
The Big Three Planning Approaches

• Of the many planning approaches, three techniques stand out:

• 1 Graph/SAT Planning

• 2 Symbolic Search Planning

• 3 Heuristic State-Space Search

Stefan Edelkamp 1

The Big Three Planning Approaches

• Of the many planning approaches, three techniques stand out:

• 1 Graph/SAT Planning

• 2 Symbolic Search Planning

• 3 Heuristic State-Space Search

Stefan Edelkamp 2

State-Space Search in a Nutshell

Stefan Edelkamp 3

GraphPlan: Basic idea
➢Construct a graph that encodes constraints on possible plans

➢Use this “planning graph” to constrain search for a valid plan

➢Planning graph can be built for each problem in a relatively
short time

➢Finds “shortest” plans (makespan)

➢Sound, complete, and will terminate with failure if there is no plan

Stefan Edelkamp 4

Planning graph

➢Directed, leveled graph with alternating layers of nodes

➢Odd layers (“state levels”) represent candidate propositions that
could possibly hold at step i

➢Even layers (“action levels”) represent candidate actions that could
possibly be executed at step i, including maintenance actions [do
nothing]

➢Arcs represent preconditions, adds and deletes

➢We can only execute one real action at any step, but the data
structure keeps track of all actions and states that are possible

➢Add action in level Ai if all of its preconditions are present in level Si

➢Add literal in level Si if it is the effect of some action in level Ai-1
(including no-ops)

➢Level S0 has all of the literals from the initial state

Stefan Edelkamp 5

ROCKET domain

• Literals:
• at X Y X is at location Y
• fuel R rocket R has fuel
• in X R X is in rocket R

• Actions:
• load X L load X (onto R) at location L

(X and R must be at L)
• unload X L unload X (from R) at location L

(R must be at L)
• move X Y move rocket R from X to Y

(R must be at L and have fuel)

• Graph representation:
• Solid black lines: preconditions/effects
• Dotted red lines: negated preconditions/effects

Stefan Edelkamp 6

Example planning graph

States

S0

Actions

A0

States

S1

Actions

A1

States

S2

Actions

A2

States

S3

(Goals!)

at A L

at B L

at R L

fuel R

load A L

load B L

move L P

in A R

in B R

fuel R

at A L

at B L

at R L

at R P

load A L

load B L

move L P

move P L

at A L

at B L

at R L

fuel R

in A R

in B R

at R P

unload A P

unload B P

at A P

at B P

Stefan Edelkamp 7

Valid plans

• A valid plan is a planning graph where:

• Actions at the same level don’t interfere (delete each other’s
preconditions or add effects)

• Each action’s preconditions are true at that point in the plan

• Goals are satisfied at the end of the plan

Stefan Edelkamp 8

Exclusion relations (mutexes)

• Two actions (or literals) are mutually exclusive (“mutex”) at
step i if no valid plan could contain both.

• Can quickly find and mark some mutexes:
• Interference: Two actions that interfere (the effect of one negates the

precondition of another) are mutex

• Competing needs: Two actions are mutex if any of their preconditions
are mutex with each other

• Inconsistent support: Two literals are mutex if all ways of creating
them both are mutex

