Automated Action Planning

Explicit Planning Task Structure: Hybrid Abstraction/Relaxation Heuristics

Carmel Domshlak

Carmel Domshlak

Automated Action Planning

— Explicit Planning Task Structure: Hybrid Abstraction/Relaxation Heuristics

Structural fragments

Causal graph journey BDR Between BDR and FDR

Implicit Abstractions Implicit Abstractions

Carmel Domshlak

Finite Domain Representation (FDR) Language

Definition (FDR planning tasks)

An FDR planning task is a tuple $\langle V, A, I, G \rangle$

- ▶ V is a finite set of state variables with finite domains $dom(v_i)$
- initial state I is a complete assignment to V
- goal G is a partial assignment to V
- A is a finite set of actions a specified via pre(a) and eff(a), both being partial assignments to V

Definition (BDR planning tasks)

BDR planning tasks are FDR planning tasks with only boolean state variables.

Planning as State-Space Heuristic Search

Heuristic functions

- What? Something that can be solved in polynomial time to assist us in solving our planning task
 - How? Solutions to simplifications of the planning task

Window of opportunity for computational tractability!

Structural fragments

Structural fragments

Reminder: What are syntactic restrictions? Fragment of tasks $\stackrel{\text{def}}{\leftarrow}$ restr. on action description

What are structural restrictions?

Fragment of task $\stackrel{\text{def}}{\leftarrow}$ restr. on interactions between actions

Structural fragments

Graphical Structures as Problem Abstractions

- ❀ Why graphs?
 - 1. Cognitively convenient
 - 2. Come with a rich math and CS toolbox
- Graphical representations/abstractions of comp. problems
 - 1. CSP: Constraint networks, junction trees, ...
 - 2. Probabilistic reasoning: BNs, DBNs, Markov nets, ...
 - 3. Preferential reasoning: GAI-nets, xCP-nets, ...
- Graphical views in planning?
 - Yes, we have!
 - Today: causal graphs & domain transition graphs
 Why these?
 - More to be studied, and even to be discovered/suggested

Graphical Abstractions of Action Interactions Causal Graphs

In the context of an FDR planning task $\Pi = \langle V, A, I, G \rangle$:

Definition (causal graph)

The causal graph $CG(\Pi)$ of Π is a digraph over nodes V. An arc (v, v') is in $CG(\Pi)$ iff $v \neq v'$ and there exists an action $a \in A$ such that

$$(v, v') \in V(\operatorname{eff}(a)) \cup V(\operatorname{pre}(a)) \times V(\operatorname{eff}(a)),$$

that is, both eff(a)[v'] and either pre(a)[v] or eff(a)[v] are specified.

Notation: succ(v) and pred(v) are immediate successors and predecessors of v in $CG(\Pi)$.

Graphical Abstractions of Action Interactions

Domain Transition Graphs

In the context of an FDR planning task $\Pi = \langle V, A, I, G \rangle$:

Definition (domain transition graph)

The domain transition graph $DTG(v, \Pi)$ of a variable $v \in V$ is an arc-labeled digraph over the nodes dom(v). An arc (d, d') labeled with $\in A$ is in the graph iff

1.
$$eff(a)[v] = d'$$
, and

2. either
$$pre(a)[v] = d$$
, or $v \notin V(pre(a))$.

Structural fragments

Example

Computational Tractability as a Function of Causal Graph Form

- 1. From BDR to FDR
- 2. From severe structural restrictions to their generalizations
- 3. For simplicity, assume all actions have the same cost (relevant only for optimization)

BDR Forks

Informal discussion

PlanGen is easy

- r's capabilities: 0, 1, or ∞ changes.
- All leafs are binary $\rightsquigarrow r$ changes ≤ 2 .

► Given a workload of *r*, succ(*r*) are independent.

PlanMinGen is easy

- ► Given root's workload, all leafs are independent.
- Optimize over all three cases of workload for root.

BDR Inverted Forks

Informal discussion

PlanGen is easy

- pred(r) are independent.
- ▶ if not trivial, *r* should change exactly once.
- Find action a changing r to G[r] such that, for each v ∈ pred(r), G[v] reachable from I[v] via pre(a)[v].

PlanMinGen is easy

• Optimize over all actions changing r to G[r].

So far so good! What next?

