
Two-player Games

PAH 2012/2013

Branislav Bošanský

Game-tree Search / Adversarial Search

 planning – only the searching player acts in the environment

 there could be others:

 Nature – stochastic environment (MDP, POMDP, …)

 other agents – rational opponents

 Game Theory

 mathematical framework that describes optimal behavior of
rational self-interested agents

 A4M36MAS (Multi-agent Systems)

Game-tree Search / Adversarial Search

 What are the basic games categories?

 perfect / imperfect information

 deterministic / stochastic

 zero-sum / general-sum

 finite / infinite

 two-player / n-player

 …

Game-tree Search / Adversarial Search

 What are the basic games categories?

 perfect / imperfect information

 deterministic / stochastic

 zero-sum / general-sum

 finite / infinite

 two-player / n-player

 …

Game-tree Search / Adversarial Search

 What are the basic games categories?

 perfect / imperfect information

 deterministic / stochastic

 zero-sum / general-sum

 finite / infinite

 two-player / n-player

 …

 What is the goal?

Game-tree Search / Adversarial Search

 What are the basic games categories?

 perfect / imperfect information

 deterministic / stochastic

 zero-sum / general-sum

 finite / infinite

 two-player / n-player

 …

 What is the goal?

 finding an optimal strategy (i.e., selecting an action to play
in each possible situation)

Game-tree Search / Adversarial Search

 Players are rational – each player wants to maximize her/his
utility value

Game-tree Search / Adversarial Search

 Players are rational – each player wants to maximize her/his
utility value

 function minimax(node, Player)

 if (node is a terminal node) return utility value of node

 if (Player = MaxPlayer)

 for each child of node

 v max(v, minimax(child, switch(Player)))

 return v

 else

 for each child of node

 v min(v, minimax(child, switch(Player)))

 return v

Minimax

Minimax in Real Games

 search space in games is typically very large

 exponential in branching factor bd

 e.g., 35 in chess, up to 360 in Go, up to 45000 in Arimaa

 we have to limit the depth of the search

 we need an evaluation function

Minimax in Real Games

 search space in games is typically very large

 exponential in branching factor bd

 e.g., 35 in chess, up to 360 in Go, up to 45000 in Arimaa

 we have to limit the depth of the search

 we need an evaluation function

 function minimax(node, depth, Player)

 if (depth = 0 or node is a terminal node) return evaluation value of node

 if (Player = MaxPlayer)

 for each child of node

 v max(v, minimax(child, depth-1, switch(Player)))

 return v

 else

 for each child of node

 v min(v, minimax(child, depth-1, switch(Player)))

 return v

Minimax

Minimax in Real Games - Problems

 good evaluation function

 depth?

 horizon problem

 iterative deepening

 not always searching deeper improve the results

 caching the results (transposition tables)

 …

Alpha-Beta Pruning

Alpha-Beta Pruning

 function alphabeta(node, depth, α, β, Player)

 if (depth = 0 or node is a terminal node) return evaluation value of node

 if (Player = MaxPlayer)

 for each child of node

 v max(v, alphabeta(child, depth-1, α, β, switch(Player)))

 α := max(α,v)

 if (β≤α) break

 return v

 else

 for each child of node

 v min(v, alphabeta(child, depth-1, α, β, switch(Player)))

 β := min(β, v)

 if (β≤α) break

 return v

Alpha-Beta Pruning

 function negamax(node, depth, α, β, Player)

 if (depth = 0 or node is a terminal node) return evaluation value of node

 if (Player = MaxPlayer)

 for each child of node

 v max(v, -negamax(child, depth-1, -β, -α, switch(Player)))

 α := max(α,v)

 if (β≤α) break

 return v

 else

 for each child of node

 v min(v, alphabeta(child, depth-1, α, β, switch(Player)))

 β := min(β, v)

 if (β≤α) break

 return v

Negamax

 [α, β] interval – window

 alphabeta initialization [-∞, +∞]

 what if we use [α
0
, β

0
]

 x = alphabeta(node, depth, α
0
, β

0
,player)

 α
0
≤ x ≤ β

0
- we found a solution

 x ≤ α
0
- failing low (run again with [-∞, x])

 x ≥ β
0
- failing high (run again with [x, +∞])

Aspiration Search

 assume we are in a MAX node

 we are about to search a child 'c'

 we already have obtained a lower bound 'α'

 Is it worth searching the branch 'c'?

 we need to have some test ...

Scout – Idea

 what we really need at that moment is a bound (not the precise

value)

 Remember Aspiration Search?

 x ≤ α
0
- failing low (we know, that solution is ≤ x)

 x ≥ β
0
- failing high (we know, that solution is ≥ x)

 What if we use a null-window [α, α+1] (or [α,α])?

 we obtain a bound …

Scout –Test

function negascout(node, depth, α, β, Player)

 if ((depth = 0) or (node is a terminal node)) return eval(node)

 b := β

 for each child of node

 v := max(v, -negascout(child, depth-1, -b, -α, switch(Player))))

 if ((α < v < β) and (child is not the first child))

 v := max(v, -negascout(child, depth-1, -β, -α, switch(Player))))

 α := max(α, v)

 if (β≤α) break

 b := α + 1

 return v

NegaScout

 also termed Principal Variation Search (PVS)

 dominates alpha-beta

 never evaluates more different nodes than alpha-beta

 can evaluate some nodes more than once

 depends on the move ordering

 can benefit from transposition tables

 generally 10-20% faster compared to alpha-beta

NegaScout

 Memory-enhanced Test Driver

 Best-first fixed-depth minimax algorithms. Plaat et. al. , In Artificial Intelligence,

Volume 87, Issues 1-2, November 1996, Pages 255-293

MTD

Other Games - Chance nodes

Other Games – Imperfect Information

 Sequence-form linear program

 Counterfactual Regret Minimization

 Monte-carlo Tree Search

 Double-oracle methods

 …

Other Algorithms

 generic algorithms

 sequential games

 with simultaneous moves

 with imperfect information (Poker, Security Games)

 complex strategies, abstractions

 more general types of ‘solutions’

 …

Game Theory in ATG

