
Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 1

Chapter 6
Planning-Graph Techniques

Dana S. Nau

University of Maryland

3:04 PM February 8, 2012

Lecture slides for
Automated Planning: Theory and Practice

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 2

History

●  Before Graphplan came out, most planning researchers were working
on PSP-like planners
◆  POP, SNLP, UCPOP, etc.

●  Graphplan caused a sensation because it was so much faster
●  Many subsequent planning systems have used ideas from it

◆  IPP, STAN, GraphHTN, SGP, Blackbox, Medic, TGP, LPG
◆  Many of them are much faster than the original Graphplan

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 3

Outline

●  Motivation
●  The Graphplan algorithm
●  Constructing planning graphs

◆  example
●  Mutual exclusion

◆  example (continued)
●  Doing solution extraction

◆  example (continued)
●  Discussion

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 4

Motivation
●  A big source of inefficiency in search algorithms is the branching factor

◆  the number of children of each node
●  e.g., a backward search may try lots of actions

 that can’t be reached from the initial state

●  One way to reduce branching factor:
●  First create a relaxed problem

◆  Remove some restrictions of the original problem
»  Want the relaxed problem to be easy to solve (polynomial time)

◆  The solutions to the relaxed problem will include all solutions to the original
problem

●  Then do a modified version of the original search
◆  Restrict its search space to include only those actions that occur in solutions

to the relaxed problem

g0

g1

g2

g3

a1

a2

a3

g4

g5
s0

a4

a5

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 5

Graphplan
procedure Graphplan:
●  for k = 0, 1, 2, …

◆  Graph expansion:
» create a “planning graph” that contains k “levels”

◆  Check whether the planning graph satisfies a necessary
(but insufficient) condition for plan existence

◆  If it does, then
» do solution extraction:
•  backward search,

modified to consider
only the actions in
the planning graph

•  if we find a solution,
then return it

possible
literals
in state si

possible
actions
in state si

relaxed
problem

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 6

state-level i

effects
Maintenance action: for the case
where a literal remains unchanged

state-level i-1

state-level 0 (the literals true in s0)

The Planning Graph
●  Search space for a relaxed version of the planning problem
●  Alternating layers of ground literals and actions

◆  Nodes at action-level i: actions that might be possible to execute at time i
◆  Nodes at state-level i: literals that might possibly be true at time i
◆  Edges: preconditions and effects

action-level i

preconditions

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 7

Example
●  Due to Dan Weld (U. of Washington)

●  Suppose you want to prepare dinner as a surprise for your sweetheart (who is
asleep)

 s0 = {garbage, cleanHands, quiet}
 g = {dinner, present, ¬garbage}

 Action Preconditions Effects
 cook() cleanHands dinner
 wrap() quiet present
 carry() none ¬garbage, ¬cleanHands
 dolly() none ¬garbage, ¬quiet

Also have the maintenance actions: one for each literal

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 8

Example (continued)
●  state-level 0:

{all atoms in s0} U
 {negations of all atoms not in s0}

●  action-level 1:
{all actions whose preconditions
 are satisfied and non-mutex in s0}

●  state-level 1:
{all effects of all of the
 actions in action-level 1}

Action Preconditions Effects
cook() cleanHands dinner
wrap() quiet present
carry() none ¬garbage, ¬cleanHands
dolly() none ¬garbage, ¬quiet

Also have the maintenance actions ¬dinner

¬present

¬dinner

¬present

state-level 0 state-level 1 action-level 1

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 9

Mutual Exclusion

●  Two actions at the same action-level are mutex if
◆  Inconsistent effects: an effect of one negates an effect of the other
◆  Interference: one deletes a precondition of the other
◆  Competing needs: they have mutually exclusive preconditions

●  Otherwise they don’t interfere with each other
◆  Both may appear in a solution plan

