Abstractions in Planning: Pattern
Databases & Merge and Shrink

Stefan Edelkamp
PUI - CTU

Al CENTER
FEE CTU

Coming up with a heuristic in a principled way

General procedure for obtaining a heuristic
Solve an easier version of the problem.

Two common methods:
@ relaxation: consider less constrained version of the problem

@ abstraction: consider smaller version of real problem
In the previous chapter, we have studied relaxation, which has
been very successfully applied to satisficing planning.
Now, we study abstraction, which is one of the most prominent
techniques for optimal planning.

Al CENTER
Stefan Edelkamp FEECTU

Some heuristics in Al Planning

Abstractions

Delete Relaxation

in General

Pattern
Databases

Abstraction

Planning with Pattern Databases

Stefan Edelkamp Merge & Shrink ‘

Institut for Informatik ~ coceseciisiiiiiciiiiciiiiii il
Albert-Ludwigs-Universitit
Georges-Kohler-Allee, Gebdude 51
D-79110 Freiburg

eMail: edelkamp® informaril uni-freiburg de* A I C E N T E R
FEE CTU

Stefan Edelkamp

Abstracting a transition system

Abstracting a transition system means dropping some
distinctions between states, while preserving the transition
behaviour as much as possible.

@ An abstraction of a transition system 7 is defined by an
abstraction mapping « that defines which states of 7
should be distinguished and which ones should not.

@ From 7 and a, we compute an abstract transition system
7" which is similar to 7, but smaller.

@ The abstract goal distances (goal distances in 7") are used
as heuristic estimates for goal distances in 7.

Stefan Edelkamp

Al

Al CENTER
FEE CTU

Abstracting a transition system: example

Example (15-puzzle)

A 15-puzzle state is given by a permutation (b, t1,...,t15) of

{1,....16}, where b denotes the blank position and the other
components denote the positions of the 15 tiles.

One possible abstraction mapping ignores the precise location
of tiles 8-15, i.e., two states are distinguished iff they differ in
the position of the blank or one of the tiles 1-7:

The heuristic values for this abstraction correspond to the cost
of moving tiles 1-7 to their goal positions.

< Al CENTER
Stefan Edelkamp FEECTU

Abstraction example: 15-puzzle

9 2 12 6 1 2 3 a
5 I 14 | 13 5 6 7 8
3 4 1 11 9 10 | 11 | 12

13 | 14

15 | 10 8 IIIIII

real state space
e 16! = 20922789888000 =~ 2 - 10! states

° lTE" — 10461394944000 =~ 103 reachable states

Al CENTER
FEE CTU

Abstraction example: 15-puzzle

—>

abstract state space
@ 16-15-...-9 =518918400 ~ 5 - 10® states
@ 16-15-...-9 =7518918400 ~ 5 - 10° reachable states

Al CENTER
FEE CTU

Kort’s conjecture

- n: number of states in the entire problem space

- b: brute-force branching factor of the space

- d: be the average optimal solution length for a random problem instance
- e: be the expected value of the heuristic

- m: the amount of memory unsed, in terms of heuristic values stored

- t: running time of IDA*, in terms of hodes generated

The average optimal solution length d of a random instance, which is the depth to
which IDA* must serach, can be estimated as log; n or d ~ log;, n. We expect

e~ logymandt ~ pd—e

Substituting the values for d and e into this formula gives:

t a0 b4 g plOG IO m — 4y /iy

Al CENTER
Stefan Edelkamp FEECTU

Abstract Planning Problem

An abstract planning problem Plp = < S|p,O|r,Z|r, G|r > of a propositional
planning problem < &§. O,71.G > with respect to a set of propositional atoms R is
defined by

1. S|p ={S|p | S € S},
2. Glp=1{CG|p | G e G},

3. Olp ={0O|p | O € O}, with O|p for O = (P, A, D) € O is given as
(P|r, Alr, D|Rr)

Sequential solutions for the abstract planning problem 7P| are denoted by 75, and
optimal abstract sequential plan length is denoted by d .