Generalizing causal graph fragments

- 1. Forks \implies Directed Trees
- 2. Inverted Forks \implies Directed Inverted Trees
- 3. Directed Trees + Directed Inverted Trees \implies Polytrees

BDR Chains

❀ Informal discussion

PlanGen is easy

loop

- iteratively eliminate leafs consistent with G
- change the lowest var that can be changed

PlanMinGen is easy

- No choices \rightsquigarrow Optimal.
- Same algorithm works for directed trees! What about choices? They are ∀, not ∃.

BDR Polytrees

NO... PlanGen is NP-complete [GJ08]

Elegant reduction from 3SAT (m clauses, n vars)

- Note that the proof kills directed inverted trees as well ...
- Can we push further with fixed in-degree?
 Solutions alternative generalizations of polytrees.
- [BD03] For DP singly connected causal graphs, NP-complete starting (at most) in-degree 6. Automated Action Planning 15 / 30

FDR and Causal Graph Topology

PlanGen looks bad

- ► Forks ~→ NP-complete [DD01]
- ▶ Inverted Forks ~→ NP-complete [DD01]
- ► Chains ~→ NP-complete [GJ07]
- ❀ Can we expect for any good news?

FDR and Causal Graph Topology

No, we can't.

Theorem (Chen & Gimenez classification [CG08])

Let C be a set of directed graphs, and Π^{C} be the class of planning tasks Π with $CG(\Pi) \in C$.

- If the size of all connected components in graphs of C is bounded by a constant, then PlanGen for Π^C is polynomial-time solvable.
- ▶ Otherwise, PlanExt for Π^{C} is not polynomial-time decidable (unless W[1] ⊆ nu-FPT)

Why "unless W[1] \subseteq nu-FPT" and not, say, "unless P = NP"?

Situation Assessment

- 1. Looking at out benchmarks, natural state variables tend to be non-binary, and even parametric (wrt domain).
- 2. With binary state variables, we get messy causal graphs.
- 3. With finite-domain state variables, causal graph is irrelevant.
- 4. Q: Have we wasted our time? Maybe. Maybe not.

The Journey Continues!

Major conclusion so far

Causal graphs are too coarse to provide an effective tractability-oriented abstraction

Possible direction from here

Look for additional constraints on top of the causal graph

The Journey Continues!

Major conclusion so far

Causal graphs are too coarse to provide an effective tractability-oriented abstraction

Reminder: PlanGen looks bad

- Chains \rightsquigarrow NP-complete
- Forks \rightsquigarrow NP-complete
- Inverted Forks \rightsquigarrow NP-complete

Note: all three are easy for BDR! What about non-binary, yet still small, O(1), domains?

Back to Chains

What happens with chain-structured tasks if |dom(v)| = O(1) for all vars?

2001/DD $|dom(v) = 3| \mapsto$ Optimal plans can be exponentially long 2002/BD $|dom(v)| = 2 \mapsto$ Polynomial-time solvable 2009/GJ $|dom(v)| = 5 \mapsto$ NP-complete

Back to Chains

What happens with chain-structured tasks if |dom(v)| = O(1) for all vars? $2001/DD |dom(v) = 3| \mapsto Optimal plans can be exponentially long$ $2002/BD |dom(v)| = 2 \mapsto Polynomial-time solvable$ $2009/GJ |dom(v)| = 5 \mapsto NP-complete$

Was it worth it? Why should we care? Where is practice?

curiosity

 distilling "sources of complexity" (to know what precisely should be avoided)

Tractable Cases of Planning with Forks [KD08]

Theorem (forks)

PlanMinGen for fork structured problems with root $r \in V$ is polynomial time solvable if

(i)
$$|dom(r)| = 2$$
, or

(ii) for all $v \in V$, we have |dom(v)| = O(1),

Theorem (inverted forks)

PlanMinGen for inverted fork structured problems with root $r \in V$ is polynomial time solvable if |dom(r)| = O(1).

Theorem (inverted forks)

Theorem (inverted forks)

PlanMinGen for inverted fork structured problems with root $r \in V$ is polynomial time solvable if |dom(r)| = O(1).

