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Binary Decision Diagrams (BDDs)

Multi-valued Decision Diagram (MDD)

DAG with a fixed variable ordering.

Reduction rules:

1 Each node represented only once

2 Nodes whose children are all the
same are ommited

t p1 p2

l1 l1 t
l2 l1 l1
l1 t l1

t

p1

p2

T F

l1 l2

l1 t l2 l1 t l2

l1l1t

Binary Decision Diagrams: MDDs where variables are all binary
→Compilation that uses log2|Dv| binary variables per FDR variable v
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DAG with a fixed variable ordering.
Reduction rules:

1 Each node represented only once

2 Nodes whose children are all the
same are ommited

t p1 p2

l1 l1 t
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How to Count

Question!

How many states are in the following BDD?

x1

x2

x3

x4

x5

x6

T F

n1

n2

n3

Each node corresponds to a set of state
suffixes, e.g., n3 = {(x5, x6), (x5, x6)}
Count(n3) = 2

Count(n2) =Count(n3) + 22 = 6

Count(n1) =2 · Count(n2) +
22Count(n3) = 20

Total: 40

→Each node needs to be processed only once
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Á. Torralba Symbolic State Space Search 27/56



Planning Symbolic Representation BDDs Symbolic Search Heuristic Search Abstraction Heuristics Conclusion

BDD Operations: And

Recursive function over two BDDs f and g

Base case(s): f (or g) is a constant:

(f = >) =⇒ f ∧ g = g
(f = ⊥) =⇒ f ∧ g = ⊥

Recursive case (v = var(f) = var(g))

f = (v ∧ f1) ∨ (¬v ∧ f2), g = (v ∧ g1) ∨ (¬v ∧ g2)

f ∧ g = (f1 ∧ g1, f2 ∧ g2)

Recursive case (var(f) < var(g))

f ∧ g = (f1 ∧ g, f2 ∧ g)

→Ensure that nodes are not duplicated
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BDD Operations: And

x1

x2

x3

x4

T F

n1

n2

n3

T F

n4

n5

T F

n′1

n′2

n3n′3

n5

→Complexity?

Quadratic, O(|f ||g|)
→Important to keep a cache (ni, nj)→ nk to avoid duplicate work
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BDD Variable Ordering

(x1 6= y1) ∨ (x2 6= y2) ∨ (x3 6= y3)

Exponential (> 2n+1)
x1

x2

x3

y1

y2

y3

T F

Polynomial (3n+ 2)
x1

y1

x2

y2

x3

y3

T F
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Practical Strategies for a Good Variable Ordering

Static Variable Ordering: Put causally-related variables close [KE11]

Choose ordering o that minimizes
∑

vi,vj∈CG
do(vi, vj)

2

→No strong theoretical guarantees [KH13] but compares well against
other alternatives [BRKM91, CHP93, Mai09, MWBSV88, MIY90]

Dynamic Variable Ordering: variable re-ordering to minimize the size of
the BDDs generated so far

Finding the optimal BDD ordering is NP-hard [Bry86]

But practical approximations (based on local-search) exist [Rud93].

Applied in planning with good results by dynamic-Gamer [KH14]
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Complexity Results

BDD Representation of Interesting Sets of States [EK11]

Goal States/Reachable states Polynomial Exponential

Polynomial Gripper Blocksworld
N-puzzle

Exponential Connect-4
Tic-tac-toe

Gomoku

Can variable orderings schemas based on the causal graph give us
theoretical guarantees for the size of BDDs in the search? [KH14]

→Mostly not.
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Efficient Image Computation: Variable Ordering

Variable Ordering: Interleave variables x and x′

x1

x′1

x2

x′2 x′2

x3

x3’

> ⊥

→The TR of an action has linear size on the number of variables
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Efficient Image Computation

Transition Relation Partitioning [BCL91, JVB08]

Given a set of K actions with the same cost, replace Ti(x, x
′) and

Tj(x, x
′) by Ti(x, x

′) ∨ Tj(x, x′)

1 2 3 4 5 6
. . .

K

Number of Transition Relations

TR size (Memory)

Image Runtime

→Merge as many TRs as possible given the available
memory [TEK13, TAKE17]
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Uses of Decision Diagrams

In classical planning:

Symbolic search (this lecture)

Representation of state-dependent action costs [GKM15]

Subsumption of partial states [AFB14]

Dominance pruning [TH15]

Also very important in other areas:

Model checking

Hardware design and verification
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BDD Packages

Library Language Reference

CUDD C/C++ [Som]
CacBDD C++ [LSX13]
BuDDy C [CWWG]
CAL C
Sylvan C [vDvdP15]
JDD Java [Vah]
BeeDeeDee Java [LMS14]

→Not clear best performer. CUDD, BuDDy, CacBDD have good results
in symbolic model-checking [vDHJ+15].
→There are interfaces that adapt these libraries for other languages like
Java, Python, Haskell, . . .
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Agenda