Al CENTER
Stefan Edelkamp FEECTU

Pattern Databases for Strips

A planning pattern database Dp with respect to a set of propositions R and a
propositional planning problem < &, 0.7, G > is a collection of pairs (v, S) with
velRand S € S|g, suchthat v = 6p(5)

Therefore,

Dr={(00r(5).5) | S € S|}

An optimal sequential abstract plan ?Tg}t for P|p is always shorter than an optimal
sequential plan 7Pt for P, i.e. 5p(S|p) < 6(S),forall S € S

Al CENTER
Stefan Edelkamp FEECTU

Proof

Letm™ = (O+, ..., O;.) be a sequential plan for < S, 0,7, G >. Then

mlrp = (O1|R.-..,Ok|R) is asolution for P\ = < S|R.O|r. I|p.G|R >.

Now suppose, that 0 p(S|g) > 0(S) for some S € &

Let 7Pt = (O1,...,0;) be the optimal sequential plan from S to G in the original
planning space P then

P p = (O1|p,....0p) is a valid plan in P|p with plan length less or equal to
t =0(5)

Contradiction

Remark: Strict inequality 0 (S| p) < 6(S5) is given if some operators O, |, are void,
or if there are alternative even shorter paths in the abstract space.

Al CENTER
Stefan Edelkamp FEECTU

Example: Blocksworld

((clear a), 1)
((holding a),2)
((onba)?2)
((onda)?2)

((ond c) (clear b),1) ((on a b) (clear c),1)
((ond c) (holding b),2) ((clear c) (clear b),2)
((ondc)(ondb)2)((onab)(holding c),2)
((onac)(onab),2)((clear c) (holding b),3)
((clear b) (holding c),3) ((on a c) (clear b),3)
((ond D) (clear c),3) ((holding c) (holding b),4)
((on b c) (clear b),4) ((on a c) (holding b),4)
((on cb) (clear c),4) ((on d b) (holding c),4)
((onac)(ondb)4)((onbc)(holding b),5)
((onab)(onbc)5)((ondb)(onbc)5)

((on ¢ b) (holding c),5) ((on a c) (on ¢ b),5)

((oncb)(ondc)5)
Al CENTER
Stefan Edelkamp FEE CTU

Computing the abstract transition system

Given 7 and «, how do we compute 77

We want to obtain an admissible heuristic.
Hence, h*(a(s)) (in the abstract state space 7') should never
overestimate h*(s) (in the concrete state space 7).

An easy way to achieve this is to ensure that all solutions in 7
also exist in 7"
o If s is a goal state in 7, then a(s) is a goal state in 7”.

@ If 7 has a transition from s to ¢, then 7' has a transition

from a(s) to af(t).
M Al CENTER
Stefan Edelkamp FEECTU

Practical requirements for abstractions

To be useful in practice, an abstraction heuristic must be
efficiently computable. This gives us two requirements for o

@ For a given state s, the abstract state «(s) must be
efficiently computable.

@ For a given abstract state «(s), the abstract goal distance
h*(«a(s)) must be efficiently computable.

There are different ways of achieving these requirements:
@ pattern database heuristics (Culberson & Schaeffer, 1996)

@ merge-and-shrink abstractions (Drager, Finkbeiner &
Podelski, 2006)

Stefan Edelkamp

Al

Al CENTER
FEE CTU

Practical requirements for abstractions

Example (15-puzzle)

In our running example, a can be very efficiently computed:
just project the given 16-tuple to its first 8 components.

To compute abstract goal distances efficiently during search,
most common algorithms precompute all abstract goal
distances prior to search by performing a backward breadth-first
search from the goal state(s). The distances are then stored in
a table (requires about 495 MB of RAM).

During search, computing A" («a(s)) is just a table lookup.

This heuristic is an example of a pattern database heuristic.

Al CENTER

Stefan Edelkamp M FEECTU

Multiple abstractions

@ One important practical question is how to come up with
a suitable abstraction mapping «.

@ Indeed, there is usually a huge number of possibilities, and

it is important to pick good abstractions (i.e., ones that
lead to informative heuristics).

@ However, it is generally not necessary to commit to a
single abstraction.

Al CENTER
Stefan Edelkamp FEECTU

Combining multiple abstractions

Maximizing several abstractions:

@ Each abstraction mapping gives rise to an admissible
heuristic.

@ By computing the maximum of several admissible
heuristics, we obtain another admissible heuristic which
dominates the component heuristics.

@ Thus, we can always compute several abstractions and
maximize over the individual abstract goal distances.

Adding several abstractions:

@ In some cases, we can even compute the sum of individual
estimates and still stay admissible.

