
Automated Action Planning
Explicit Planning Task Structure:

Hybrid Abstraction/Relaxation Heuristics

Carmel Domshlak

Carmel Domshlak Automated Action Planning 1 / 30



Automated Action Planning
— Explicit Planning Task Structure:
Hybrid Abstraction/Relaxation Heuristics

Structural fragments
Causal graph journey

BDR
Between BDR and FDR

Implicit Abstractions
Implicit Abstractions

Carmel Domshlak Automated Action Planning 2 / 30



Finite Domain Representation (FDR) Language

Definition (FDR planning tasks)

An FDR planning task is a tuple 〈V ,A, I ,G 〉
I V is a finite set of state variables with finite domains dom(vi )

I initial state I is a complete assignment to V

I goal G is a partial assignment to V

I A is a finite set of actions a specified via pre(a) and eff(a),
both being partial assignments to V

Definition (BDR planning tasks)

BDR planning tasks are FDR planning tasks with only boolean state
variables.

Carmel Domshlak Automated Action Planning 3 / 30



Planning as State-Space Heuristic Search

Heuristic functions

What? Something that can be solved in polynomial time to assist us
in solving our planning task

How? Solutions to simplifications of the planning task

Window of opportunity for computational tractability!

Carmel Domshlak Automated Action Planning 4 / 30



Structural fragments

Structural fragments

Reminder: What are syntactic restrictions?

Fragment of tasks
def←− restr. on action description

What are structural restrictions?
Fragment of task

def←− restr. on interactions between actions

Carmel Domshlak Automated Action Planning 5 / 30



Structural fragments

Graphical Structures as Problem Abstractions

~ Why graphs?

1. Cognitively convenient
2. Come with a rich math and CS toolbox

I Graphical representations/abstractions of comp. problems

1. CSP: Constraint networks, junction trees, ...
2. Probabilistic reasoning: BNs, DBNs, Markov nets, ...
3. Preferential reasoning: GAI-nets, xCP-nets, ...

I Graphical views in planning?
I Yes, we have!
I Today: causal graphs & domain transition graphs

~ Why these?
I More to be studied, and even to be discovered/suggested

Carmel Domshlak Automated Action Planning 6 / 30



Structural fragments

Graphical Abstractions of Action Interactions
Causal Graphs

In the context of an FDR planning task Π = 〈V ,A, I ,G 〉:
Definition (causal graph)

The causal graph CG(Π) of Π is a digraph over nodes V .
An arc (v , v ′) is in CG(Π) iff v 6= v ′ and there exists an action a ∈ A such
that

(v , v ′) ∈ V (eff(a)) ∪ V (pre(a)) × V (eff(a)),

that is, both eff(a)[v ′] and either pre(a)[v ] or eff(a)[v ] are specified.

Notation: succ(v) and pred(v) are immediate successors and predecessors
of v in CG(Π).

Carmel Domshlak Automated Action Planning 7 / 30



Structural fragments

Graphical Abstractions of Action Interactions
Domain Transition Graphs

In the context of an FDR planning task Π = 〈V ,A, I ,G 〉:
Definition (domain transition graph)

The domain transition graph DTG(v ,Π) of a variable v ∈ V is an
arc-labeled digraph over the nodes dom(v).
An arc (d , d ′) labeled with ∈ A is in the graph iff

1. eff(a)[v ] = d ′, and

2. either pre(a)[v ] = d , or v 6∈ V (pre(a)).

Carmel Domshlak Automated Action Planning 8 / 30



Structural fragments

Example

A

C

D

B

E

F

G

D E at A at B at C at D at E at F at G

in c!

in c" in t

in c#

A

C

D

B

E

F

G

t

c2

c1
c3

p1

p2

c! c" c# t

p! p"

p1, p2

c1, c2 c3

t

CG(Π)

Carmel Domshlak Automated Action Planning 9 / 30



Structural fragments Causal graph journey

Computational Tractability as a Function of Causal Graph
Form

1. From BDR to FDR

2. From severe structural restrictions to their generalizations

3. For simplicity, assume all actions have the same cost
(relevant only for optimization)

Carmel Domshlak Automated Action Planning 10 / 30



Structural fragments Causal graph journey

BDR Forks
~ Informal discussion

PlanGen is easy
I r ’s capabilities: 0, 1, or ∞ changes.

