

Value Iteration and Monte Carlo

Tutorials PUI 2017/2018

Jan Mrkos

MDP

- Method for solving MDPs iteratively
- Value function of a policy:

 $V_{\pi}(s) = \mathbb{E}[\sum_{t=0} \gamma^{t} \cdot R(s_{t}, a_{t}, s_{t+1}) | s_{0} = s, a_{t} = \pi(s_{t})]$

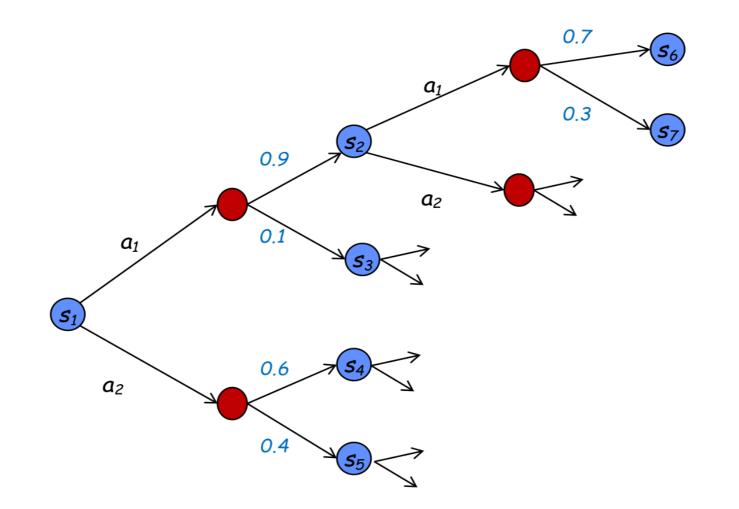
from state s_0 , policy π , reward function R

• Optimal value function:

$$V^*(s) = \max_{\pi} \boldsymbol{E}[R(s,\pi)]$$

• Optimal policy – gives max value in each state

MDP



Value Iteration

- basic algorithm for solving MDPs based on Bellman's equation
- Value iteration (Bellman backup)
 - $V^0(s) = 0 \quad \forall s \in S$

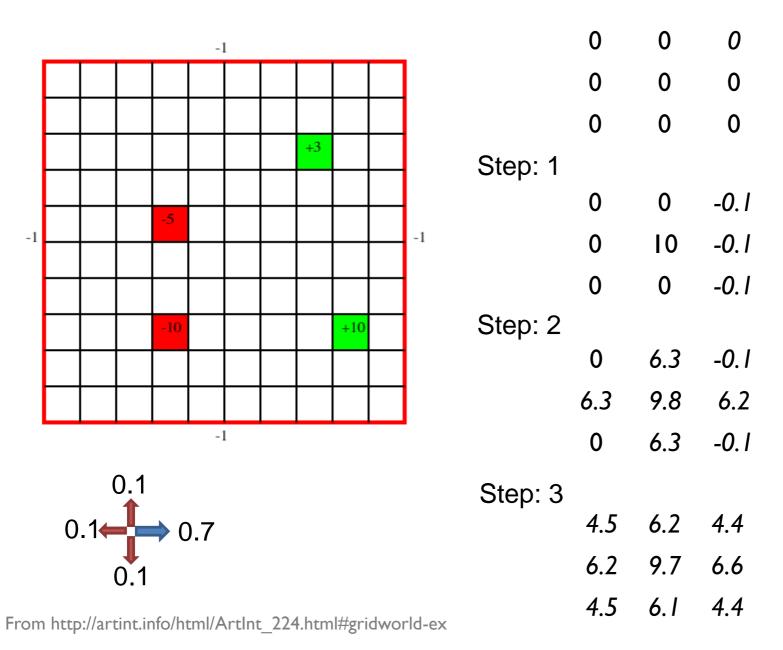
•
$$V'(s) = \max_{a \in A} \sum_{s' \in S} T(s, a, s') [R(s, a, s') + \gamma V(s')]$$

Q-function (Q(s, a))

• for $k \to \infty$ values converge to optimum $V^k \to V^*$

Value Iteration – example

Step: 0



Value Iteration - questions

- Why $V^0(s) = 0$?
- "for $k \to \infty$ values converge to optimum $V^k \to V^*$ "
 - ∞ ??? Yeah, that sounds useful
 - How fast is this?
- Value iteration stopping criterion (Bellman error):

 $\left| |V - V'| \right| < \epsilon$

Gives ϵ -optimal value function V

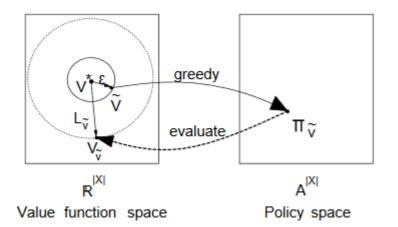
Relation between policy and value function