Stefan Edelkamp 9

move P L

move L P

Example: Mutex constraints
at A L

at B L

at R L

fuel R

load A L

load B L

move L P

in A R

in B R

fuel R

at A L

at B L

at R L

at R P

load A L

load B L

at A L

at B L

at R L

fuel R

in A R

in B R

at R P

unload A P

unload B P

at A P

at B P

nop

nop

nop

nop

nop
nop

nop

nop

nop

nop

nop

Inconsistent effects

States

S0

Actions

A0

States

S1

Actions

A1

States

S2

Actions

A2

States

S3

(Goals!)
Stefan Edelkamp 10

move P L

move L P

Example: Mutex constraints
at A L

at B L

at R L

fuel R

load A L

load B L

move L P

in A R

in B R

fuel R

at A L

at B L

at R L

at R P

load A L

load B L

at A L

at B L

at R L

fuel R

in A R

in B R

at R P

unload A P

unload B P

at A P

at B P

nop

nop

nop

nop

nop
nop

nop

nop

nop

nop

nop

Inconsistent support

States

S0

Actions

A0

States

S1

Actions

A1

States

S2

Actions

A2

States

S3

(Goals!)
Stefan Edelkamp 11

move P L

move L P

Example: Mutex constraints
at A L

at B L

at R L

fuel R

load A L

load B L

move L P

in A R

in B R

fuel R

at A L

at B L

at R L

at R P

load A L

load B L

at A L

at B L

at R L

fuel R

in A R

in B R

at R P

unload A P

unload B P

at A P

at B P

nop

nop

nop

nop

nop
nop

nop

nop

nop

nop

nop

Interference:
Inconsistent
preconditions and
effects

States

S0

Actions

A0

States

S1

Actions

A1

States

S2

Actions

A2

States

S3

(Goals!)
Stefan Edelkamp 12

move P L

move L P

Example: Mutex constraints
at A L

at B L

at R L

fuel R

load A L

load B L

move L P

in A R

in B R

fuel R

at A L

at B L

at R L

at R P

load A L

load B L

at A L

at B L

at R L

fuel R

in A R

in B R

at R P

unload A P

unload B P

at A P

at B P

nop

nop

nop

nop

nop
nop

nop

nop

nop

nop

nop

Competing needs

States

S0

Actions

A0

States

S1

Actions

A1

States

S2

Actions

A2

States

S3

(Goals!)
Stefan Edelkamp 13

Extending the planning graph

• Action level Ai:
• Include all instantiations of all actions (including maintains (no-ops)) that have all of their

preconditions satisfied at level Si, with no two being mutex

• Mark as mutex all action-maintain pairs that are incompatible

• Mark as mutex all action-action pairs that have competing needs

• State level Si+1:
• Generate all propositions that are the effect of some action at level Ai

• Mark as mutex all pairs of propositions that can only be generated by mutex action pairs

Stefan Edelkamp 14

Basic GraphPlan algorithm

• Grow the planning graph (PG) until all goals are reachable and
none are pairwise mutex. (If PG levels off [reaches a steady
state] first, fail)

• Search the PG for a valid plan

• If none found, add a level to the PG and try again

Stefan Edelkamp 15

Creating the planning graph is usually fast

• Theorem:

The size of the t-level planning graph and the time to create it
are polynomial in:
• t (number of levels),

• n (number of objects),

• m (number of operators), and

• p (number of propositions in the initial state)

Stefan Edelkamp 16

Searching for a plan

• Backward chain on the planning graph

• Complete all goals at one level before going back

• At level i, pick a non-mutex subset of actions that achieve the goals at
level i+1. The preconditions of these actions become the goals at level i.

• Build the action subset by iterating over goals, choosing an action that has
the goal as an effect. Use an action that was already selected if possible.
Do forward checking on remaining goals.

Stefan Edelkamp 17

The Big Three Planning Approaches

• Of the many planning approaches, three techniques stand out:

• 1 Graph/SAT Planning

• 2 Symbolic Search Planning

• 3 Heuristic State-Space Search

Stefan Edelkamp 18

SAT Planning
Encoding of STRIPS Planning Task
(Variables)

Stefan Edelkamp 19

SAT Planning of STRIPS Planning Task Clauses
(for Initial and Goal State)

Stefan Edelkamp 20

SAT Planning of STRIPS Planning Task Clauses
(For Strips Actions)

Stefan Edelkamp 21

Sat EnCoDing

• Formula describing the initial state: (let E be the set of possible
facts in the planning problem)

/\{e0 | e I}  /\{e0 | e E – I }

Describes the complete initial state (both positive and negative fact)

• E.g. on(A,B,0)  on(B,A,0)

• Formula describing the goal: (G is set of goal facts)

/\{eT | e G}

says that the goal facts must be true in the final state at time step T

• E.g. on(B,A,T)

• Is this enough?
• Of course not. The formulas say nothing about actions.