@ Summation often leads to much higher estimates than
maximization, so it is important to understand when it is

adm|55|b|e. Stefan Edelkamp

Al

Al CENTER
FEE CTU

Some observations

Observation the use of maximized smaller pattern databases reduces the number
of nodes generated by IDA*

Eight-puzzle: 20 pattern databases of size 252 perform less state expansions (318)
then 1 pattern database of size 5,040 (yielding 2,160 state expansions)

1. The use of smaller pattern databases instead of one large pattern database
usually reduces the number of patterns with high h-value, but maximization of
the smaller pattern databases can make the number of patterns with low

h-values significantly smaller than the number of low-valued patterns in the
larger pattern database

2. Eliminating low h values is more important for improving search performance
than for retaining large h-values

Al CENTER

Stefan Edelkamp M FEECTU

Maximizing several abstractions: example

Example (15-puzzle)
@ mapping to tiles 1-7 was arbitrary

~~ can use any subset of tiles

@ with the same amount of memory required for the tables

for the mapping to tiles 1-7, we could store the tables for
nine different abstractions to six tiles and the blank

@ use maximum of individual estimates

Al CENTER
Stefan Edelkamp FEECTU

Maximizing several abstractions: example

9 2 12 6 9 2 12 6
5 I 14 | 13 5 I 14 | 13
3 4 1 11 3 4 1 11
15 | 10 8 . 15 | 10 8 .

@ Ist abstraction: ignore precise location of 8-15
@ 2nd abstraction: ignore precise location of 1-7

~ |s the sum of the abstraction heuristics admissible?

Al CENTER
FEE CTU

Maximizing several abstractions: example

2 6 9 12
5 7 14 | 13
3 4 1 11

@ Ist abstraction: ignore precise location of 8-15

@ 2nd abstraction: ignore precise location of 1-7

~» [he sum of the abstraction heuristics is not admissible.

Al CENTER
FEE CTU

Maximizing several abstractions: example

2 6 9 12
5 7 14 | 13
3 4 1 11
15 | 10 3

@ Ist abstraction: ignore precise location of 8-15 and blank
@ 2nd abstraction: ignore precise location of 1-7 and blank

~> T he sum of the abstraction heuristics i1s admissible.

Al CENTER
Stefan Edelkamp FEECTU

Transition systems

Definition (transition system)

A transition system is a 5-tuple 7 = (S, L. T, I, G) where
@ S is a finite set of states (the state space),
@ L is a finite set of (transition) labels,
@ I'C S x L xS is the transition relation,
@ [C S is the set of initial states, and
@ G C S is the set of goal states.
We say that 7 has the transition (s,[,s’) if (s,[,s') € T.

Note: For technical reasons, the definition slightly differs from
our earlier one. (It includes explicit labels.)

Al CENTER
Stefan Edelkamp FEECTU

Transition system: example

[O

[©

Note: To reduce clutter, our figures usually omit arc labels and
collapse transitions between identical states. However, these

are important for the formal definition of the transition system.

Stefan Edelkamp

Al

Al CENTER
FEE CTU

A4
SAS+ planning task

Definition (transition system of an SAS™ planning task)

Let IT = (V,I,O.G) be an SAS™ planning task.
The transition system of II, in symbols 7 (II), is the transition
system 7 (I) = (S", L', 1", I'.G"), where

@ S is the set of states over V,

o ' =0,
o I"={(s, o, t"Ye S x L' xS |app,(s) =11},
o I'={I}, and

o G'={s eS| EG.

Stefan Edelkamp

SAS+ planning task: example
Example (one package, two trucks)

Consider the following SAS™ planning task (V.I.0.G):
o V ={p, ta,tg} with
o D, ={L,R.A B}
@ Dy, =Dy = {L R}
o [={p— L ta— R tg— R}
o O = {pickup, ; | i € {A.B},j € {L.R}}
U {dropi,j | 1 € {A B}J € {I— R}}
U {move; ;s | i € {A,B}, 7,7 € {L,R},j # 7'}, where
o pickup, ; = (ti=JAp=j,p:=1)
Odropaj <t _J/\p_zp_;D
e move; ;s = (t; = j,t; = j')

o G=(p=R)

Stefan Edelkamp

Al

Al CENTER
FEE CTU

Transition system of example task

o T e

®®®®
W R
er) @

@ State {p+— i,ta — j,tg — k} is depicted as ijk.