• Distance between value functions: $||V - V'|| = ||V - V'||_{\infty} = \max_{s} |V(s) - V'(s)|$

Theorem:

The value function V^{π} of greedy policy π derived from ϵ -optimal value function V satisfies following:

$$|V - V^*|| < 2\epsilon\gamma/(1 - \gamma)$$



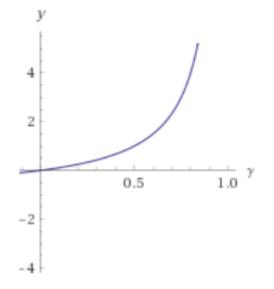


Image from Singh and Yee, An Upper Bound on the Loss from Approximate Optimal-Value Functions

Proof

Theorem:

The value function V^{π} of greedy policy π derived from ϵ -optimal value function V satisfies following:

 $\left| |V - V^*| \right| < 2\epsilon \gamma / (1 - \gamma)$

Proof:

Value iteration - options

- Can keep V or Q in memory
 Saving V(s) arrays less storage
 Saving Q(s, a) less iterations
- Asynchronous value iteration

Keep only one array of value functions, update online
Less space and faster convergence
Difficulty with the stopping condition

Order of Backups

- Heuristic search VI
 - Uses heuristics to dynamically determine the order of updates (lecture)
 - Even static ordering beforehand can have huge impact
- Prioritized sweeping

•Updates states that will produce largest delta in value function

• Topological value iteration

•Builds a graph of "casually dependent" states to find optimal order of backups.

Best Action Only

- In VI, all actions have to be backed up
- Policy iteration actions according to one policy only
- Requires "optimistic estimate" of $Q^*: Q(x, a) > Q^*(x, a)$

Monte Carlo

Non-Adaptive Monte-Carlo

•Single state case (PAC Bandit)

•Policy rollouts

Adaptive Monte-Carlo

Single state case (UCB Bandit)UCT MCTS

Following slides used from from Alan Fern, Dan Weld, Dan Klein, Luke Zettlmoyer

Monte-Carlo and MDPs

- Exact state space description not available in large state spaces, but there exist simulators:
 - •Traffic simulations
 - Robotics simulators

•Go

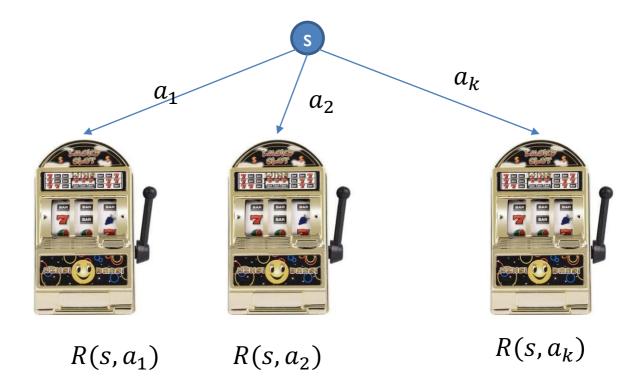
- Monte-Carlo in MDPs
 - •Use simulator to evaluate stochastically selected actions
 - •Finite (but large) state set S
 - •Finite action set A
 - •Stochastic, real-valued, bounded reward function R(s, a)=r
 - •Stochastic transition function T(s,a)=s'

Planning in single state

Multi-Armed Bandit Problem

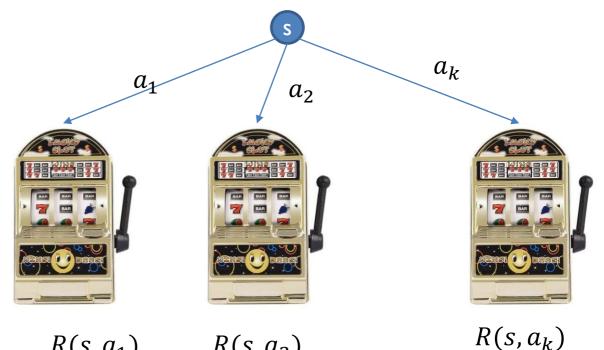
•Which action will yield best expected reward?

•Simulator returns reward R(s, a)



Multi-Armed bandit - PAC objective

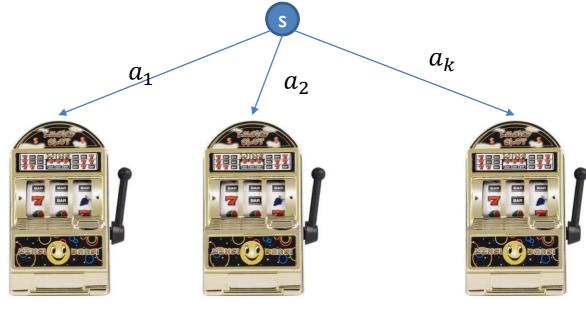
- PAC = Probably Approximately Correct
- Select arm that **probably** (prob. 1δ) has **approximately** (within ϵ) ulletthe best expected reward.
- Use least possible number of runs. ullet



 $R(s, a_1)$ $R(s, a_2)$

Uniform Bandit Algorithm

- I. Pull each arm w times
- 2. Return arm with best average reward
- Q: How many times do we have to pull?



