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Intelligent Acting

● Intelligent entities (agents) reason about how 
to act to achieve their goals 

● Reactive acting
– Rule based, Reinforcement Learning
– Fast
– Aims for short-term goals (rewards)

● Deliberative acting
– Planning
– Slow
– Aims for longer-term goals



  

Automated Planning

● We have Domain Definition languages (e.g. 
PDDL)

● We have Planning Engines (e.g., FF, LAMA, 
LPG, FDSS, BFWS,...)

● So, we can generate Plans (quite easily)

● But what about their execution



  

Task Planning for AUVs

● Necessity to control multiple heterogeneous 
AUVs for fulfilling user-defined tasks (e.g. 
sampling an object of interest)

● System has to be flexible (e.g. a user can add 
a new task) and robust (e.g. handling vehicles’ 
failures)
– Automatized response on task changes by user 

and/or exceptional circumstances during plan 
execution



  

“One shot” planning Modular 
Architecture [Chrpa et al., 2015]

● User specifies tasks in 
NEPTUS (the control 
system developed in LSTS, 
Univ. of Porto)

● NEPTUS generates a 
planning problem and 
sends it to the LPG-td 
planning engine

● LPG-td returns a plan to 
NEPTUS

● NEPTUS distributes the 
plan to each of the vehicles



  

Domain Specification (sketch)
● The user specifies tasks by

– Locations/areas of interest
– Required payloads (e.g. camera, sidescan)

● The vehicle can perform the following actions
– Move (moving between locations)
– Sample/Survey (sampling the location/surveying the 

area of interest by a required payload)
– Communicate (communicate task data with control 

center while being in its “depot”)



  

Experimental Settings

● Evaluated in Leixões 
Harbour, Porto

● Mine-hunting scenario was 
used

● 3  light AUVs, 2 carried 
sidescan, one carried 
camera

● In phase one, areas of 
interest were surveyed

● In phase two, contacts 
identified in phase one 
sampled to identify them as 
mines, or false positives



  

Planned vs. Execution time

● The plans were 
executable

● High discrepancies, 
especially for move 
and survey actions

● Rough time 
predictions that 
were done only on 
distance and type of 
vehicle

Vehicle Action Time Difference (s)

Noptilus-1

move
survey
sample
communicate

Noptilus-2

move
survey
sample N/A
communicate

Noptilus-3

move
survey
sample
communicate

47.80 ± 49.11
23.15 ± 23.26

1.33 ± 0.58
0.16 ± 0.17

39.57 ± 35.66
107.88 ± 141.10

0.25 ± 0.07
59.90 ± 57.05
24.00 ± 0.00
9.57 ± 13.64
0.11 ± 0.16



  

Additional Requirements [Chrpa et 
al., 2017] 

1) Users can add, remove or modify tasks 
during the mission

● Plans have to by (dynamically) amended

2) Vehicles might fail to execute an action
● Tasks have to be (dynamically) reallocated to another 

AUV 

3) Communication with the control center is 
possible only when a vehicle is in its “depot”

● The user defines a maximum “away” time for each 
vehicle (the vehicle has to return to its “depot” in that 
time)



  

Execution
● Preprocessing

– Splitting large surveillance areas into smaller ones

● Planning

– NEPTUS generates a problem specification in PDDL, runs LPG-td, then 
processes and distributes the plan among the vehicles

● Execution

– Each vehicle is responsible for executing its actions

– Move actions are translate into timed-waypoints for mitigating the 
differences between planned and actual times

– When in depots vehicles communicate status of completed tasks 
(success/failure) – failed tasks are “re-inserted”

● Replanning

– If a new planning request comes (e.g. a user added a new task), 
vehicles continue to execute their current plans until they come back to 
their depots, then they receive new plans 



  

Results of the Field Experiment

● Plans were successfully 
executed

● During one of the 
executions one AUV 
(Noptilus 3) failed (depth 
sensor fault) – tasks 
were automatically re-
inserted and allocated to 
a different AUV, which 
completed them

Most planned/actual differences are 
quite small (less than 3 seconds).

Around time 1000 a noticeable 
difference occurred (vehicle had to 
ascend during the survey). The delay 
was eliminated by accelerating 
during the following move action.