@ TIransition labels are again not shown. For example, the

transition from LLL to ALL has the label pickupy | . M Al CENTER
Stefan Edelkamp ’ FEECTU

Abstraction

Definition (abstraction, abstraction mapping)

Llet 7 = (S.L.T.1.G) and 7' = (S". L. 1", I', G")
be transition systems with the same label set L = I/,
and let o : S — 5.

We say that 7' is an abstraction of 7 with abstraction
mapping « (or: abstraction function «) if

o for all s € I, we have a(s) € I’,
o for all s € G, we have a(s) € G’, and
o for all (s,[,t) € T, we have (a(s),l,a(t)) € T".

Al CENTER
Stefan Edelkamp FEECTU

Abstraction heuristic

Definition (abstraction heuristic)

Let IT be an SAS™ planning task with state space S, and let A
be an abstraction of 7 (II) with abstraction mapping «.

The abstraction heuristic induced by A and «, h4 is the
heuristic function h4 : S — Ny U {oo} which maps each state
s € S to h¥(a(s)) (the goal distance of a(s) in A).

>

Note: h*%(s) = oc if no goal state of A is reachable from af(s)

Al CENTER
Stefan Edelkamp FEECTU

Abstraction heuristic: example

hA({p— L,ta — R, tg — R}) =3

Al CENTER
FEE CTU

Stefan Edelkamp

Consistency of abstraction heuristic

Ajﬂ:)

Theorem (consistency and admissibility of A

Let II be an SAS™ planning task, and let A be an abstraction
of T (II) with abstraction mapping c.
Then h™A% s safe, goal-aware, admissible and consistent.

Stefan Edelkamp

Al

Al CENTER
FEE CTU

Orthogonal abstraction mapping

Definition (orthogonal abstraction mappings)

Let av; and «a be abstraction mappings on 7.

We say that oy and a9 are orthogonal if for all transitions
(s,l,t) of T, we have «;(s) = a;(t) for at least one i € {1, 2}.

Al CENTER
Stefan Edelkamp FEECTU

Orthogonal abstraction mapping: example

2 6 9 12
5 I 14 | 13
3 & 1 11

Are the abstraction mappings orthogonal?

Al CENTER
FEE CTU

Orthogonal abstraction mapping: example

2 6 9 12
5 7 14 | 13
3 d 1 11
15 | 10 38

Are the abstraction mappings orthogonal?

Al CENTER
FEE CTU

Orthogonality and additivity

Theorem (additivity for orthogonal abstraction mappings)

Let hAvar . hAn%n be abstraction heuristics for the same

4

planning task 11 such that «; and «; are orthogonal for all
L F£ .

Then > ", hAi% s a safe, goal-aware, admissible and
consistent heuristic for 11.

Al CENTER
Stefan Edelkamp FEECTU

Orthogonality and additivity

ree Y eoe ¥

transition system 7
state variables: first package, second package, truck

Al CENTER
Stefan Edelkamp FEECTU

Orthogonality and additivity: example

abstraction A,
mapping: only consider state of first package

Al CENTER
Stefan Edelkamp FEECTU

Orthogonality and additivity: example

~ el
LLR) (LLL) RRR (RRL
U\h - L

abstraction A, (orthogonal to A;)
mapping: only consider state of second package

Al CENTER
Stefan Edelkamp FEECTU

Using abstraction heuristics in practice

In practice, there are conflicting goals for abstractions:
@ we want to obtain an informative heuristic, but

@ want to keep its representation small.

Abstractions have small representations if they have
@ few abstract states and

@ a succinct encoding for «.

Al CENTER
Stefan Edelkamp FEECTU

Counterexample: one-state abstraction

One-state abstraction: «(s) := const.
+ very few abstract states and succinct encoding for a

— completely uninformative heuristic
pietely Al CENTER
Stefan Edelkamp FEECTU

Counterexample: identity abstraction

ldentity abstraction: a(s) := s.

+ perfect heuristic and succinct encoding for a

— too many abstract states Al CENTER
Stefan Edelkamp FEECTU

Counterexample: perfect heuristic

P

N AR

@LI_/.

—><—> LLLfe—]
o

) |

— N

BRL

N

Perfect abstraction: a(s) := h*(s).