 $r_{11}, r_{12} \dots r_{1w}$ $r_{11}, r_{12} \dots r_{1w}$

 $r_{k1}, r_{k2} \dots r_{kw}$

Uniform Bandit PAC bound

• Markov's (and then Chebyshev's) inequality:

Random variable $X \ge 0$ and c > 0. Then for any real c, $P(X \ge c) < \frac{E(X)}{c}$

Random variable X with finite E(X) and variance $\sigma^2 > 0$. Then for any c > 0, $P(|X - E(X)| \ge k\sigma) \le \frac{1}{k^2}$

 Markov's inequality gives Chernoff Bound that can be used to calculate the probability of within close to some value

PAC Objective and Bound

• Select arm that **probably** (prob. $1 - \delta$) has **approximately** (within ϵ) the best expected reward.

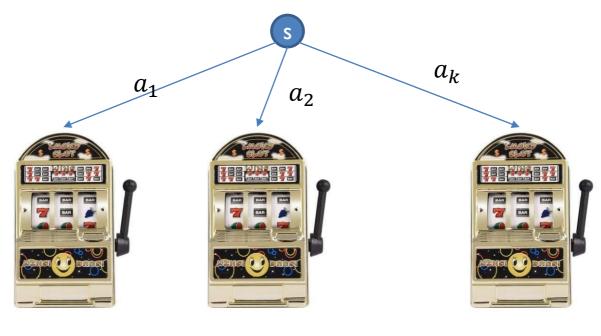
If
$$w \ge \left(\frac{R_{max}}{\epsilon}\right)^2 \ln \frac{k}{\delta}$$
 then for all arms with probability $1 - \delta$
$$\left| E[R(s, a_i)] - \frac{1}{w} \sum_{j=1}^{w} r_{ij} \right| \le \epsilon$$

• Meaning all action estimates are ϵ accurate with probability $1 - \delta$, R_{max} is maximal reward.

Uniform Bandit Algorithm

For PAC, we need this many calls:

$$k w \ge O\left(\frac{k}{\epsilon^2}\ln\frac{k}{\delta}\right)^2$$



 $r_{11}, r_{12} \dots r_{1w}$ $r_{11}, r_{12} \dots r_{1w}$

 $r_{k1}, r_{k2} \dots r_{kw}$

Monte Carlo

Adaptive Monte-Carlo
 Single state case (UCB Bandit)
 UCT MCTS

Slides from Alan Fern, Dan Weld, Dan Klein, Luke Zettlmoyer

Policy Improvement using Monte-Carlo

- Assume non-optimal policy and simulator
- How can you improve the policy?

Policy Improvement Theorem

• Q-function $Q_{\pi}(s, a)$ is defined as:

$$Q_{\pi}(s,a) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t},a_{t}) | s_{0} = s, a_{t} = \pi(s_{t})\right]$$

That is, expected total discounted reward of starting in s, taking action a and then following policy π .

- Let $\pi'(s) = argmax_a Q_{\pi}(s, a)$
- Theorem (Howard, 1960)

For any non-optimal policy π the policy π' is a strict improvement over π .

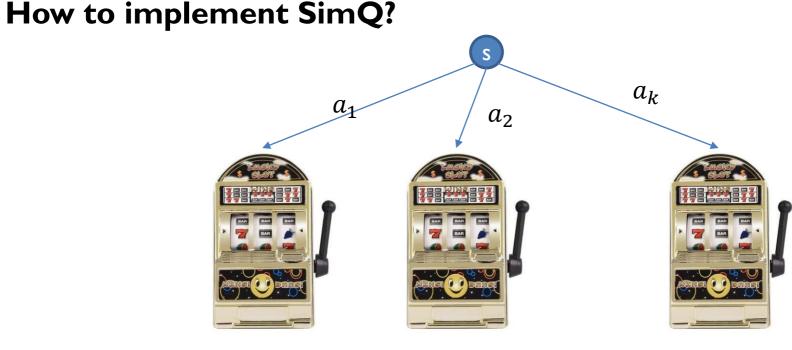
• Computing π' amounts to finding action that maximizes Q-function of π (similar to policy iteration).

•How do we apply the bandit idea?

Policy Improvement via Bandits

۲

- Idea: define stochastic function $SimQ(s, a, \pi)$ that we can implement and that will have expected value $Q_{\pi}(s, a)$
- Next, just use bandit algorithm to determine best action



 $SimQ(s, a_1, \pi)$ $SimQ(s, a_2, \pi)$ S

 $SimQ(s, a_k, \pi)$

Q-value Estimation

• SimQ might be implemented by simulating the execution of action a in state s and then following π thereafter.