I All leafs are binary ; r changes ≤ 2.

I Given a workload of r , succ(r) are independent.
r

r

PlanMinGen is easy

I Given root’s workload, all leafs are independent.

I Optimize over all three cases of workload for root.

Carmel Domshlak Automated Action Planning 11 / 30



Structural fragments Causal graph journey

BDR Inverted Forks
~ Informal discussion

PlanGen is easy
I pred(r) are independent.

I if not trivial, r should change exactly once.

I find action a changing r to G [r ]
such that, for each v ∈ pred(r),
G [v ] reachable from I [v ] via pre(a)[v ].

r

r

PlanMinGen is easy

I Optimize over all actions changing r to G [r ].

Carmel Domshlak Automated Action Planning 12 / 30



Structural fragments Causal graph journey

So far so good! What next?

Generalizing causal graph fragments

1. Forks =⇒ Directed Trees

2. Inverted Forks =⇒ Directed Inverted Trees

3. Directed Trees + Directed Inverted Trees =⇒ Polytrees

r

r

Carmel Domshlak Automated Action Planning 13 / 30



Structural fragments Causal graph journey

BDR Chains
~ Informal discussion

PlanGen is easy

loop
I iteratively eliminate leafs consistent with G

I change the lowest var that can be changed

PlanMinGen is easy

I No choices ; Optimal.

I Same algorithm works for directed trees!
What about choices? They are ∀, not ∃.

r

Carmel Domshlak Automated Action Planning 14 / 30



Structural fragments Causal graph journey

BDR Polytrees

NO. . . PlanGen is NP-complete [GJ08]

Elegant reduction from 3SAT (m clauses, n vars)

rr

x x y zy z

c1c�
1

c�
2

c�
3

c2

c3

α1 α2 α3 α4 α5

� �� �
2m− 1

I Note that the proof kills directed inverted trees as well ...

I Can we push further with fixed in-degree?
~ Various alternative generalizations of polytrees.

I [BD03] For DP singly connected causal graphs, NP-complete starting
(at most) in-degree 6.

Carmel Domshlak Automated Action Planning 15 / 30



Structural fragments Causal graph journey

FDR and Causal Graph Topology

PlanGen looks bad

I Forks ; NP-complete [DD01]

I Inverted Forks ; NP-complete [DD01]

I Chains ; NP-complete [GJ07]

~ Can we expect for any good news?

Carmel Domshlak Automated Action Planning 16 / 30



Structural fragments Causal graph journey

FDR and Causal Graph Topology
No, we can’t.

Theorem (Chen & Gimenez classification [CG08])

Let C be a set of directed graphs, and ΠC be the class of planning tasks Π
with CG(Π) ∈ C.

I If the size of all connected components in graphs of C is bounded by a
constant, then PlanGen for ΠC is polynomial-time solvable.

I Otherwise, PlanExt for ΠC is not polynomial-time decidable (unless
W[1] ⊆ nu-FPT)

Why “unless W[1] ⊆ nu-FPT” and not, say, “unless P = NP”?

Carmel Domshlak Automated Action Planning 17 / 30



Structural fragments Causal graph journey

Situation Assessment

1. Looking at out benchmarks, natural state variables tend to be
non-binary, and even parametric (wrt domain).

2. With binary state variables, we get messy causal graphs.

3. With finite-domain state variables, causal graph is irrelevant.

4. Q: Have we wasted our time? Maybe. Maybe not.

Carmel Domshlak Automated Action Planning 18 / 30



Structural fragments Causal graph journey

The Journey Continues!