Stefan Edelkamp 22

Formulas in 

• For every action a and time step i, formula describing what fluents
must be true if a were the i’th step of the plan:
• ai  /\ {ei | e  pre(a)}, a’s preconditions must be true

• ai  /\ {ei+1 | e  add(a)}, a’s ADD effects must be true in i+1

• ai  /\ {ei+1 | e  del(a)}, a’s DEL effects must be false in i+1

• Complete exclusion axiom:
• For all actions a and b and time step i, formulas saying a and b can’t occur

at the same time
 ai   bi

• this guarantees there can be only one action at a time

• Is this enough?
• The formulas say nothing about what happens to facts if they are not

effected by an action
• This is known as the frame problem

Stefan Edelkamp 23

Frame Axioms

• Frame axioms:
• Formulas describing what doesn’t change between steps i and i+1

• Several are many ways to write these
• Here I show a way that is good in practice

• explanatory frame axioms
• One axiom for every possible fact e at every timestep i

• Says that if e changes truth value between si and si+1,

then the action at step i must be responsible:

ei  ei+1  V{ai | e in add(a)}

If e became true then some action must have added it

ei  ei+1  V{ai | e in del(a)}

If e became false then some action must have deleted it

Stefan Edelkamp 24

Example
• Planning domain:

• one robot r1

• two adjacent locations l1, l2

• one operator (move the robot)

• Encode (P,T) where T = 1

• Initial state: {at(r1,l1)}

Encoding: at(r1,l1,0)  at(r1,l2,0)

• Goal: {at(r1,l2)}

Encoding: at(r1,l2,1)

• Action Schema: see next slideStefan Edelkamp 25

Example (continued)
• Schema: move(r, l, l’)

pre: at(r,l)

add: at(r,l’)

del: at(r,l)

Encoding: (for actions move(r1,l1,l2) and
move(r1,l2,l1) at time step 0)

move(r1,l1,l2,0)  at(r1,l1,0)

move(r1,l1,l2,0)  at(r1,l2,1)

move(r1,l1,l2,0) at(r1,l1,1)

move(r1,l2,l1,0)  at(r1,l2,0)

move(r1,l2,l1,0)  at(r1,l1,1)

move(r1,l2,l1,0) at(r1,l2,1)Stefan Edelkamp 26

Example (continued)

• Schema: move(r, l, l’)
pre: at(r,l)
add: at(r,l’)
del: at(r,l)

• Complete-exclusion axiom:
move(r1,l1,l2,0)  move(r1,l2,l1,0)

• Explanatory frame axioms:
at(r1,l1,0)  at(r1,l1,1)  move(r1,l2,l1,0)
at(r1,l2,0)  at(r1,l2,1)  move(r1,l1,l2,0)
at(r1,l1,0)  at(r1,l1,1)  move(r1,l1,l2,0)
at(r1,l2,0)  at(r1,l2,1)  move(r1,l2,l1,0)

Stefan Edelkamp 27

Complete Formula

[at(r1,l1,0)  at(r1,l2,0)] 

at(r1,l2,1) 

[move(r1,l1,l2,0)  at(r1,l1,0)] 

[move(r1,l1,l2,0)  at(r1,l2,1)] 

[move(r1,l1,l2,0)  at(r1,l1,1)] 

[move(r1,l2,l1,0)  at(r1,l2,0)] 

[move(r1,l2,l1,0)  at(r1,l1,1)] 

[move(r1,l2,l1,0)  at(r1,l2,1)] 

[move(r1,l1,l2,0)  move(r1,l2,l1,0)] 

[at(r1,l1,0)  at(r1,l1,1)  move(r1,l2,l1,0)] 

[at(r1,l2,0)  at(r1,l2,1)  move(r1,l1,l2,0)] 

[at(r1,l1,0)  at(r1,l1,1)  move(r1,l1,l2,0)] 

[at(r1,l2,0)  at(r1,l2,1)  move(r1,l2,l1,0)]

Convert to CNF and give to SAT solver.
Stefan Edelkamp 28

Extracting a Plan

• Suppose we find an assignment of truth values that
satisfies .