  

Executing Plans

● In theory (static environment)
– Actions in a plan are always applicable (one by 

one)
– After all actions are executed the goal is reached

● In practice (dynamic environment)
– Actions might become inapplicable (at some point) 

because of external factors
– Goal might not be reached even if all the actions 

were executed



  

Planning vs Execution 
(the AUV case)

● Issues we considered (to some extent)
– User intervention (e.g. adding tasks)
– Task failures
– Vehicles delays
– Lack of communication

● Issues we didn’t consider
– Ships passing the area (or other non-deterministic events)
– Currents, obstacles
– …….



  

Non-deterministic events

● Events are encoded similarly to actions – they 
have preconditions, add and delete effects

● A non-deterministic event can occur if its 
precondition is met (but doesn’t necessarily 
have to)

● We assume, for simplification, a “two-player” 
like scenario
– The controller applies an action (including “noop”)
– The environment applies a set of independent 

events (including “noop”)



  

Reasoning on “dangerous” states
[Chrpa & Pilát & Gemrot, 

2017;2021]



  

Handling “danger” locally

● Computing complete policies might not be 
feasible

● However, the controller should still avoid 
dead-ends

● The controller needs to know if it is in a 
dangerous state, i.e., a state “close” to a dead-
end state, so it can avoid “falling” into it



  

Dark Dungeon domain: a sample 
scenario

● The hero has to navigate through the 
dungeon full of traps and monsters

● The hero can use the sword (if s/he found it) to 
eliminate monsters

● The hero can disarm traps but must be empty 
handed

● Monsters can move (they cannot be in a room 
with a trap or another monster) and eventually 
eliminate empty handed hero 



  

Dangerous States

● A state is
– 0-dangerous if it’s a dead-end state
– n-dangerous if events (without controller’s actions) 

might transform it to a dead-end state in n steps
– Safe (∞-dangerous) otherwise

● The dang function determines how dangerous 
the state can be (the worst case scenario) after 
executing a given sequence of actions



  

An example of dangerousness

● The initial state (I) is 4-
dangerous

● dang(I,〈right〉) = 2

● dang(I,〈right,up〉) = 0

● dang(I,〈right,right〉) = 2

● dang(I,〈right,right,pickup〉) =∞



  

Meta-reasoning on Dangerous 
states

● When in “dangerous” state (the value of dang 
less than a given threshold) the controller:
– Reactively escapes the danger, i.e, executes 

actions maximizing the value of dang
– Plans towards a safe state
– Plans towards eliminating the source of the 

danger

● After escaping the danger (the value of dang 
is above the threshold), the controller plans 
towards the goal



  

Considered Agents (baseline)

● R1 – behaves reactively according to given 
rules

● R2 – behaves reactively according to given 
rules but can plan its path (by A*)

● N1 – re-plans whenever an event changes the 
state of the environment

● N2 – re-plans when the current action is 
inapplicable



  

Considered Agents (clever)

● C1 – if the value of the dang function is small (2 
or less), then it reactively escapes to a “safer” 
state (3-dangerous or better)

● C2 - if the value of the dang function is small (2 
or less), then it plans to eliminate the source of 
danger

● C3 – check when the plan gets disrupted and if 
at that point the value of the dang function is 
small (2 or less), then it plans to eliminate the 
source of danger



  

Results

Agents’ wins, losses, and time-outs (TO); number of planner calls 
(PC), steps winning steps (WS) and wining planning time (WPC).
“C” suffix considers penalizing “unsafe” actions.



  

Results cont.

The success rate of the different types of agents in dungeons 
with different monsters (Static, Dynamic, Killer) and their 
movement probabilities
“C” suffix considers penalizing “unsafe” actions.