+ perfect heuristic and usually few abstract states
— usually no succinct encoding for a

Al CENTER
Stefan Edelkamp FEECTU

Pattern database heuristic informally

A pattern database heuristic for a planning task is an
abstraction heuristic where

@ some aspects of the task are represented in the abstraction
with perfect precision, while

@ all other aspects of the task are not represented at all.

Example (15-puzzle)

@ Choose a subset T' of tiles (the pattern).

@ Faithfully represent the locations of 1" in the abstraction.

@ Assume that all other tiles and the blank can be anywhere
in the abstraction.

Stefan Edelkamp

Al

Al CENTER
FEE CTU

Projections

Formally, pattern database heuristics are induced abstractions
of a particular class of homomorphisms called projections.

Definition (projections)
Let IT be an SAS™ planning task with variable set V' and state
set S. Let P CV, and let S’ be the set of states over P.

The projection wp : S — S is defined as wp(s) := s|p
(with s|p(v) := s(v) for all v € P).
We call P the pattern of the projection 7p.

In other words, mp maps two states s; and so to the same
abstract state iff they agree on all variables in P.

Al CENTER
Stefan Edelkamp FEECTU

PDBs

Abstraction heuristics for projections are called pattern

database (PDB) heuristics.

Definition (pattern database heuristic)

The abstraction heuristic induced by 7p is called a
pattern database heuristic or PDB heuristic.
We write 1" as a short-hand for 4™

Why are they called pattern database heuristics?

@ Heuristic values for PDB heuristics are traditionally stored
in a 1-dimensional table (array) called a pattern database

(PDB). Hence the name “PDB heuristic”.

Stefan Edelkamp

Al

Al CENTER
FEE CTU

PDBs: example

Logistics problem with one package, two trucks, two locations:
@ state variable package: {L, R, A, B}
@ state variable truck A: {L. R}
@ state variable truck B: {L. R}

Al CENTER
Stefan Edelkamp FEECTU

Example: projection

Project to {package}:

()

AR (ARL
CE e O

(LLR}e— «—>{RRL

_/ e N
ALL ARR

— - DY =
L RR /LLL O RF@ (RLL
_ _ NG

BLL) (BRR
NN —~

(Rl Je—> —RLR)
V4 F\,I VA
Ery b

Al CENTER
Stefan Edelkamp FEECTU

Example: projection

Project to {package, truck A}:

)y 0

—

Al CENTER
FEE CTU

Stefan Edelkamp

Limits of projections

How accurate is the PDB heuristic?

@ consider generalization of the example:
N trucks, M locations (fully connected), still one package

@ consider any pattern that is proper subset of variable set V'

@ h(sp) < 2~ no better than atomic projection to package

These values cannot be improved by maximizing over several
patterns or using additive patterns.

Merge-and-shrink abstractions can represent heuristics with
h(sp) > 3 for tasks of this kind of any size.
Time and space requirements are polynomial in N and /.

Al CENTER
Stefan Edelkamp FEECTU

Merge & Shrink heuristic: general idea

Main idea of merge-and-shrink abstractions
(due to Drager, Finkbeiner & Podelski, 2006):

Instead of perfectly reflecting a few state variables,
reflect all state variables, but in a potentially lossy way.

Al CENTER
Stefan Edelkamp FEECTU

The need for a succinct abstraction mapping

@ One major difficulty for non-PDB abstractions is to
succinctly represent the abstraction mapping.

@ For pattern databases, this is easy because the abstraction
mappings — projections — are very structured.

@ For less rigidly structured abstraction mappings, we need
another idea.

Al CENTER
Stefan Edelkamp FEECTU

Merge-and-shrink abstraction: idea

@ [he main idea underlying merge-and-shrink abstractions is
that given two abstractions A and A’, we can merge them
Into a new product abstraction.

e [he product abstraction captures all information of both
abstractions and can be better informed than either.
o It can even be better informed than their sum.

@ By merging a set of very simple abstractions, we can in
theory represent arbitrary abstractions of an SAS™ task.

@ In practice, due to memory limitations, such abstractions
can become too large. In that case, we can shrink them by
abstracting them further using any abstraction on an
intermediate result, then continue the merging process.