• This means P has a solution of length n

• For I = 0,…,T-1, there will be exactly one action a such that
ai = true

• This is the i’th action of the plan.

• Example (from the previous slides):

•  can be satisfied with move(r1,l1,l2,0) = true

• Thus move(r1,l1,l2,0) is a solution for (P,0)

• It’s the only solution - no other way to satisfy 

Stefan Edelkamp 29

Supporting Layered Plans (as in Graphplan)
“Blackbox”

• Complete exclusion axiom:
• For all actions a and b and time steps i include the formula
 ai   bi

• this guaranteed that there could be only one action at a
time

• Partial exclusion axiom:
• For any pair of incompatible actions a and b and each time

step i include the formula  ai   bi

• This encoding will allowed for more than one action to be
taken at a time step resulting in layered plans

• This is advantageous because fewer time steps are required
(i.e. shorter formulas)

Stefan Edelkamp 30

The Big Three Planning Approaches

• Of the many planning approaches, three techniques stand out:

• 1 Graph/SAT Planning

• 2 Symbolic Search Planning

• 3 Heuristic State-Space Search

Stefan Edelkamp 31

Symbolic Search Planning: BASIC Idea

➢search processes sets of states at a time

➢operators, goal states, state sets reachable with a given cost

etc. represented by binary decision diagrams (BDDs) (or related data
structures)

• hope: exponentially large state sets can be represented as
polynomially sized BDDs, which can be efficiently processed

• → perform symbolic search on these set representations

Stefan Edelkamp 32

Representation Gain: Connect Four

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

1E+11

1E+12

1E+13

0 5 10 15 20 25 30 35 40

Knoten (BDD)

Zustände (BDD)

Zustände (Allis-Schätzung)

• 1988 solved by Victor Allis and James D. Allen
• Prediction Allis: 70 728 639 995 483 States

• But: 4 531 985 219 092 States, counted with Binary Decision Diagrams

Nodes
States
Allis

Stefan Edelkamp 33

BDDs (Example)
column-x row-x diagonal-x

Stefan Edelkamp 34

BDDs

BDDs for simple Boolean functions

x1

0 1

x1

x2

0 1

x1

x2

0 1

x1

0 1

x1

x2 x2

0 1

x1 x1 and x2 x1 or x2 ¬x1 x1↔ x2

Stefan Edelkamp 35

BDD Reduction
• Fixed variable ordering, 2 reduction rules

vi

vk vk

vi vi

vk

vl

vi

vk

vl

High edge

Low edge

Stefan Edelkamp 36

Variable Ordering

• Example: Disjunctive Quadratic Form (DQF)
• DQFn(x1, …, xn , y1, …, yn) := (x1 and y1) or (x2 and y2) or … or (xn and yn)

• Ordering π = (x1, y1, x2, y2, …, xn, yn):
• Linear size (2n + 2 nodes)

Stefan Edelkamp 37

Variable ordering

• Example: Disjunctive Quadratic Form (DQF)
• DQFn(x1, …, xn , y1, …, yn) := (x1 and y1) or (x2 and y1) or … or (xn and yn)

• Ordering π = (x1, x2, …, xn, y1, y2, …, yn):
• Exponential size (2n + 1 nodes)

Stefan Edelkamp 38

Transition relation

• Two variable sets S and S’

• BDD for Action ai = (pre, eff)
• transi(S, S’) := preBDD(S) ^ effBDD(S’) ^ frameBDD(S, S’)

• frameBDD: models frame
• all what doen’t change (has to be computed – all what is neither add or del effect

remains unchanged)