Major conclusion so far

Causal graphs are too coarse to provide an effective tractability-oriented
abstraction

Possible direction from here

I Look for additional constraints on top of the causal graph

Carmel Domshlak Automated Action Planning 19 / 30



Structural fragments Causal graph journey

The Journey Continues!

Major conclusion so far

Causal graphs are too coarse to provide an effective tractability-oriented
abstraction

Reminder: PlanGen looks bad

I Chains ; NP-complete

I Forks ; NP-complete

I Inverted Forks ; NP-complete

Note: all three are easy for BDR!
What about non-binary, yet still small, O(1), domains?

Carmel Domshlak Automated Action Planning 20 / 30



Structural fragments Causal graph journey

Back to Chains

What happens with chain-structured tasks if |dom(v)| = O(1) for all vars?

2001/DD |dom(v) = 3| 7→ Optimal plans can be exponentially long

2002/BD |dom(v)| = 2 7→ Polynomial-time solvable

2009/GJ |dom(v)| = 5 7→ NP-complete

Carmel Domshlak Automated Action Planning 21 / 30



Structural fragments Causal graph journey

Back to Chains

What happens with chain-structured tasks if |dom(v)| = O(1) for all vars?

2001/DD |dom(v) = 3| 7→ Optimal plans can be exponentially long

2002/BD |dom(v)| = 2 7→ Polynomial-time solvable

2009/GJ |dom(v)| = 5 7→ NP-complete

~ Was it worth it? Why should we care? Where is practice?

I curiosity

I distilling “sources of complexity”
(to know what precisely should be avoided)

Carmel Domshlak Automated Action Planning 22 / 30



Structural fragments Causal graph journey

Tractable Cases of Planning with Forks
[KD08]

Theorem (forks)

PlanMinGen for fork structured problems with root r ∈ V is polynomial
time solvable if

(i) |dom(r)| = 2, or

(ii) for all v ∈ V , we have |dom(v)| = O(1),

Theorem (inverted forks)

PlanMinGen for inverted fork structured problems with root r ∈ V is
polynomial time solvable if |dom(r)| = O(1).

Carmel Domshlak Automated Action Planning 23 / 30



Structural fragments Causal graph journey

Theorem (inverted forks)

Theorem (inverted forks)

PlanMinGen for inverted fork structured problems with root r ∈ V is
polynomial time solvable if |dom(r)| = O(1).

Proof sketch (Construction)

(1) Create all Θ(dd) cycle-free paths from s0[r ] to G [r ] in DTG(r ,Π).

(2) For each u ∈ pred(r), and each x , y ∈ dom(u), compute the
cost-minimal path from x to y in DTG(u,Π).

(3) For each path in DTG(r ,Π) generated in step (1), construct a plan for
Π based on that path for r , and the shortest paths computed in (2).

(4) Take minimal cost plan from (3).

Carmel Domshlak Automated Action Planning 24 / 30



Structural fragments Causal graph journey

Putting things together

Major conclusion so far

Causal graphs are too coarse to provide an effective tractability-oriented
abstraction

What about tasks with (some) domains of size O(1)?

I Chains ; NP-complete for dom(v) > 4. Open for 3 and 4.

I Forks ; P for dom(r) = 2, and for dom(v) = O(1).

I Inverted Forks ; P for dom(r) = O(1)

Can we use these results in practice?
Let us step aside and recall abstraction heuristics.

Carmel Domshlak Automated Action Planning 25 / 30



Implicit Abstractions

Limitations of Explicit Abstractions

Both PDBs and merge-and-shrink are explicit abstractions:
abstract spaces are searched exhaustively

PDBs dimensionality = O(1), size of the abstract space is O(1)

M&S dimensionality = Θ(|V |), size of the abstract space is O(1)

; (often) price in heuristic accuracy in long-run

Carmel Domshlak Automated Action Planning 26 / 30



Implicit Abstractions

Abstractions: Extending the definition

Definition (abstraction, abstraction mapping)

Let T = 〈S , L,T , I ,G , C〉 and T ′ = 〈S ′, L′,T ′, I ′,G ′, C′〉
be transition systems with the same label set L = L′,
C : S → R0+, C′ : S ′ → R0+, and let α : S → S ′.