1 Classical Planning: Models, Approaches

2 Symbolic Representation of Planning Tasks

3 Binary Decision Diagrams

4 Symbolic Search

5 Heuristic Search

6 Symbolic Abstraction Heuristics

7 Conclusion
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How to do Search

We have all the necessary ingredients to do search:

Representation of the initial state and goal

Operation to generate successors: image operation

Operation to check if goal has been reached: S ∧G 6= ∅

→We can devise versions of the standard search algorithms that take
advantage of the symbolic representation to compute the successors from
a set of states at the same time
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Symbolic Breadth-First Search

Input: Planning Task Π = (V,A, I,G)
S0 ← I ;
C ← ∅ ;
i← 0 ;
while Si 6= ∅ do

if Si ∧G then
return Plan ;

end
C ← C ∨ Si ;
Si+1 ← image(Si, TR) ∧ ¬C ;
i← i+ 1 ;

end
return Unsolvable ;

g

I

0

S1

1

S2

2

S3

3

S4

4

S5

5

SGst

s0
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Symbolic Uniform-Cost Search

Expand set of states Si with minimum g-value i

Zero-cost breadth-first search to obtain all states reachable with
g = i
For each TR with action cost c:

Use image to compute states reachable with i+ c
Insert the result in the corresponding bucket (disjunction)

g

I

0
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Symbolic Backward Uniform-Cost Search

We can perform the search in backward direction:

Start with the set of goal states

Use pre-image instead of image operation

Challenges:

1 Multiple goal states

2 Subsumption of partial states
3 Spurious states

→Solution: state-invariant pruning [TAKE17]

Compute state invariants, e.g., h2 mutexes

Encode the set of spurious states as a BDD
Remove spurious states from the goal and the TRs
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Symbolic Uniform-Cost Search: Results
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Symbolic Bidirectional Uniform-Cost Search

Do forward and backward search at the same time

Decide forward or backward direction at each step

Stop when gf + gb +mina∈Ac(a) ≥ Sol

g

I

0

G

0

gb = 0gf = 0
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Symbolic Bidirectional Uniform-Cost Search: Results
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Planning Heuristics

Definition A heuristic h is a function h : S 7→ R+
0 ∪ {∞}. Its value h(s)

for a state s is referred to as the state’s heuristic value, or h value.

Definition For a state s ∈ S, the perfect heuristic value h∗ of s is the
cost of an optimal plan for s, or ∞ if there exists no plan for s.

→ Heuristic functions h estimate the remaining cost h∗.
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How to Exploit Heuristics in Symbolic Search?

I
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f = 4

Split a BDD into subsets of states according to their h-value!

Heuristic computation: how to evaluate a set of states?

Does the heuristic improve the search performance?
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Heuristic Computation: How to Evaluate a Set of States?

1 Iterate over all states in the BDD, computing h(s)

2 Precompute the heuristic in form of BDDs: A BDD Hi for each
possible h-value representing the set of states with h(s) = i

Given a set of states S, split it according to their h-value

: Si = S ∧Bi

H0 H1 H2 H3 H4

S
S0 S1 S2 S3 S4

∧ ∧ ∧ ∧ ∧

→Can we efficiently precompute a heuristic into BDDs?

Yes, for some types of abstraction heuristics

Not in the general case. Finding tractable cases is an open research
question!
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Á. Torralba Symbolic State Space Search 48/56



Planning Symbolic Representation BDDs Symbolic Search Heuristic Search Abstraction Heuristics Conclusion

Heuristic Computation: How to Evaluate a Set of States?

1 Iterate over all states in the BDD, computing h(s)

2 Precompute the heuristic in form of BDDs: A BDD Hi for each
possible h-value representing the set of states with h(s) = i

Given a set of states S, split it according to their h-value: Si = S ∧Bi

H0 H1 H2 H3 H4

S
S0 S1 S2 S3 S4

∧ ∧ ∧ ∧ ∧

→Can we efficiently precompute a heuristic into BDDs?

Yes, for some types of abstraction heuristics

Not in the general case. Finding tractable cases is an open research
question!
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1 Classical Planning: Models, Approaches

2 Symbolic Representation of Planning Tasks

3 Binary Decision Diagrams

4 Symbolic Search
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Abstractions

Abstraction: function α : S 7→ Sα. Induces an abstract state space s.t.:
(i) Iα = α(I).
(ii) SαG = {α(s) | s ∈ SG}. /* preserve goal states */
(iii) Tα = {(α(s), l, α(t)) | (s, l, t) ∈ T}./* preserve transitions */

LRR

LLR

LLL

LRL

LLR

LRL

LLL

ALR ARL

ALL ARR

BLL

BRL

BRR

BLR

ALR ARL

BLRBRL

ALL ARR

BLL BRR

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR
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Pattern Databases [CS98, Ede01, HBH+07]

Pattern Databases: Select a subset of variables V α ⊆ V (pattern).
The mapping α is defined as the projection onto V α.
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Abstraction Heuristics

Use the optimal goal-distance in the abstract state space as an
(admissible) estimate for the distance in the concrete state space:

h(s) = h∗(α(s))

1 Precompute h∗ for all α(s) ∈ Sα by performing a backward
uniform-cost search in the abstract state space

→ Searching the entire abstract state space? That’s what symbolic
search is good for!