•For infinite horizon, this would never stop!

•We approximate using finite horizon

• For horizon h, Q-function $Q_{\pi}(s, a, h)$ is defined as: $Q_{\pi}(s, a, h) = \mathbb{E} \left[\sum_{t=0}^{h-1} \gamma^{t} R(s_{t}, a_{t}) | s_{0} = s, a_{t} = \pi(s_{t}) \right]$ The triangle of the set of

That is, expected total discounted reward of starting in s, taking action a and then following policy π for h-l steps.

• What is the approximation error? Exponential in h:

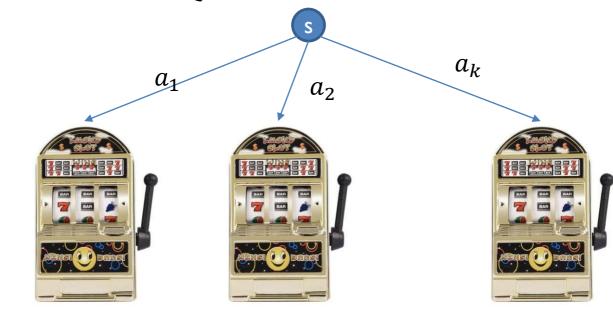
$$|Q_{\pi}(s,a) - Q_{\pi}(s,a,h)| \le \gamma^{h} V_{max} \qquad V_{max} = \frac{R_{max}}{1 - \gamma}$$

(prove in class for I point (5 minutes))

Policy Improvement via Bandits

 $SimQ(s, a_1, \pi)$

- **Better idea:** redefine stochastic function $SimQ(s, a, \pi, h)$ that we can implement and that will have expected value $Q_{\pi}(s, a, h)$
- Next, just use bandit algorithm to determine best action

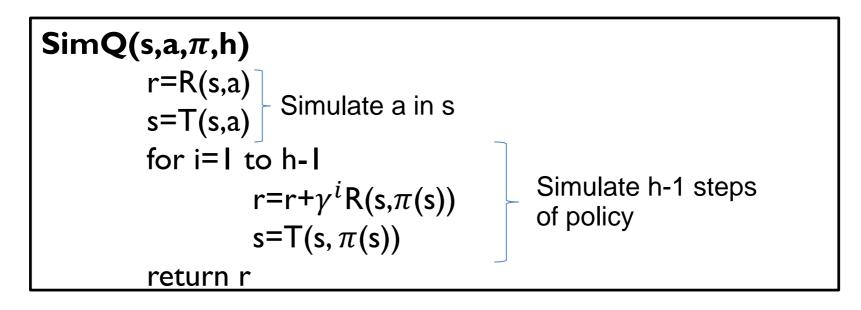


 $SimQ(s, a_2, \pi)$

How to implement SimQ?

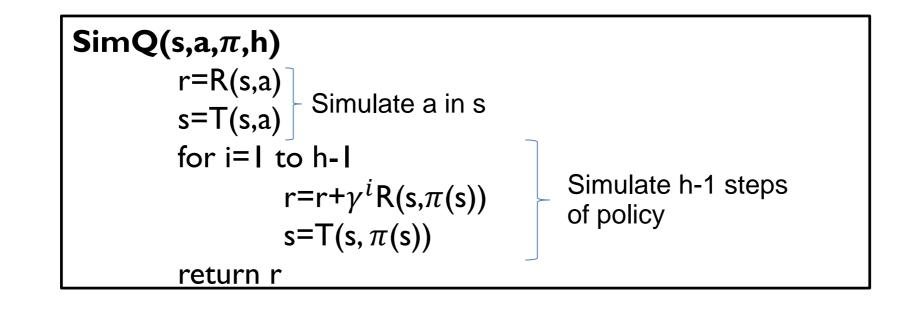
 $SimQ(s, a_k, \pi)$

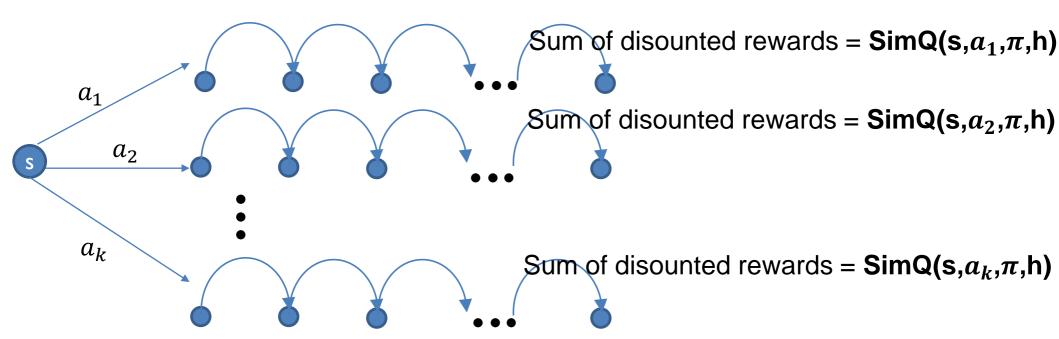
Policy improvement via Bandits



- Implementat exactly as the formula suggests. Simulate taking action a in s and follow policy π for h steps. Return discounted sum of rewards.
- Expected value of SimQ(s,a, π ,h) is SimQ(s,a, π), which can be made arbitrarly close to $Q_{\pi}(s, a)$ by increasing h. (why?)

