Assignment 2

Definitions

Definition 1. A STRIPS **planning task** Π is specified by a tuple $\Pi = \langle \mathcal{F}, \mathcal{O}, s_{init}, s_{goal}, c \rangle$, where $\mathcal{F} = \{f_1, ..., f_n\}$ is a set of facts, $\mathcal{O} = \{o_1, ..., o_m\}$ is a set of operators, and c is a cost function mapping each operator to a non-negative real number. A **state** $s \subseteq \mathcal{F}$ is a set of facts, $s_{init} \subseteq \mathcal{F}$ is an **initial state** and $s_{goal} \subseteq \mathcal{F}$ is a **goal** specification. An **operator** o is a triple $o = \langle \operatorname{pre}(o), \operatorname{add}(o), \operatorname{del}(o) \rangle$, where $\operatorname{pre}(o) \subseteq \mathcal{F}$ is a set of preconditions, and $\operatorname{add}(o) \subseteq \mathcal{F}$ and $\operatorname{del}(o) \subseteq \mathcal{F}$ are sets of add and delete effects, respectively. All operators are well-formed, i.e., $\operatorname{add}(o) \cap \operatorname{del}(o) = \emptyset$ and $\operatorname{pre}(o) \cap \operatorname{add}(o) = \emptyset$. An operator o is **applicable** in a state s if $\operatorname{pre}(o) \subseteq s$. The **resulting state** of applying an applicable operator o in a state s is the state $\operatorname{res}(o, s) = (s \setminus \operatorname{del}(o)) \cup \operatorname{add}(o)$. A state s is a **goal state** iff $s_{goal} \subseteq s$.

A sequence of operators $\pi = \langle o_1, ..., o_n \rangle$ is applicable in a state s_0 if there are states $s_1, ..., s_n$ such that o_i is applicable in s_{i-1} and $s_i = \operatorname{res}(o_i, s_{i-1})$ for $1 \le i \le n$. The resulting state of this application is $\operatorname{res}(\pi, s_0) = s_n$ and the cost of the plan is $\operatorname{c}(\pi) = \sum_{o \in \pi} \operatorname{c}(o)$. A sequence of operators π is called a **plan** iff $s_{goal} \subseteq \pi[s_{init}]$, and an **optimal plan** is a plan with the minimal cost over all plans.

Definition 2. The relaxation o^+ of a STRIPS operator $o = \langle \operatorname{pre}(o), \operatorname{add}(o), \operatorname{del}(o) \rangle$ is the operator $o^+ = \langle \operatorname{pre}(o), \operatorname{add}(o), \emptyset \rangle$. The relaxation Π^+ of a STRIPS planning task $\Pi = \langle \mathcal{F}, \mathcal{O}, s_{init}, s_{goal}, c \rangle$ is the planning task $\Pi^+ = \langle \mathcal{F}, \{o^+ \mid o \in \mathcal{O}\}, s_{init}, s_{goal}, c \rangle$ with $c(o^+) = c(o)$ for every $o \in \mathcal{O}$.

Definition 3. A disjunctive operator landmark $L \subseteq O$ is a set of operators such that every plan contains at least one operator from L.

Definition 4. A labeled transition system (LTS) is a tuple $\Theta = \langle S, L, T, s_I, S_{\star} \rangle$, where S is a finite set of states, L is a finite set of labels with associated cost $c(l) \in \mathbb{R}_0^+$ to each label $l \in L$, $T \subseteq S \times L \times S$ is a set of transitions, $s_I \in S$ is the initial state, and $S_{\star} \subseteq S$ is a set of goal states. We write $s_1 \xrightarrow{l} s_2$ to refer to a transition from s_1 to s_2 with the label l. A sequence of labels $\langle l_1, \ldots, l_n \rangle$ is a path from s_0 to s_n in Θ if there exist $s_{i-1} \xrightarrow{l_i} s_i \in T$ for every $i \in \{1, \ldots, n\}$ and a plan is a path from s_I to one of the goals from S_{\star} .

Definition 5. The state space of a STRIPS planning task $\Pi = \langle \mathcal{F}, \mathcal{O}, s_{init}, s_{goal}, c \rangle$, is the LTS Θ_{Π} where \mathcal{S} are states over $\mathcal{F}, s_I := s_{init}, s \in S_{\star}$ iff $s_{goal} \subseteq s$, the labels L are the operators \mathcal{O} with the given costs, and $s \xrightarrow{o} s'$ is a transition in T if $pre(o) \subseteq s$ and res(o, s) = s'.

Definition 6. An abstraction α for a transition system Θ is a function mapping states S into a set of abstract states S^{α} . The abstract transition system Θ^{α} is defined as

 $\langle \mathcal{S}^{\alpha}, L, T^{\alpha}, s_{I}^{\alpha}, S_{\star}^{\alpha} \rangle$, where $\alpha(s) \xrightarrow{o} \alpha(s') \in T^{\alpha}$ iff $s \xrightarrow{o} s' \in T$, $s_{I}^{\alpha} = \alpha(s_{I})$, and $S_{\star}^{\alpha} = \{\alpha(s) \mid s \in S_{\star}\}$.

A projection of the state space Θ_{Π} to the set of facts $F \subseteq \mathcal{F}$ is an abstract transition system $\Theta_{\Pi}^{\alpha_F}$ with the abstraction $\alpha_F(s) = s \cap F$.

Assignments

Prove or disprove the following claims:

- 1. Let Π denote a STRIPS planning task and Π^+ its relaxation. If there exists a plan for Π , then there exists a plan for Π^+ .
- 2. Let Π denote a STRIPS planning task and Π^+ its relaxation. If there exists a plan for Π^+ , then there exists a plan for Π .
- 3. Let $\Pi = \langle \mathcal{F}, \mathcal{O}, s_{init}, s_{goal}, c \rangle$ denote a STRIPS planning task, $L \subseteq \mathcal{O}$ a set of operators, $\Pi_2 = \langle \mathcal{F}, \mathcal{O} \setminus L, s_{init}, s_{goal}, c \rangle$, and Π_2^+ relaxation of Π_2 . If there does not exist any plan for Π_2^+ , then L is a disjunctive operator landmark.
- 4. Let $\Pi = \langle \mathcal{F}, \mathcal{O}, s_{init}, s_{goal}, c \rangle$ denote a STRIPS planning task, $F \subseteq \mathcal{F}$ a set of facts, and $\Theta_{\Pi}^{\alpha_F}$ a projection of the state space of Π to the set of facts F. If there exists a plan for Π then there exists a plan for $\Theta_{\Pi}^{\alpha_F}$.
- 5. Let $\Pi = \langle \mathcal{F}, \mathcal{O}, s_{init}, s_{goal}, c \rangle$ denote a STRIPS planning task, $F \subseteq \mathcal{F}$ a set of facts, and $\Theta_{\Pi}^{\alpha_F}$ a projection of the state space of Π to the set of facts F. If there exists a plan for $\Theta_{\Pi}^{\alpha_F}$, then there exists a plan for Π .