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Game-tree Search / Adversarial Search 

 planning – only the searching player acts in the environment 

 there could be others: 

 Nature – stochastic environment (MDP, POMDP, …) 

 other agents – rational opponents 

 

 Game Theory 

 mathematical framework that describes optimal behavior of 
rational self-interested agents 

 A4M36MAS (Multi-agent Systems) 

 



Game-tree Search / Adversarial Search 

 What are the basic games categories? 

 perfect / imperfect information  

 deterministic / stochastic 

 zero-sum / general-sum 

 finite / infinite 

 two-player / n-player 

 … 
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 What is the goal? 

 



Game-tree Search / Adversarial Search 

 What are the basic games categories? 

 perfect / imperfect information  

 deterministic / stochastic 

 zero-sum / general-sum 

 finite / infinite 

 two-player / n-player 

 … 

 

 What is the goal? 

 finding an optimal strategy (i.e., selecting an action to play 
in each possible situation) 

 



Game-tree Search / Adversarial Search 

 Players are rational – each player wants to maximize her/his 
utility value 

 



Game-tree Search / Adversarial Search 

 Players are rational – each player wants to maximize her/his 
utility value 

 



 function minimax(node, Player)          

     if (node is a terminal node) return utility value of node 

     if (Player = MaxPlayer) 

         for each child of node 

             v  max(v, minimax(child, switch(Player))) 

     

 

         return v 

     else 

         for each child of node 

             v  min(v, minimax(child, switch(Player))) 

 

                                   

         return v  

Minimax 



Minimax in Real Games 

 search space in games is typically very large 

 exponential in branching factor bd 

 e.g., 35 in chess, up to 360 in Go, up to 45000 in Arimaa 

 we have to limit the depth of the search 

 we need an evaluation function  
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 search space in games is typically very large 

 exponential in branching factor bd 

 e.g., 35 in chess, up to 360 in Go, up to 45000 in Arimaa 

 we have to limit the depth of the search 

 we need an evaluation function  

 

 



 function minimax(node, depth, Player)          

     if (depth = 0 or node is a terminal node) return evaluation value of node 

     if (Player = MaxPlayer) 

         for each child of node 

             v  max(v, minimax(child, depth-1, switch(Player))) 

  

 

         return v 

     else 

         for each child of node 

             v  min(v, minimax(child, depth-1, switch(Player))) 

 

                                   

         return v  

Minimax 



Minimax in Real Games - Problems 

 good evaluation function 

 depth? 

 horizon problem 

 iterative deepening 

 not always searching deeper improve the results 

 caching the results (transposition tables) 

 … 



Alpha-Beta Pruning  



Alpha-Beta Pruning  



 function alphabeta(node, depth, α, β, Player)          

     if (depth = 0 or node is a terminal node) return evaluation value of node 

     if (Player = MaxPlayer) 

         for each child of node 

             v  max(v, alphabeta(child, depth-1, α, β, switch(Player))) 

             α := max(α,v)      

           if (β≤α)  break                      

         return v 

     else 

         for each child of node 

             v  min(v, alphabeta(child, depth-1, α, β, switch(Player))) 

             β := min(β, v)      

             if (β≤α)  break                                           

         return v  

Alpha-Beta Pruning  



 function negamax(node, depth, α, β, Player)          

     if (depth = 0 or node is a terminal node) return evaluation value of node 

     if (Player = MaxPlayer) 

         for each child of node 

             v  max(v, -negamax(child, depth-1, -β, -α, switch(Player))) 

             α := max(α,v)      

           if (β≤α)  break                      

         return v 

     else 

         for each child of node 

             v  min(v, alphabeta(child, depth-1, α, β, switch(Player))) 

             β := min(β, v)      

             if (β≤α)  break                                           

         return v  

Negamax 



 [α, β] interval – window 

 alphabeta initialization [-∞, +∞] 

 what if we use [α
0
, β

0
] 

 x = alphabeta(node, depth, α
0
, β

0
,player) 

 α
0 
≤ x ≤ β

0  
- we found a solution 

 x ≤ α
0 
- failing low (run again with [-∞, x]) 

 x ≥ β
0 
- failing high (run again with [x, +∞]) 

Aspiration Search 



 assume we are in a MAX node 

 we are about to search a child 'c' 

 we already have obtained a lower bound 'α' 

 

 Is it worth searching the branch 'c'? 

 

 we need to have some test ... 

Scout – Idea 



 what we really need at that moment is a bound (not the precise 

value) 

 Remember Aspiration Search? 

 x ≤ α
0 
- failing low (we know, that solution is ≤ x) 

 x ≥ β
0 
- failing high (we know, that solution is ≥ x) 

 What if we use a null-window [α, α+1] (or [α,α])? 

 we obtain a bound …  

Scout –Test 



function negascout(node, depth, α, β, Player)          

      if ((depth = 0) or (node is a terminal node)) return eval(node) 

      b := β 

      for each child of node 

        v := max(v, -negascout(child, depth-1, -b, -α, switch(Player)))) 

         if (( α < v < β) and (child is not the first child)) 

               v := max(v, -negascout(child, depth-1, -β, -α, switch(Player)))) 

            α := max(α, v) 

                if (β≤α)  break                      

                b := α + 1 

      return v 

NegaScout 



 also termed Principal Variation Search (PVS) 

 dominates alpha-beta  

 never evaluates more different nodes than alpha-beta 

 can evaluate some nodes more than once 

 depends on the move ordering 

 can benefit from transposition tables 

 generally 10-20% faster compared to alpha-beta 

NegaScout 



 Memory-enhanced Test Driver  
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Other Games - Chance nodes 



Other Games – Imperfect Information 



 Sequence-form linear program 

 Counterfactual Regret Minimization 

 Monte-carlo Tree Search 

 Double-oracle methods 

 … 

 

Other Algorithms 



 generic algorithms 

 sequential games  

 with simultaneous moves 

 with imperfect information (Poker, Security Games) 

 complex strategies, abstractions 

 more general types of  ‘solutions’ 

 … 

Game Theory in ATG 