We say that T ′ is an abstraction of T with abstraction mapping α if

I for all s ∈ I , we have α(s) ∈ I ′,

I for all s ∈ G , we have α(s) ∈ G ′, and

I for all 〈s, l , t〉 ∈ T , we have 〈α(s), l , α(t)〉 ∈ T ′

h∗(α(s), α(t)) ≤ C(l).

Carmel Domshlak Automated Action Planning 27 / 30



Implicit Abstractions Implicit Abstractions

Structural Abstraction Heuristics: Main Idea

Objective (departing from PDBs)

Instead of perfectly reflecting a few state variables,
reflect many (up to Θ(|V |)) state variables, BUT

♠ guarantee abstract space can be searched (implicitly)
in poly-time

How
Abstracting Π by an instance of a tractable fragment of cost-optimal
planning

/ can our islands of tractability help us here?

Carmel Domshlak Automated Action Planning 28 / 30



Implicit Abstractions Implicit Abstractions

Here Come the Forks!

Carmel Domshlak Automated Action Planning 29 / 30



Implicit Abstractions Implicit Abstractions

Mixing Causal-Graph & Variable-Domain Decompositions

c! c" c# t

p! p"

c!

p! p"

c! c" c# t

p!

CG(Πf
c1

) CG(Πif
p1

)

A

C

D

B

E

F

G

t

c2

c1
c3

p1

p2

{ΠGf
v

,ΠG if
v

}v∈V

CG(Π)

ΠGf
c1

ΠG if
p1

Π

φc1,i : dom(c1) !→ {0, 1} φ′

p1,i : dom(p1) !→ {0, . . . , k}

ΠG if

p1,i
ΠGf

c1,i

+ ensuring proper action cost partitioning
Carmel Domshlak Automated Action Planning 30 / 30



Implicit Abstractions Implicit Abstractions

Planning / Logistics-00
Expanded nodesExpanded nodes and Time Shall we redefine the notion of success?...No.
Implicit abstraction databases!

# h∗ HHH
105 hF hFI + opt

nodes time nodes time ♠ nodes time
01 20 21 0.05 21 10.49 0.27 21 20.82
02 19 20 0.04 20 10.4 0.27 20 20.36
03 15 16 0.05 16 5.18 0.27 16 10.85
04 27 28 0.33 28 22.81 0.33 28 47.42
05 17 18 0.34 18 11.72 0.33 18 21.63
06 8 9 0.33 9 2.99 0.33 9 8.89
07 25 26 1.11 26 26.88 0.41 26 53.81
08 14 15 1.12 15 10.37 0.43 15 21.19
09 25 26 1.14 26 27.78 0.41 26 51.52
10 36 37 4.55 37 426.07 3.96 37 973.46
11 44 2460 4.65 1689 14259.8 4.25 45 1355.23
12 31 32 6.5 32 374.48 4.68 32 876.9
13 44 7514 6.84 45 702.29 4.63 45 1621.74
14 36 37 8.94 37 474.8 5.12 37 1153.85
15 30 31 8.84 31 448.86 5.12 31 1052.46
16 45 29319 17.35 46 3517.25 24.73 46 7635.96
17 42 1561610 45.61 43 3297.69 24.13 43 7192.51
18 48 199428 24.95 697 24.73 49 10014.3
19 60 21959 33.61 61 15625.5
20 42 6095 24.9 43 4325.45 29.61 43 9470.85
21 68 106534 61.54 69 22928.4

Carmel Domshlak Automated Action Planning 31 / 30


	Structural fragments
	Causal graph journey

	Implicit Abstractions
	Implicit Abstractions


