Lecture slides for
Automated Planning: Theory and Practice

Chapter 6
Planning-Graph Techniques

Dana S. Nau
University of Maryland

3:04 PM February 8, 2012

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

History

® Before Graphplan came out, most planning researchers were working
on PSP-like planners

¢ POP, SNLP, UCPOP, etc.
® Graphplan caused a sensation because it was so much faster
® Many subsequent planning systems have used 1deas from it
¢ IPP, STAN, GraphHTN, SGP, Blackbox, Medic, TGP, LPG

¢ Many of them are much faster than the original Graphplan

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Outline

® Motivation

The Graphplan algorithm

® Constructing planning graphs
¢ cxample

® Mutual exclusion
¢ cxample (continued)

® Doing solution extraction

¢ cxample (continued)

® Discussion

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Motivation

® A big source of inefficiency in search algorithms is the branching factor
¢ the number of children of each node
® c.g., a backward search may try lots of actions
that can’t be reached from the initial state 94

Sp *--
® One way to reduce branching factor: s gef a5

® First create a relaxed problem
¢ Remove some restrictions of the original problem
» Want the relaxed problem to be easy to solve (polynomial time)

¢ The solutions to the relaxed problem will include all solutions to the original
problem

® Then do a modified version of the original search

& Restrict its search space to include only those actions that occur in solutions
to the relaxed problem

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Graphplan
procedure Graphplan:
® fork=0,1,2, ...
O@Mph expansion:)

» create a “planning graph” that contains k “levels” | relaxed

#| Check whether the planning graph satisfies a necessary | Problem
\(but insufficient) condition for plan existence Y,
L 2 If lt dOGS, then pOSSIble pOSSIble
» do solution extraction: iterals actions
in state s; in state s;

. backyvard search,. ® ..0 ®
modified to consider
only the ?,fctions n ® o ..
the planning graph @

* if we find a solution, —® -
then return it @ - o

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

The Planning Graph

® Scarch space for a relaxed version of the planning problem

® Alternating layers of ground literals and actions
¢ Nodes at action-level i: actions that might be possible to execute at time i
¢ Nodes at state-level i: literals that might possibly be true at time i
¢ Edges: preconditions and effects

state-level i-1 | | action-level i || state-level i

state-level O (the literals true in s,)

preconditions

effects

Maintenance action: for the case
where a literal remains unchanged

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Example
® Due to Dan Weld (U. of Washington)

® Suppose you want to prepare dinner as a surprise for your sweetheart (who 1s
asleep)

s, = {garbage, cleanHands, quiet}

g = {dinner, present, —garbage}

Action Preconditions Effects

cook() cleanHands dinner

wrap() quiet present

carry() none -~ garbage, —~cleanHands
dolly() nome -~ garbage, —quiet

Also have the maintenance actions: one for each literal

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Example (continued)

@ state-level O:
{all atoms in s,} U
{negations of all atoms not in s}
® action-level 1:
{all actions whose preconditions
are satisfied and non-mutex in s}
@ state-level 1:

{all effects of all of the
actions in action-level 1}

state-level 0 | action-level 1

state-level 1

garb

B

carry

dolly

o cook
quie o S—
Action Preconditions Effects \ wrap
cook() cleanHands dinner
wrap() quiet present
carry() none -~ garbage, —cleanHands
dolly() none -~ garbage, —quiet

Also have the maintenance actions —dinner —

- present —1

Dana Nau: Lecture slides for Automated Planning

garb
Tgarb
cleanH
“1cleanH
quiet
“1quiet
dinner
present

= dinner

=1 present

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

8

Mutual Exclusion

O »

O 0 O Q

@ @] 0 CO

o B—C -—O O B—0

o/ O O
Inconsistent Competing Inconsistent
Effects Interference Needs Support

® 'Two actions at the same action-level are mutex if
& [nconsistent effects. an effect of one negates an effect of the other
& Interference: one deletes a precondition of the other
¢ Competing needs: they have mutually exclusive preconditions

® Otherwise they don’t interfere with each other \

¢ Both may appear in a solution plan Recursive
® Two literals at the same state-level are mutex if propagation
& Inconsistent support: one is the negation of the other, / of mutexes

or all ways of achieving them are pairwise mutex

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Example (continued)

Augment the graph to indicate mutexes

state-level 0 | action-level 1 | state-level 1

® carry is mutex with the maintenance
act1on. for garbage (inconsistent effects) garb garb
® dolly is mutex with wrap carryf \
¢ interference —1garb
ot : dolly
O quz.et 1S @utex with present cleanH cleanH
¢ 1nconsistent support
® cach of cook and wrap 1s mutex with TcleanH
a maintenance operation .
quiet quiet
Action _ Preconditions Effects Tquiet
cook() cleanHands dinner |
wrap() quiet present dinner
carry() nomne -garbage, —cleanHands present
dolly() mnone —garbage, ~quiet
Also have the maintenance actions —dinner —dinner
— present — — present