●  Two literals at the same state-level are mutex if
◆  Inconsistent support: one is the negation of the other,

or all ways of achieving them are pairwise mutex

Recursive
propagation
of mutexes

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 10

Example (continued)
●  Augment the graph to indicate mutexes
●  carry is mutex with the maintenance

action for garbage (inconsistent effects)
●  dolly is mutex with wrap

◆  interference
●  ~quiet is mutex with present

◆  inconsistent support
●  each of cook and wrap is mutex with

a maintenance operation

Action Preconditions Effects
cook() cleanHands dinner
wrap() quiet present
carry() none ¬garbage, ¬cleanHands
dolly() none ¬garbage, ¬quiet

Also have the maintenance actions ¬dinner

¬present

¬dinner

¬present

state-level 0 state-level 1 action-level 1

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 11

¬dinner

¬present

¬dinner

¬present

Example (continued)

●  Check to see whether there’s a possible
solution

●  Recall that the goal is
◆  {¬garbage, dinner, present}

●  Note that in state-level 1,
◆  All of them are there
◆  None are mutex with each other

●  Thus, there’s a chance that a plan exists
●  Try to find it

◆  Solution extraction

state-level 0 state-level 1 action-level 1

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 12

Solution Extraction

procedure Solution-extraction(g,j)
if j=0 then return the solution
for each literal l in g

 nondeterministically choose an action
 to use in state s j–1 to achieve l

if any pair of chosen actions are mutex
 then backtrack

g' := {the preconditions of
 the chosen actions}

Solution-extraction(g', j–1)
end Solution-extraction

The level of the state sj
The set of goals we are
trying to achieve

state-
level
i-1

action-
level

i

state-
level

i

A real action or a maintenance action

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 13

Example (continued)

●  Two sets of actions for the goals at
state-level 1

●  Neither of them works
◆  Both sets contain actions that are

mutex

¬dinner

¬present

¬dinner

¬present

state-level 0 state-level 1 action-level 1

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 14

Recall what the algorithm does

procedure Graphplan:
●  for k = 0, 1, 2, …

◆  Graph expansion:
»  create a “planning graph” that contains k “levels”

◆  Check whether the planning graph satisfies a necessary
(but insufficient) condition for plan existence

◆  If it does, then
»  do solution extraction:
•  backward search,

modified to consider
only the actions in
the planning graph

•  if we find a solution,
then return it

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 15

Example (continued)

●  Go back and do
more graph
expansion

●  Generate another
action-level
and another state-
level

¬dinner

¬present

¬dinner

¬present

¬dinner

¬present

state-level 0 state-level 1 action-level 1 state-level 2 action-level 2

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 16

Example (continued)

●  Solution
extraction

●  Twelve
combinations
at level 4
◆  Three ways to

achieve ¬garb
◆  Two ways to

achieve dinner
◆  Two ways to

achieve present ¬dinner

¬present

¬dinner

¬present

¬dinner

¬present

state-level 0 state-level 1 action-level 1 state-level 2 action-level 2

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 17

Example (continued)

●  Several of the
combinations
look OK at
level 2

●  Here’s one of
them

¬dinner

¬present

¬dinner

¬present

¬dinner

¬present

state-level 0 state-level 1 action-level 1 state-level 2 action-level 2

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 18

Example (continued)
●  Call Solution-

Extraction
recursively at
level 2

●  It succeeds
●  Solution whose

parallel length
is 2

¬dinner

¬present

¬dinner

¬present

¬dinner

¬present

state-level 0 state-level 1 action-level 1 state-level 2 action-level 2

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 19

Comparison with Plan-Space Planning
●  Advantage:

◆  The backward-search part of Graphplan—which is the hard part—will only
look at the actions in the planning graph

◆  smaller search space than PSP; thus faster

●  Disadvantage:
◆  To generate the planning graph, Graphplan creates a huge number of ground

atoms
◆  Many of them may be irrelevant

●  Can alleviate (but not eliminate) this problem by assigning data types to the
variables and constants
◆  Only instantiate variables to terms of the same data type

●  For classical planning, the advantage outweighs the disadvantage
◆  GraphPlan solves classical planning problems much faster than PSP