  

Reasoning on “safe” states
[Chrpa & Pilát & Gemrot, 2020]



Case Studies: AUV Domain

• An AUV moves and collects

resources in a grid-like environment

• Ships can move in certain grid cells

• Ships are not controlled by the

agent

• If a ship runs over the AUV, the

AUV is destroyed
  

$

$

$
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Case Studies: Perestroika Domain

• An agent moves and collects coins in a grid-like environment

• There are solid and shrinking platforms (big, medium, small)

• Shrinking platforms can shrink until they disappear; they can

reappear as big ones

• If a shrinking platform disappears with the agent on it, the

agent dies
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High-level Idea of Safe State Reasoning

• A safe state is a state in which no sequence of events lead to

dead-end

• A robust plan is a plan that can always be applied and goal

reached despite event occurrence

• A reference plan is the initially generated plan

• The idea is that planning and acting concerns of generation

and execution of robust plans between safe states

• However, safe states should be “reasonably close” to each

other, so the reference plan has to reflect this
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Robust Plans

• Robust plans are generated such that event applicability is

optimistically assumed while action applicability is

pessimistically assumed

• E 0 = p0+ = p0− = ∅ (no event can occur before agent’s first

action)

• For each 1 ≤ i ≤ n it is the case that:

• E i = {e | e ∈ E , pre(e) ⊆ ((si−1 ∪ pi−1+ ) \ del(ai )) ∪ add(ai )},
• pi+ = (pi−1+ \ del(ai ) ∪

⋃
e∈E i add(e)),

• pi− = (pi−1− \ add(ai ) ∪
⋃

e∈E i del(e)).

• pre(ai ) ∩ pi−1− = ∅

• G ⊆ sn \ pn−
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Safe State Reasoning in Planning and Acting

• Try to generate a robust plan (if successful, just execute it)

• Try to generate a reference plan with increasing unsafeness

limit (if it fails, stop)

• Iterate until the goal is reached

• Identify k safely applicable actions from the (rest of)

reference plan (i.e., a robust plan to the furthest safe state)

• If k > 0, execute k actions for the reference plan and continue

• If k = 0, try to generate a robust plan to the next safe state (if

it exists, execute it, otherwise do noop)
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Example

  

$

$

$

The AUV has to collect all resources and return to the location of

origin.
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Example

  

$

$

$

A reference plan (with the unsafeness limit of 1)
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Example

  

$

$

$

A safely applicable sequence of actions (maximum length)
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Example

  

$

$

A robust plan around the ship
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Experiments - results

Algorithm PER-APP PER-EVENT DANG LIMIT

Problem PT ACT SR PT ACT SR PT ACT SR PT ACT SR

AUV-1 226 37.32 76 3307 36.66 88 1364 41.81 100 410 38.60 100

AUV-2 418 39.16 49 3940 35.91 57 1582 45.79 98 678 32.89 100

AUV-3 352 37.64 50 5078 39.68 47 1620 45.13 80 2198 40.44 100

AUV-4 664 75.12 98 32518 109.56 93 1539 75.99 100 1603 75.39 100

AUV-5 943 75.61 85 39642 101.57 67 2946 78.70 98 2416 77.32 100

AUV-6 848 75.02 83 43604 98.87 61 2681 78.10 97 6982 73.79 100

Per-1 544 21.58 24 2714 24.13 15 6497 60.84 100 600 28.78 100

Per-2 425 22.89 18 2661 23.00 10 7694 68.73 90 699 31.20 100

Per-3 488 26.57 14 3143 27.23 13 7322 72.69 95 577 33.88 100

Per-4 889 40.00 1 N/A N/A 0 15883 118.54 100 2139 56.49 100

Per-5 1327 42.67 3 6327 46.00 1 21479 153.07 83 2198 57.99 100

Per-6 764 22.21 19 3009 14.63 8 14170 111.78 95 633 15.84 100

PT denotes the average time spent by planning (milliseconds),

ACT denotes the average number of actions needed to solve the

problem, and SR denotes the number of successful runs.
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Reasoning on “cyclic 
phenomena” 

[Chrpa & Pilát & Med, 2021]



Our Terminology

• A cyclic phenomenon occurs repeatedly in the environment

and is dangerous to the agent if it interferes with the

phenomenon

• A safe state is a state in which no sequence of events lead to

dead-end

• A dead-end event is an event that might lead to dead-end

• A robust plan is a plan that can always be applied and goal

reached despite event occurrence

• An unsafe bridge is a sequence of actions “crossing” possibly

unsafe states

• A reference plan is the initially generated plan

• An eventually applicable plan is a plan in which all unsafe

bridges become robust plans (after a finite number of “noop”

actions)
6



Cyclic Phenomena

• An event e is S-reversible if and only if for each s ∈ S , where

e is applicable, there is a sequence of events transforming the

environment back to s

• We heuristically determine event S-reversibility by exploring

an event only Domain Transition Graph

• Reversible Events represent cyclic phenomena

• Irreversible Events represent potential dead-end events

Proposition
Let S s be a set of states reachable from s by applying only events.