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 10

Example (continued)

® Check to see whether there’s a possible
solution

® Recall that the goal is
& {-garbage, dinner, present}
® Note that 1n state-level 1,
¢ All of them are there
¢ None are mutex with each other

Thus, there’s a chance that a plan exists
Try to find it
¢ Solution extraction

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

state-level 0 | action-level 1 | state-level 1

garb —— -garb

cleanH . . cleanH

—1cleanH

quiet -quiet

“1quiet

= dinner

= dinner

=1 present S— — present

11

Solution Extraction

The set of goals we are

trying to achieve \ /

procedure Solution-extraction(g,;)

The level of the state S,

A real action or a maintenance action

if /=0 then return the solution

for each literal /in g /
nondeterministically choose an action
to use in state s ; | to achieve / state- action- state-
if any pair of chosen actions are mutex le.vel level le\{el
then backtrack i-1 i :

g' = {the preconditions of
the chosen actions}

Solution-extraction(g’, j—1)

end Solution-extraction

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Example (continued)

® Two sets of actions for the goals at

state-level 1
® Neither of them works

¢ Both sets contain actions that are

mutex

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

state-level 0 | action-level 1 | state-level 1

garb

I—N>{Gam
dolly

cleanH ot q:k s Cl@ANH

‘\ “1cleanH

present

= dinner S— —dinner

=1 present S— — present
13

Recall what the algorithm does

procedure Graphplan:
® fork=0,1,2, ...
& Graph expansion:
» create a " planning graph” that contains k “levels”

¢ Check whether the planning graph satisfies a necessary
(but insufficient) condition for plan existence

¢ If it does, then
» do solution extraction:

* backward search,
modified to consider
only the actions in
the planning graph

e 1f we find a solution,
then return 1t

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

14

Example (continued)

state-level O | action-level 1 | state-level 1 | action-level 2

state-level 2

® Go back and do
more graph
expansion

Generate another
action-level

and another state-
level

garb . — -garb: —
carr \
—1garb
cleanH . cleanH:
“1cleanH
quiet - quiet
“1quie
dinner)
presen
—dinner — —-dinner‘/ S
—1present S— = presen I

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

qui

-garb
Wgarb

- cleanH
Tcleanb

quiet

)

present

= dinner

—1present

15

Example (continued)

state-level O | action-level 1 | state-level 1 | action-level 2 | state-level 2

® Solution garb . :3) : garb-\ —— .garb
- carr
extraction garb
® Twelve
binat; cleanH . cleanH . cleanH
comboinations \
at level 4 —IcleanH “IcleanH

¢ Three ways to quiet
achieve —~garb

‘quiet\
Tquiet

¢ Two ways to
achieve dinner

¢ Two ways to presen
achieve present _, giner — —dinner /
—present — —presen — —present

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Example (continued)

state-level O | action-level 1 | state-level 1 | action-level 2

state-level 2

arb oy J— e I T [(¢
® Scveral ofthe 9 garb 9
combinations
look OK at
cleanH g
level 2 \
T1cleanH
® Here’s one of
them oty -
wrap \
“1quiet :}: 1quiet
dinner dinner
presentder—— present
—dinner — —dinner = —dinner
— present — = presenl/ — — present

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

17

Example (continued)

® C(all Solution-

state-level 0 | action-level 1 | state-level 1

action-level 2

state-level 2

Extraction
: garb
recursively at
level 2
® It succeeds
. cleanH
® Solution whose
parallel length
1s 2
quiet
—dinner
=1 present

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

carr
dolly,

cook

present

wrap
“1quiet z):
dinner

wrap

__ Tquieh

dinner

present

—1

= dinner /
S — presen

—
—1

= dinner

—1present

18

Comparison with Plan-Space Planning

® Advantage:

¢ The backward-search part of Graphplan—which is the hard part—will only
look at the actions in the planning graph

¢ smaller search space than PSP; thus faster

® Disadvantage:

¢ To generate the planning graph, Graphplan creates a huge number of ground
atoms

¢ Many of them may be irrelevant

® Can alleviate (but not eliminate) this problem by assigning data types to the
variables and constants

¢ Only instantiate variables to terms of the same data type

® For classical planning, the advantage outweighs the disadvantage
¢ GraphPlan solves classical planning problems much faster than PSP

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 19