Policy improvement via Bandits

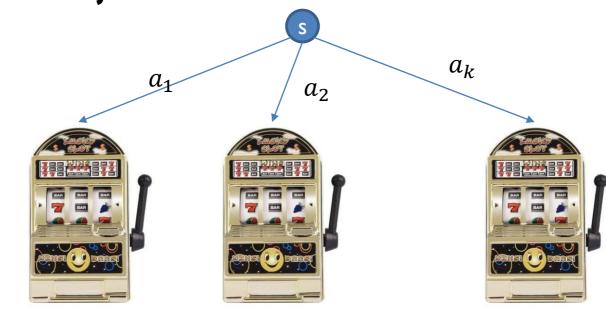




Policy Improvement via Bandits

 $SimQ(s, a_1, \pi)$

- **Better idea:** redefine stochastic function $SimQ(s, a, \pi, h)$ that we can implement and that will have expected value $Q_{\pi}(s, a, h)$
- Next, just use bandit algorithm to determine best action



 $SimQ(s, a_2, \pi)$

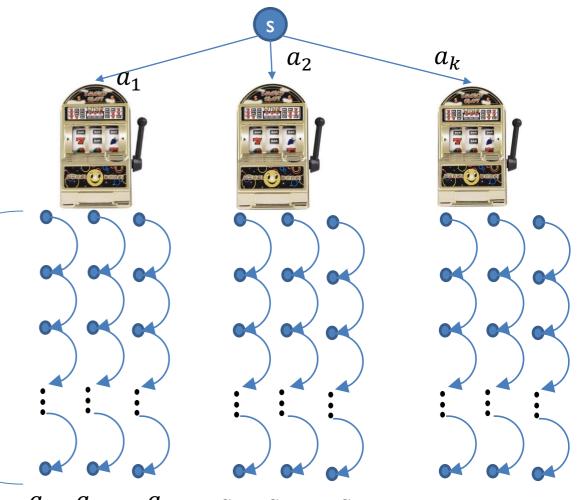
• Apply the PAC Objective

 $SimQ(s, a_k, \pi)$

Policy Rollout algorithm

- I. For each a_i run SimQ(s, a_i , π ,h) w times
- 2. Return action with best average SimQ result

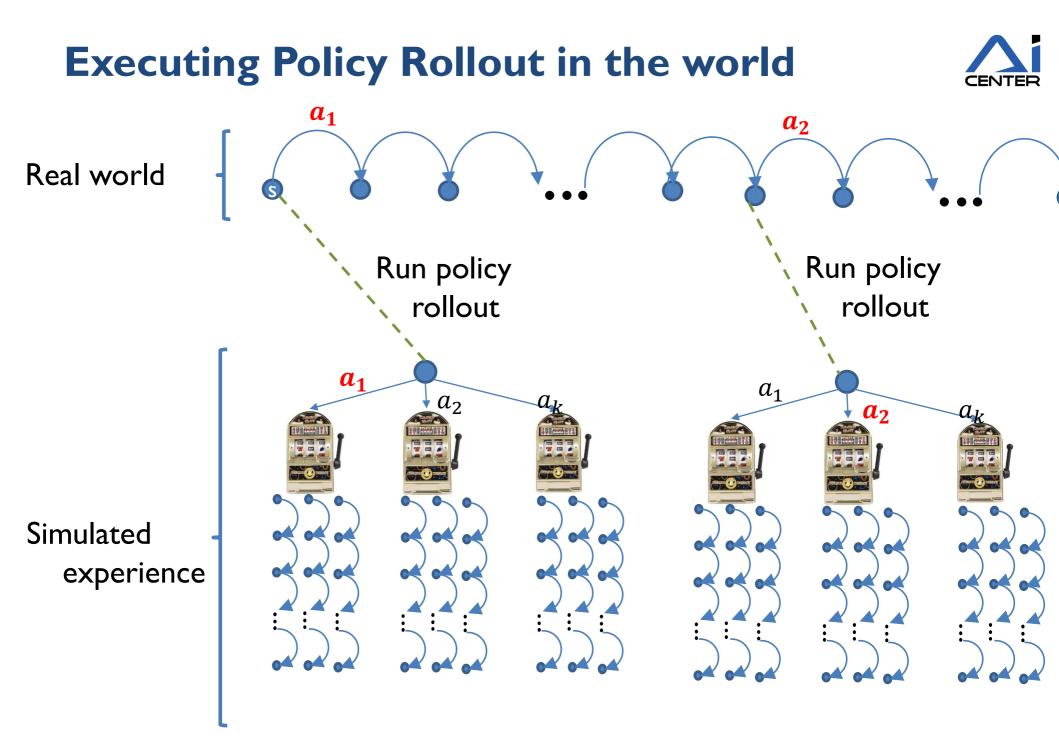
SimQ(s, a_i , π ,h) trajectories, each simulates taking action a_i – and then following π for h-I steps.