Al CENTER
Stefan Edelkamp FEECTU

Merge-and-shrink in pseudo-code

Generic Merge & Shrink Algorithm for planning task [1

F:= F(N)
while |F| > 1:
select type € {merge, shrink}
if type = merge:
select 71.7T> € F
Fi=(F\{T1,T2}) U{TL ® T2}
if type = shrink:
select T € F
choose an abstraction mapping 5 on T
F = (F\{T} u{T"}

return the remaining factor 7% in F

Stefan Edelkamp

Running example: explanation

@ Atomic projections — projections to a single state variable
— play an important role in this chapter.

@ Unlike previous chapters, transition labels are critically
important in this chapter.

@ Hence we now look at the transition systems for atomic
projections of our example task, including transition labels.
@ We abbreviate operator names as in these examples:

e MALR: move truck A from left to right
e DAR: drop package from truck A at right location
e PBL: pick up package with truck B at left location

o We abbreviate parallel arcs with commas and wildcards (*)
in the labels as in these examples:

e PAL, DAL: two parallel arcs labeled PAL and DAL
o MAxx: two parallel arcs labeled MALR and MARL

Al CENTER
Stefan Edelkamp FEECTU

Running example: atomic projection for package

Tﬂ{ package} -

Al CENTER
FEE CTU

Stefan Edelkamp

Running example: atomic projection for truck A

Tﬂ{truck A -

PAL, DAL ,MBx*=*, PAR,DAR,MBx*x,
PBx, DB« PBx, DB~

MALR
—
MARL

Al CENTER
Stefan Edelkamp FEECTU

Running example: atomic projection for truck B

Tﬁ{truck B} -

PBL,DBL,MAxx, PBR,DBR,MAxx,
PAx DAx PAx DA

MBLR
.{_
MBRL

Al CENTER
Stefan Edelkamp FEECTU

Synchronized product of transition systems

Definition (synchronized product of transition systems)

For i e {1,2}, let 7, = (S;, L, T;. I;. G;) be transition systems
with identical label set.

The synchronized product of 77 and 75, in symbols 77 & 7, is
the transition system 7, = (Sx.L,T%.I..Gg) with
@ Sg =51 X 59

@ Ty :={((s1,52).l,(t1,t2)) | (

S
(s

!

1. L. tl> e 17 and
..Lf&) ~ jé}

@ Iy =11 X Is
o Gy =G X Gy

>

Al CENTER
Stefan Edelkamp FEECTU

Synchronized product of functions

Definition (synchronized product of functions)
Let oy : S — 51 and as : S — S5 be functions with identical
domain.

The synchronized product of oy and a9, in symbols vy @ a9, is
the function ay, : S — 51 X Sy defined as

ag(s) = (aa(s), as(s)).

Al CENTER
Stefan Edelkamp FEECTU

Synchronized product: example

TW{-Dackage} 0% Tﬂ{truck A} -

MBxx MB

Al CENTER
FEE CTU

Stefan Edelkamp

Example: computation of synchronized product

TT'—{ package }) Tﬁ{truck A} -

Mk

PAL,DAL,MBx, PAR,DAR,MBx,
PB+,DBx PB+,DBx

Al CENTER
FEE CTU

Stefan Edelkamp

Example: computation of synchronized product

TT‘—{ package } ,>'> T?T{truck A}: b — ‘Sl X h_j

PAL,DAL,MB#, PAR,DAR,MB+#x,
PB«+,DBx PBx DBx

Hm (®)

Al CENTER
FEE CTU

Stefan Edelkamp

Example: computation of synchronized product

Tﬁ{package} ‘>'\’ Tﬂ{truck A}- I — Il X]—_)

PAL,DAL,MB+, PAR,DAR,MBxx,
PBx DB« PBx,DBx

ﬁ! MALR ﬁﬁ

Al CENTER
FEE CTU

Stefan Edelkamp

Example: computation of synchronized product

’]-T‘—{ package} ® ’]-"’T{truck A} - (T' — (:r'l % (:r'_)

PAL,DAL,MB#+, PAR.DAR,MBx+,

Al CENTER
FEE CTU

Stefan Edelkamp

Example: computation of synchronized product

T Mpackage} (0 T Turuck Ay Tl 1= {((s1, s2), [, (t1.12)) | ...}

PAL,DAL,MB#x, PAR,DAR,MBxx,
PBx,DBx PBx,DBx

Al CENTER
FEE CTU

Stefan Edelkamp

Example: computation of synchronized product

T Meackage} @ T ek Ay T i= { ({51, 89). 1. (t1.t2)) | ...}

PAL,DAL, MBx, PAR,DAR, MBsx,
PB*,DBx PB+,DBx

Al CENTER
FEE CTU

Stefan Edelkamp

Example: computation of synchronized product

T oackase) @ Tk AV Toi= {((s1, 50), [, (t1,2)) | ...)