2 Store them in a look-up table

→ In the form of BDDs, so we can use them in BDDA∗
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Á. Torralba Symbolic State Space Search 52/56



Planning Symbolic Representation BDDs Symbolic Search Heuristic Search Abstraction Heuristics Conclusion

Abstraction Heuristics

Use the optimal goal-distance in the abstract state space as an
(admissible) estimate for the distance in the concrete state space:

h(s) = h∗(α(s))

1 Precompute h∗ for all α(s) ∈ Sα by performing a backward
uniform-cost search in the abstract state space

→ Searching the entire abstract state space? That’s what symbolic
search is good for!

2 Store them in a look-up table

→ In the form of BDDs, so we can use them in BDDA∗
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Symbolic Pattern Databases

Do symbolic backward uniform-cost search with only a subset of variables

Do not have a limit on the number of variables to consider

Truncate the search if it takes too much time or memory [AHS07]

Using all variables: Symbolic Perimeter

→Really strong for heuristic search planners too [FTLB17]!
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Summary

Symbolic search represents sets of states as Binary Decision
Diagrams (BDDs) to perform search efficiently:

→ Implicitly exploits structure of the problem
→ Very useful for regression

Symbolic bidirectional uniform-cost search has very good
performance without using any heuristic

→ Backward search can be understood as a (perimeter) heuristic

Heuristics can also be used in symbolic search (though is slightly
harder and not as useful as in explicit-state search)
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Planners using Symbolic Search

MIPS: Stefan Edelkamp and Malte Helmert
http://www.tzi.de/~edelkamp/mips/mips-bdd.html

MIPS-XXL: Stefan Edelkamp, Shahid Jabbar, and Mohammed
Nazih. Extension to net-benefit with external planning
http://sjabbar.com/mips-xxl-planner

BDDPlan: Hans-Peter Strr http://www.stoerr.net/bddplan.html

Gamer (IPC08-IPC11): Peter Kissmann and Stefan Edelkamp
https://fai.cs.uni-saarland.de/kissmann/planning/downloads/

Extensions (IPC14):
1 cGamer: improved image computation and state invariant pruning
2 dynamic Gamer: dynamic variable reordering

SymBA∗ (IPC14): Based on Fast Downward
http://fai.cs.uni-saarland.de/torralba/software.html
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Factored planning using decomposition trees, Proceedings of the 20th
International Joint Conference on Artificial Intelligence (IJCAI’07)
(Hyderabad, India) (Manuela Veloso, ed.), Morgan Kaufmann, January
2007, pp. 1942–1947.

[KE11] Peter Kissmann and Stefan Edelkamp, Improving cost-optimal
domain-independent symbolic planning, Proceedings of the 25th
National Conference of the American Association for Artificial
Intelligence (AAAI’11) (San Francisco, CA, USA) (Wolfram Burgard and
Dan Roth, eds.), AAAI Press, July 2011, pp. 992–997.

[KH13] Peter Kissmann and Jörg Hoffmann, What’s in it for my BDD? On
causal graphs and variable orders in planning, Proceedings of the 23rd
International Conference on Automated Planning and Scheduling
(ICAPS’13) (Rome, Italy) (Daniel Borrajo, Simone Fratini, Subbarao
Kambhampati, and Angelo Oddi, eds.), AAAI Press, 2013, pp. 327–331.

[KH14] , BDD ordering heuristics for classical planning, Journal of
Artificial Intelligence Research 51 (2014), 779–804.
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Á. Torralba Symbolic State Space Search 13/16



References

References XIV

[Rud93] Richard Rudell, Dynamic variable ordering for ordered binary decision
diagrams, Proceedings of the 1993 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD-93) (Santa Clara, CA, USA)
(Michael R. Lightner and Jochen A. G. Jess, eds.), IEEE Computer
Society, 1993, pp. 42–47.

[Sac75] Earl D. Sacerdoti, The nonlinear nature of plans, Proceedings of the 4th
International Joint Conference on Artificial Intelligence (IJCAI’75)
(Tiblisi, USSR), William Kaufmann, September 1975, pp. 206–214.

[Som] Fabio Somenzi, CUDD: CU decision diagram package release 3.0.0., At
http://vlsi.colorado.edu/~fabio/.

[Sud14] Martin Suda, Property directed reachability for automated planning,
Journal of Artificial Intelligence Research 50 (2014), 265–319.
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[YS03] Håkan L. S. Younes and Reid G. Simmons, VHPOP: versatile heuristic
partial order planner, Journal of Artificial Intelligence Research 20
(2003), 405–430.
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