 $q_{11},q_{12},\ldots q_{1w}$

 $q_{21},q_{22},\ldots q_{2w}$

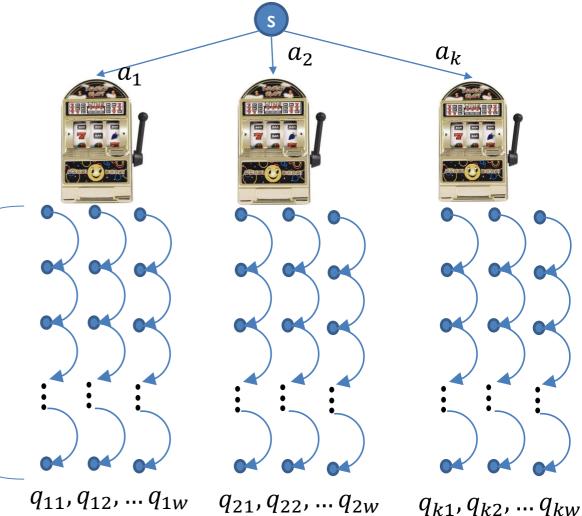
 $q_{k1}, q_{k2}, \ldots q_{kw}$



Policy Rollout: # of simulator calls

- For each action there is w calls to SimQ, each using h calls
- In total, **khw** calls to the simulator

SimQ(s, a_i , π ,h) trajectories, each simulates taking action a_i and then following π for h-l steps.



 $q_{11}, q_{12}, \dots q_{1W}$

 $q_{21}, q_{22}, \dots q_{2w}$

Policy Rollout: PAC Guarantee

- Let a^* be the action that maximizes the true Q-function $Q_{\pi}(s, a)$.
- Let a' be the action return by policy rollout.
- Using the PAC result for single state, we get following:

If
$$w \ge \left(\frac{R_{max}}{\epsilon}\right)^2 \ln \frac{k}{\delta}$$
 then for all arms with probability $1 - \delta$
 $|Q_{\pi}(s, a^*) - Q_{\pi}(s, a')| \le \epsilon + \gamma^h V_{max}$

Does this mean that the policy generated by the rollout will be close to the π' (from the Howard theorem)?

Policy Rollout: Quality

- How good is policy rollout compared to π' ?
- for fixed h and w there exists MDP such that rollout policy is arbitrarily worse than π'

•The MDP example is constructed for given parameters and is quite artificial.

adding assumptions to the MDP, h and w can be chosen so that rollout quality is close to π' .

•Complicated

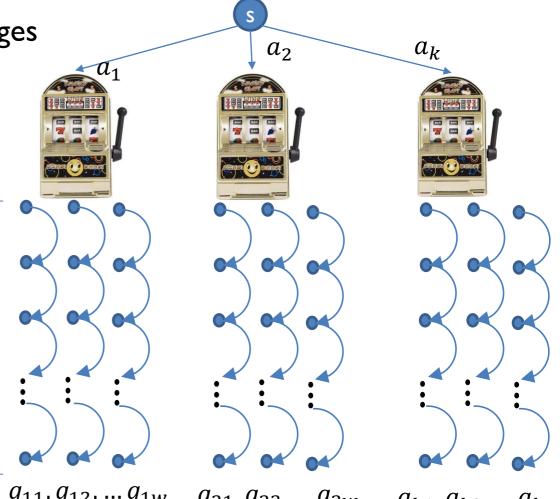
h and w can be selected so that rollout is (approximately) no worse than π in any MDP

•So it will never hurt, only help

Multi-stage Rollout

- Two stage: compute rollout policy of "rollout of policy π "
- Requires $(khw)^2$ calls to the simulator
- Exponential in number of stages

Trajectories of SimQ(s, a_i ,Rollout(π),h)



 $q_{11}, q_{12}, \dots q_{1W}$

 $q_{21}, q_{22}, \dots q_{2w}$

 $q_{k1}, q_{k2}, \dots q_{kw}$

Rollout summary

- Often, we can easily write simple policies
 - •Dijkstra replan for robot Emil
 - •Backgammon
 - •Solitaire
 - •Network routing policy
- Policy rollout is general and easy way to improve such policies given simulator
- This often provides substantial improvement:
 - •Backghamon
 - •Go
 - •Solitaire

•...