• If v1 and v2 unchanged:
• frameBDD(S, S’) := (v1(S) ↔ v1(S’)) ^ (v2(S) ↔ v2(S’))

Stefan Edelkamp 39

Successor Computation

• Find all successors of set with image function
• image(current) := (∃S: trans(S, S’) ^ current(S)) [S’ → S]

• current: given state set

• [S’ → S]: moving successor set variables to current ones
• Needed to continue the search

Stefan Edelkamp 40

Predecessor Computation

• Finding all predecessors similar (only exchange of variable sets)
• pre-image(current) := (∃S’: trans(S, S’) ^ current(S’)) [S → S’]

41
Stefan Edelkamp 41

Partitioned Successor Computation
Relational Product / Apply

Stefan Edelkamp 42

Finite Domain Variable Encoding

Planning state = set of finite domain (SAS+) variables

• Finite domain variables can be encoded in binary
• for variable with domain of size n we need ⌈log(n)⌉ binary ones

• for n=7:

• Value 0 equals 000

• Value 1 equals 001

• Value 2 equals 010

• etc.

• so that state is a conjunction of variables.

43
Stefan Edelkamp 43

Symbolic Planning: Symbolic BFS

Stefan Edelkamp 44

SymboliC Dijkstra

open0 ← I, closed ← ⊥, g ← 0
repeat
▪if (openg ∧ G ≠ ⊥) STOP

▪openg ← openg ∧ !closed
▪für c ← 1, …, C
•openg+c ← openg+c ∨ imagec(openg)

▪closed ← closed ∨ openg

▪g ← g + 1

Stefan Edelkamp 45

Symbolic A* (BDDA*)

h

g

Stefan Edelkamp 46

	Folie 1: The Big Three Planning Approaches
	Folie 2: The Big Three Planning Approaches
	Folie 3: State-Space Search in a Nutshell
	Folie 4: GraphPlan: Basic idea
	Folie 5: Planning graph
	Folie 6: ROCKET domain
	Folie 7: Example planning graph
	Folie 8: Valid plans
	Folie 9: Exclusion relations (mutexes)
	Folie 10: Example: Mutex constraints
	Folie 11: Example: Mutex constraints
	Folie 12: Example: Mutex constraints
	Folie 13: Example: Mutex constraints
	Folie 14: Extending the planning graph
	Folie 15: Basic GraphPlan algorithm
	Folie 16: Creating the planning graph is usually fast
	Folie 17: Searching for a plan
	Folie 18: The Big Three Planning Approaches
	Folie 19: SAT Planning Encoding of STRIPS Planning Task (Variables)
	Folie 20: SAT Planning of STRIPS Planning Task Clauses (for Initial and Goal State)
	Folie 21: SAT Planning of STRIPS Planning Task Clauses (For Strips Actions)
	Folie 22: Sat EnCoDing
	Folie 23: Formulas in 
	Folie 24: Frame Axioms
	Folie 25: Example
	Folie 26: Example (continued)
	Folie 27: Example (continued)
	Folie 28: Complete Formula
	Folie 29: Extracting a Plan
	Folie 30: Supporting Layered Plans (as in Graphplan) “Blackbox”
	Folie 31: The Big Three Planning Approaches
	Folie 32: Symbolic Search Planning: BASIC Idea
	Folie 33: Representation Gain: Connect Four
	Folie 34: BDDs (Example)
	Folie 35: BDDs
	Folie 36: BDD Reduction
	Folie 37: Variable Ordering
	Folie 38: Variable ordering
	Folie 39: Transition relation
	Folie 40: Successor Computation
	Folie 41: Predecessor Computation
	Folie 42: Partitioned Successor Computation Relational Product / Apply
	Folie 43: Finite Domain Variable Encoding
	Folie 44: Symbolic Planning: Symbolic BFS
	Folie 45: SymboliC Dijkstra
	Folie 46: Symbolic A* (BDDA*)