Proof sketch (Construction)

- (1) Create all $\Theta(d^d)$ cycle-free paths from $s^0[r]$ to G[r] in $DTG(r, \Pi)$.
- (2) For each u ∈ pred(r), and each x, y ∈ dom(u), compute the cost-minimal path from x to y in DTG(u, Π).
- (3) For each path in DTG(r, Π) generated in step (1), construct a plan for Π based on that path for r, and the shortest paths computed in (2).
- (4) Take minimal cost plan from (3).

Putting things together

Major conclusion so far

Causal graphs are too coarse to provide an effective tractability-oriented abstraction

What about tasks with (some) domains of size O(1)?

- Chains \sim NP-complete for dom(v) > 4. Open for 3 and 4.
- Forks \sim P for dom(r) = 2, and for dom(v) = O(1).
- Inverted Forks \rightsquigarrow P for dom(r) = O(1)

Can we use these results in practice?

Let us step aside and recall abstraction heuristics.

Limitations of Explicit Abstractions

Both PDBs and merge-and-shrink are explicit abstractions: abstract spaces are searched exhaustively

- PDBs dimensionality = O(1), size of the abstract space is O(1)
- M&S dimensionality = $\Theta(|V|)$, size of the abstract space is O(1)

 \sim (often) price in heuristic accuracy in long-run

Abstractions: Extending the definition

Definition (abstraction, abstraction mapping)

Let $\mathcal{T} = \langle S, L, T, I, G, C \rangle$ and $\mathcal{T}' = \langle S', L', T', I', G', C' \rangle$ be transition systems with the same label set L = L', $\mathcal{C} : S \to \mathbb{R}^{0+}, C' : S' \to \mathbb{R}^{0+}$, and let $\alpha : S \to S'$.

We say that \mathcal{T}' is an abstraction of \mathcal{T} with abstraction mapping α if

- ▶ for all $s \in I$, we have $\alpha(s) \in I'$,
- ▶ for all $s \in G$, we have $\alpha(s) \in G'$, and
- ▶ for all $(s, l, t) \in T$, we have $(\alpha(s), l, \alpha(t)) \in T'$ $h^*(\alpha(s), \alpha(t)) \leq C(l)$.

Implicit Abstractions Implicit Abstractions

Structural Abstraction Heuristics: Main Idea

Objective (departing from PDBs)

Instead of perfectly reflecting a few state variables, reflect many (up to $\Theta(|V|)$) state variables, BUT

guarantee abstract space can be searched (implicitly) in poly-time

How

Abstracting Π by an instance of a tractable fragment of cost-optimal planning

can our islands of tractability help us here? \odot

Implicit Abstractions Implicit Abstractions

Here Come the Forks!

29 / 30

Mixing Causal-Granh & Variable-Domain Decompositions

Carmel Domshlak Automated Action Planning

30 / 30

Planning / Logistics-00

Expanded nodesExpanded nodes and Time Shall we redefine the notion of success?...No. Implicit abstraction databases!

#	h*	HHH ₁₀₅		h ^F			$h^{\mathcal{FI}} + \text{opt}$	
		nodes	time	nodes	time	🌲	nodes	time
01	20	21	0.05	21	10.49	0.27	21	20.82
02	19	20	0.04	20	10.4	0.27	20	20.36
03	15	16	0.05	16	5.18	0.27	16	10.85
04	27	28	0.33	28	22.81	0.33	28	47.42
05	17	18	0.34	18	11.72	0.33	18	21.63
06	8	9	0.33	9	2.99	0.33	9	8.89
07	25	26	1.11	26	26.88	0.41	26	53.81
08	14	15	1.12	15	10.37	0.43	15	21.19
09	25	26	1.14	26	27.78	0.41	26	51.52
10	36	37	4.55	37	426.07	3.96	37	973.46
11	44	2460	4.65	1689	14259.8	4.25	45	1355.23
12	31	32	6.5	32	374.48	4.68	32	876.9
13	44	7514	6.84	45	702.29	4.63	45	1621.74
14	36	37	8.94	37	474.8	5.12	37	1153.85
15	30	31	8.84	31	448.86	5.12	31	1052.46
16	45	29319	17.35	46	3517.25	24.73	46	7635.96
17	42	1561610	45.61	43	3297.69	24.13	43	7192.51
18	48	199428	24.95	697		24.73	49	10014.3
19	60			21959		33.61	61	15625.5
20	42	6095	24.9	43	4325.45	29.61	43	9470.85
21	68			106534		61.54	69	22928.4