Rollout summary

- Policy Switching
 - •Set of base policies, $\{\pi_1, \pi_2, \dots \pi_M\}$

•Instead of actions, try different policies in state S using Sim(s, π_i ,h) •Works for any number of actions

• Single call to Rollout[π](s) approximates one iteration of policy iteration inialized at policy π

Player	Success Rate	Time/Game
Human Expert	36.6%	20 min
(naïve) Base Policy	13.05%	0.021 sec

Player	Success Rate	Time/Game
Human Expert	36.6%	20 min
(naïve) Base Policy	13.05%	0.021 sec
1 rollout	31.20%	0.67 sec

Player	Success Rate	Time/Game
Human Expert	36.6%	20 min
(naïve) Base Policy	13.05%	0.021 sec
1 rollout	31.20%	0.67 sec
2 rollout	47.6%	7.13 sec
3 rollout	56.83%	1.5 min
4 rollout	60.51%	18 min
5 rollout	70.20%	1 hour 45 min

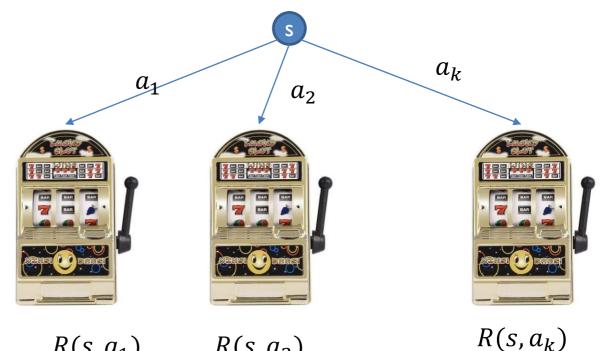
Monte Carlo

- Non-Adaptive Monte-Carlo
 Single state case (PAC Bandit)
 Policy rollouts
- Adaptive Monte-Carlo
 - •Single state case (UCB Bandit) •UCT MCTS

Slides from Alan Fern, Dan Weld, Dan Klein, Luke Zettlmoyer

Multi-Armed bandit - PAC

- Task: Select arm that probably (prob. 1δ) has approximately (within ϵ) the best expected reward.
- PAC = Probably Approximately Correct ullet
- Use least possible number of runs. ۲

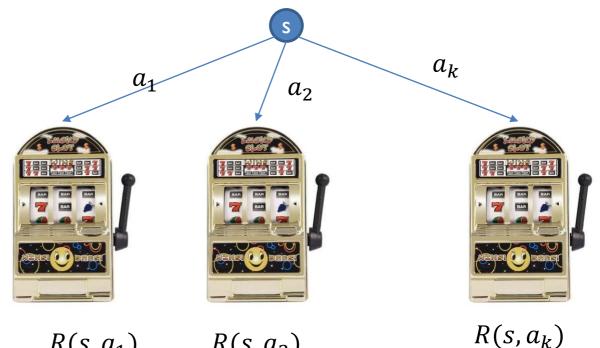


 $R(s, a_2)$

 $R(s, a_1)$

Multi-Armed bandit – Regret Minimization

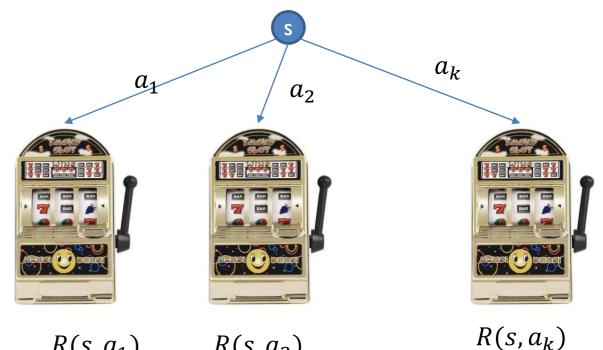
- **Task:** find arm-pulling strategy such that the expected total reward at time n is close to the best possible.
 - •Uniform Bandit bad choice, wastes time with bad arms
 - •Need to balance exploitation of good arms with exploration of poorly understood arms.



 $R(s, a_1)$ $R(s, a_2)$

UCB Adaptive Bandit Algortihm

- **Task:** find arm-pulling strategy such that the expected total reward at time n is close to the best possible.
 - •Uniform Bandit bad choice, wastes time with bad arms
 - •Need to balance exploitation of good arms with exploration of poorly understood arms.