PAL,DAL,MB, PAR,DAR,MBxx,
PB+ DB« PB+,DBx

Al CENTER
FEE CTU

Stefan Edelkamp

Example: computation of synchronized product

T ™{package}) T T{truck A}: [T - — { -:;‘:Hl . a_a [-:;':?Ll) YLQ:i) ‘ . }

PAL,DAL,MBx, PAR,DAR,MBs,
PB+,DBx PBx*,DBx

Al CENTER
FEE CTU

Stefan Edelkamp

Generic merge-and-shrink procedure

Using the results from the previous section, we can develop the
ideas of a generic abstraction computation procedure that
takes all state variables into account:

@ Initialization step: Compute all abstract transition systems
for atomic projections to form the initial abstraction
collection.

@ Merge steps: Combine two abstractions in the collection
by replacing them with their synchronized product.
(Stop once only one abstraction is left.)

@ Shrink steps: If the abstractions in the collection are too
large to compute their synchronized product, make them
smaller by abstracting them further (applying an arbitrary
homomorphism to them).

We explain these steps with our running example.

Stefan Edelkamp

Al

Al CENTER
FEE CTU

Initialization step: projection for package

Al CENTER
Stefan Edelkamp FEECTU

Initialization step: projection for truck A

T:‘T{truck A}-

PAL,DAL,MBx**, PAR,DAR,MBx**,
PB+,DBx PBx,DBx*

MALR

O

Al CENTER
FEE CTU

Initialization step: projection for truck B

Tﬂ{truck B}:

PBL,DBL,MAx+, PBR,DBR,MAxx,
PAx, DA PA*, DA

MBLR

o MBRL e

current collection: {7 ™{package} T {truck A} T T{truck B} |

Al CENTER
Stefan Edelkamp FEECTU

First merge step

'2'1 : — ‘] ™{package} R T ™{truck A} -

MBx* MB

MB#* MB#*+

current collection: {77, 7 ™{wuckB} }

Al CENTER
Stefan Edelkamp FEECTU

Need to simplity

@ |f we have sufficient memory available, we can now
compute 77 & T "{wukBY - which would recover the
complete transition system of the task.

@ However, to illustrate the general idea, let us assume that
we do not have sufficient memory for this product.

@ More specifically, we will assume that after each product
operation we need to reduce the result abstraction to four
states to obey memory constraints.

@ So we need to reduce 77 to four states. We have a lot of
leeway in deciding how exactly to abstract 7.

@ In this example, we simply use an abstraction that leads to
a good result in the end.

Al CENTER
Stefan Edelkamp FEECTU

First shrink step

/5 := some abstraction of 7

MB*x MBx+

Al CENTER
Stefan Edelkamp FEECTU

First shrink step

J5> := some abstraction of 73

MBx+ MB*+

Al CENTER
Stefan Edelkamp FEECTU

First shrink step

] := some abstraction of 7

MBx* MB

Al CENTER
Stefan Edelkamp FEECTU

First shrink step

/o := some abstraction of 73

MBx* MB*

Al CENTER
Stefan Edelkamp FEECTU

First shrink step

/5 := some abstraction of 7;

Al CENTER
Stefan Edelkamp FEECTU

First shrink step

J5 := some abstraction of 7;

Al CENTER
Stefan Edelkamp FEECTU

First shrink step

J5 := some abstraction of 7

Al CENTER
Stefan Edelkamp FEECTU

First shrink step

J5 := some abstraction of 73

Al CENTER
Stefan Edelkamp FEECTU

First shrink step

Jo := some abstraction of 7

MB** M***
MB*+ MALR PBL D+R M &% %
G
D«L

Al CENTER
Stefan Edelkamp FEECTU

First shrink step

75 := some abstraction of 74

MB** M‘k‘k‘k

current collection: {75, 7 ™{truck B} }

Al CENTER
Stefan Edelkamp FEECTU

Second shrink step

7_7_). = 7'2 & T‘T{truck B} -

MALR

current collection: {73}

Al CENTER
Stefan Edelkamp FEECTU

Another shrink step?

