Classical planning

Definition

- (S, I, A, G)
- S is a finite set of states
- I (belongs to S) is an initial state
- A is a set of actions
- G (subset of S) is a finite set of goal states
- The task of coming up with a sequence of actions that will achieve a goal

Overview

- Features:
- discrete (in time, action, objects and effects)
- finite
- deterministic
- Representation of a problem
- Representation of states
- Representation of actions

Representation of states (FDR)

- The state of the world is described in terms of a finite set of finite-valued state variables.
- hour: $\{0 ; \ldots ; 23\}=13$
- minute: $\{0 ; \ldots ; 59\}=55$
- location: $\{51 ; 52 ; 82 ; 101 ; 102\}=101$
- weather: \{sunny; cloudy; rainy\} = cloudy
- holiday: $\{d T ; d F\}=d F$
- Can have different domains

Example

- Blocks-world
- State variables:
- location-of-A: \{B;C;table\}
- location-of-B: \{A;C;table $\}$
- location-of-C: $\{A ; B ;$ table $\}$
- state

$$
s=\{
$$

location-of-A = Table, location-of-B = A, location-of-C = Table
 \}

Example ctd. (BDR)

- boolean variables $s=\{$
$A-o n-B=0$
A-on-C $=0$

A-on-table $=1$
B-on-A = 1
$B-o n-C=0$
B-on-table $=0$
C-on-A = 0
C-on-B $=0$
C-on-table $=1$
$\}=\{$ A-on-table, B-on-A, C-on-table $\}$

Representation of actions

- Applicable actions
- actions that can be applied on current state
- their preconditions, defined as evaluated state variables, match the current state values
- Each action, when applied, changes (effects) the current state variables' values,
- it causes the move to another state

Example (BDR)

- move-B-A-C
- preconditions: \{

$$
\text { B-on-A }=1
$$

B-clear $=1$,

C-clear $=1$
\}

- effect: \{

$$
\text { B-on-C }=1
$$

A-clear $=1$,
B-on-A $=0$,
C-clear $=0$
$\}->$ s' $=\{$ A-on-table, A-clear, B-on-C, C-on-table, B-clear $\}$

STRIPS

- based on FOL (first order predicate logic)
- world objects as constants
- state variables - ground FOL literals (atoms)
- action preconditions and effects conjuctions of function-free FOL literals that instantiates their body by concrete constants

Example

FOL literals:
Objects:
Init:
Goal:
Actions:

Example

FOL literals: On, Clear
Objects: a, b, table
Init: \{On(a,table), On(b,a), On(c,table),
Clear(b), clear(C)\}
Goal: \{On(b,c)\}
Actions: [board_]