 $R(s, a_1)$ $R(s, a_2)$

 $\mu_k E[T_k(n)]$

Regret

Aiming at "reward as close as possible to the best reward" means we are minimizing regret:

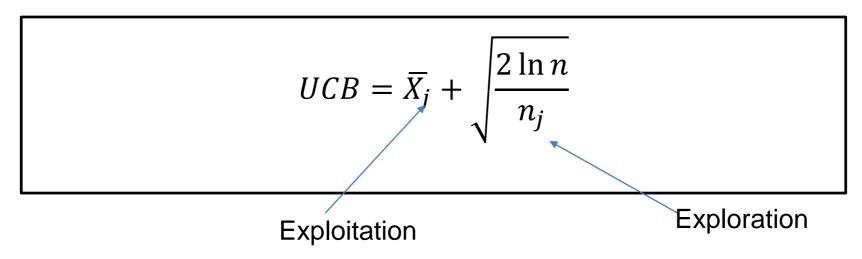
$$R_{n} = \mu^{*}n - \sum_{j=1}^{k} \mu_{j} E[T_{j}(n)]$$

Where μ_i are the expected payoffs of arms, μ^* is the best expected payoff and $E[T_i(n)]$ is the expected number of pulls on arm j in total n pulls.

• $X_{i,1}, X_{i,2} \dots$ = i.i.d r.v. of rewards from bandit j S a_k a_1 a_2 • μ_i = expected value of X_i

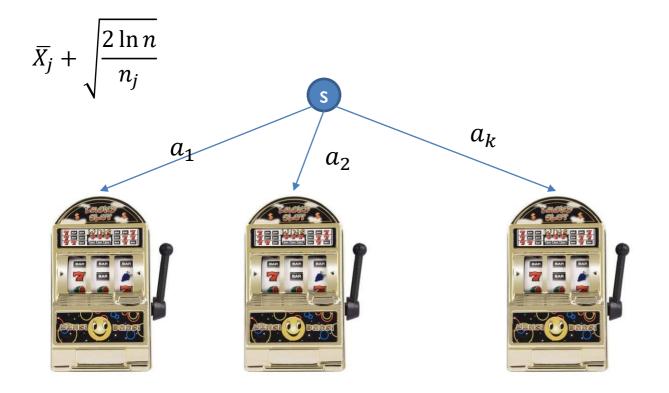
Minimizing regret - UCB

• Upper Confidence Bounds [Auer er. al., 2002]:



- When choosing arm, always select arm with highest UCB value
- $\overline{X_i}$ = mean of observed rewards, n = number of plays so far

UCB - Example



- Play all arms once initially
- Then based on the formula

UCB2(t) Action 2 Action 1

UCB - Example

$$\overline{X_j} + \sqrt{\frac{2\ln n}{n_j}}$$

• $\sqrt{\frac{2 \ln n}{n_j}}$ is based of bound of the form $P(\overline{X_j} - E[X] \ge f(\sigma, n)) \le \sigma$ (Remember PAC?)

• And σ is chosen to be time dependent (by n), goes to zero.

Excel example:

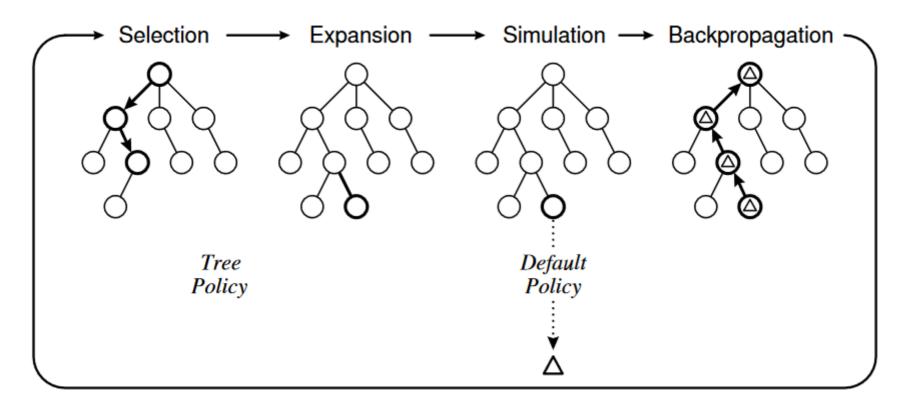
https://drive.google.com/open?id=IA9Kr-JDz_ZJIYOX3aFMrFaLUAPeAZV7Z

Monte Carlo

- Non-Adaptive Monte-Carlo
 Single state case (PAC Bandit)
 Policy rollouts
- Adaptive Monte-Carlo
 Single state case (UCB Bandit)
 UCT MCTS

Slides from Alan Fern, Dan Weld, Dan Klein, Luke Zettlmoyer

UCB for Trees = UCT



•Tree node:

- Associated state,
- incoming action,
- number of visits,
- accumulated reward

•External slides by Michele Sebag:

https://drive.google.com/open?id=1ytp9I33_6WNe62qLAzV326iS4WmYeFpY

MCTS notes

• Aheuristic

•Does not require any domain specific knowledge

•Domain specific knowledge can provide significant speedups

• Anytime

•Can return currently best action when stopped at any time

• Asymmetric

•Tree is not explored fully

 MCTS = UCT? No consistency in the naming