@ Normally we could stop now and use the distances in the
final abstraction as our heuristic function.
@ However, if there were further state variables to integrate,

we would simplify further, e. g. leading to the following
abstraction (again with four states):

M+ x M+ + Mk %

@ We get a heuristic value of 3 for the initial state, better
than any PDB heuristic that is a proper abstraction.

@ [he example generalizes to more locations and trucks,
even if we stick to the size limit of 4 (after merging).

Stefan Edelkamp

Al

Al CENTER
FEE CTU

Properties of Merge-and-Shrink heuristic

To understand merge-and-shrink abstractions better,
we are interested in the properties of the resulting heuristic:

m s it admissible (h*(s) < h*(s) for all states s)?
m Is it consistent (h*(s) < c(o0) + h*(t) for all trans. s = t)?
m Is it perfect (h®(s) = h*(s) for all states s)?
Because merge-and-shrink is a generic procedure,
the answers may depend on how exactly we instantiate it:
m size limits
B merge strategy

m shrink strategy

Al CENTER
Stefan Edelkamp FEECTU

Merge-and-Shrink as a
sequence of transformations

m Consider a run of the merge-and-shrink construction algorithm
with n iterations of the main loop.

m Let Fj (0 </ < n)bethe FTS F after i loop iterations.

m Let 7; (0 </ < n) be the transition system represented by F;,
e, Ti=Q Fi.

m In particular, Fo = F(M) and F, = {T,}.

m For SAS™ tasks 1, we also know To = T ().

For a formal study, it is useful to view merge-and-shrink
construction as a sequence of transformations from 7; to 7Tj.;.

Al CENTER
Stefan Edelkamp FEECTU

Transformation

Definition (Transformation)

Let T =(S.L,c, T,5.5,)and 7" =(S",L,c, T',s},S.)
be transition systems with the same labels and costs.
Let 0 : S — S’ map the states of 7 to the states of 7.

The triple 7 = (T,0,T’) is called a transformation from T to 7.
We also write it as T — T".

The transformation 7 induces the heuristic h" for T
defined as h™(s) = h¥(a(s)).

Example: If a is an abstraction mapping for transition system 7T,
then 7 = T is a transformation.

Al CENTER
Stefan Edelkamp FEECTU

Special Transformation

m A transformation 7 =T = T is called conservative
if it corresponds to an abstraction,
e, if T =T = T for some abstraction mapping «.

m A transformation 7 = 7 = T/ is called exact
if it induces the perfect heuristic,

.e., if h™(s) = h*(s) for all states s of T.

Merge transformations are always conservative and exact.

Shrink transformations are always conservative.

Al CENTER
Stefan Edelkamp FEECTU

Composition of transformation

Merge-and-shrink performs many transformations in sequence.
We can formalize this with a notion of composition:

!

. 9 T
mGvent =T =T"and 7" =7T"—T"
, . : : o’ oo
their composition 7/ = 7" o 7 is defined as 7" =T —— T".
m If 7 and 7’ are conservative, then 7’ o 7 is conservative.

m If 7 and 7’ are exact, then 7/ o 7 is exact.

Al CENTER
Stefan Edelkamp FEECTU

Conclusion: Merge-and-Shrink heursitic

We can conclude the following properties
of merge-and-shrink heuristics for SAS™ tasks:

m [he heuristic is always admissible and consistent
(because it is induced by a a composition of conservative
transformations and therefore an abstraction).

m If all shrink transformation used are exact,

the heuristic is perfect (because it is induced by
a composition of exact transformations).

Al CENTER
Stefan Edelkamp FEECTU

Further topics

Further topics in merge-and-shrink abstraction:
m how to keep track of the abstraction mapping

m efficient implementation
m concrete merge strategies

m often focus on goal variables and causal connectivity
(similar to hill-climbing for pattern selection)
m sometimes based on mutexes or symmetries

m concrete shrink strategies

m especially: h-preserving, f-preserving, bisimulation-based
m (some) bisimulation-based shrinking strategies are exact

m other transformations besides merging and shrinking

m especially: pruning and label reduction

Stefan Edelkamp

Al

Al CENTER
FEE CTU