If for each s ′ ∈ S s and for each event e applicable in s ′ it is the

case that e is {s ′}-reversible, then (i) S s′ = S s and (ii) if also s is

not a dead-end state, then s is a safe state.
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Generating Eventually Applicable Reference Plans

• Initially, the initial state is verified for the

condition (i) from the previous Proposition

• If none irreversible event is “enabled” we

assume we are in a safe state

• We might apply reversible events to modify

the environment to a “desirable” state

• Unsafe bridges are eventually applicable in

the Theorem below holds

Theorem (Theorem Sketch)
Let s be a safe state and π = ⟨a1, . . . , an⟩ be an

unsafe bridge. If the following conditions

(1) for each ai ∈ π: minimum distance to an

event being a clobberer for ai ≥ i − 1

(2) for each aj ∈ π: minimum distance to a

dead-end (irreversible) event aj is a

clobberer for ≥ j

hold, then π is a robust plan.

Require: A planning task P = (V , A, E, I, G),

Ei ,Er

Ensure: Eventually Applicable Robust Plan π

s ← I , π ← ⟨⟩, en = ∅
while s ̸|= G do

if en = ∅ then

un ← 0

non-deterministically select a ∈ A ∪ Er s.t.

s |= pre(a)

else

un++

non-deterministically select a ∈ A s.t. s |=
pre(a), c1(a, s) ≥ (un − 1) and c2(a, s) ≥ un

end if

if no a was selected then return fail

s = γ(s, a)

if a ∈ A then

en ← en ∪ {ei | a is an achiever for ei}
en ← en \ {ei | a is a clobberer for ei}
π ← π.a

end if

end while

return π
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Example

$

The AUV has to collect the resource on the right.
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Example

$

The reference plan is not eventually applicable (the ship either

block or poses a direct threat to the AUV)
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Example

$

The reference plan is eventually applicable (the unsafe bridge from

the bottom left to the bottom right cell becomes a robust plan if

the ship is in the top row)
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Experiments - results

AUV

Structure APP LIMIT FOND

# N #S #R Pt RPL St Pt Pl St Pt St

1 3 1W 1 130 9 17 FAIL - Act 18711 26

2 3 1C 1 129 7 11 400 7 11 13827 31

3 5 3C 3 200 29 136 2210 21 144 FAIL - Plan

4 10 5C 5 1953 41 61 FAIL - Plan FAIL - Plan

5 15 7C 7 59073 93 117 FAIL - Plan FAIL - Plan

6 5 2W 2 152 16 29 545 16 30 FAIL - Plan

7 10 6W 5 909 87 154 229401 41 116 FAIL - Plan

8 15 12W 7 1231 85 114 FAIL - Act FAIL - Plan

Perestroika

1 5 16E 5 181 17 29 747 17 25 FAIL - Plan

2 5 16E 8 778 32 52 FAIL - Act FAIL - Plan

3 9 56E 14 7179 66 118 FAIL - Act FAIL - Plan

4 9 56E 24 7709 114 298 FAIL - Act FAIL - Plan

5 5 10R 9 161 33 39 FAIL - Act FAIL - Plan

6 5 19R 5 1000 17 24 FAIL - Plan FAIL - Plan

7 9 40R 22 3257 74 102 FAIL - Act FAIL - Plan

8 9 37R 43 7603 167 223 FAIL - Act FAIL - Plan

Structure of the problem consists of N – size of the square grid, #R – number of
resources, and #S – number of ships/shrinking platforms. Pt – runtime in ms for
generating Reference Plan (including preprocessing), RPL – reference plan length, and
St – average number of execution steps.
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