
Automated Action Planning
Relaxation and Relaxation Heuristics

Carmel Domshlak

Carmel Domshlak Automated Action Planning 1 / 66

Automated Action Planning
— Relaxation and Relaxation Heuristics

Computational Tractability
Syntactic fragments

Relaxation heuristics
The relaxation lemma
Greedy algorithm
Optimality
Discussion

Relaxation Heuristics
Template
The max heuristic hmax

The additive heuristic hadd

hFF

Comparison

Carmel Domshlak Automated Action Planning 2 / 66

Computational Tractability

Heuristics for Planning

How do we come up with heuristics for general planning tasks?

; four major approaches in the literature:

I abstraction

I delete relaxation

I critical paths

I landmarks

But before we proceed ...

Carmel Domshlak Automated Action Planning 3 / 66

Computational Tractability

Computational Tractability (?!)

Carmel Domshlak Automated Action Planning 4 / 66

Computational Tractability

Planning Tasks and Worst-Case Complexity

deterministic ; PSPACE-complete

bounded deterministic ;
NP-complete

Looks like the P island is irrelevant.
Still ... what makes planning problems hard?

Carmel Domshlak Automated Action Planning 5 / 66

Computational Tractability

Why complexity analysis?

I understand the problem
; what for?

I know what is not possible
; well, that shouldn’t be hard.

I find interesting subproblems
; and do with them what?

I distinguish essential features from syntactic sugar
; and take this understanding where?

Carmel Domshlak Automated Action Planning 6 / 66

Computational Tractability

What Do We Mean by
“Computational Tractability”?

Given a problem Π, ability to solve in polynomial time something useful for
solving Π.

1. Ability to solve something in polynomial time.

2. Given a problem Π, ability to solve in polynomial time something
useful for solving Π.

3. For a formalism F (model + language), find tractable fragments of F

; Useful?

Carmel Domshlak Automated Action Planning 7 / 66

Computational Tractability

Why Computational Tractability?

Bylander, 1994

If the relationship between intelligence and computation is taken seriously,
then intelligence cannot be explained by intractable theories because no
intelligent creature has the time to perform intractable computations. Nor
can intractable theories provide any guarantees about the performance of
engineering systems.

I Point 1 is logical but vague (and thus misleading?)
I What is the definition of “intractable theory”?
I “Every science has a big lie. The big lie of complexity is worst case

analysis.” [C. Papadimitriou]
I Still, worst case intractability severely limits us algorithmically

I Point 2 is a serious concern.

Carmel Domshlak Automated Action Planning 8 / 66

Computational Tractability

Some conclusions on Why Computational Tractability?

Concrete applications

I building systems with worst-case guarantees

I building new search guidance mechanisms

I combining a set of search guidance mechanisms

I checking whether new developments any needed (*)

Carmel Domshlak Automated Action Planning 9 / 66

Computational Tractability

Planning as State-Space Heuristic Search

Heuristic functions

What? Something that can be solved in polynomial time to assist us
in solving our planning task

How? Solutions to simplifications of the planning task

Window of opportunity for computational tractability!

Carmel Domshlak Automated Action Planning 10 / 66

Computational Tractability

Finite Domain Representation (FDR) Language

Definition (FDR planning tasks)

An FDR planning task is a tuple 〈V ,A, I ,G 〉
I V is a finite set of state variables with finite domains dom(vi)

I initial state I is a complete assignment to V

I goal G is a partial assignment to V

I A is a finite set of actions a specified via pre(a) and eff(a),
both being partial assignments to V

Definition (BDR planning tasks)

BDR planning tasks are FDR planning tasks with only boolean state
variables.

Carmel Domshlak Automated Action Planning 11 / 66

Computational Tractability Syntactic fragments

Syntactic fragments

What are syntactic restrictions?

Fragment of tasks
def←− restrictions on action description

(preconditions and effects)

1. Restrictions on individual actions

2. Restrictions on action set as a whole

Note:

I Membership can be verified offline

I Membership can be verified in polynomial time (?)

Carmel Domshlak Automated Action Planning 12 / 66

Computational Tractability Syntactic fragments

Bylander’s Map of BDR
PlanExt

* pre
* eff

* pre
1 eff

1 pre
* eff

2 + pre
2 eff

* pre
* + eff

1 pre
1 + eff

* + pre
1 eff

1 pre
* eff
g goals

0 pre
* eff

PSPACE-complete

NP-complete

polynomial

Carmel Domshlak Automated Action Planning 13 / 66

Computational Tractability Syntactic fragments

NP-completeness of BDR1
1+

Membership in NP by monotonicity of state updates.
Hardness by reduction from 3SAT. Let F be a 3CNF formula with n
clauses over variables U = {u1, . . . , um}. An equivalent BDR1

1+ task can
be constructed as follows.

I State variables V = {c1, . . . , cn, t1, . . . , tm, f1, . . . , fm}.
I Initial state I = ∅ (all vars set to false).

I Goal G =
∧n

i=1 ci .
I Actions

1. For each ui , two actions: ¬fi ⇒ ti and ¬ti ⇒ fi
2. For 1 ≤ j ≤ n,

I if j-th clause contains ui , then action ti ⇒ cj

I if j-th clause contains ui , then action fi ⇒ cj

~ Suggests why HSP for STRIPS planning was stuck

Carmel Domshlak Automated Action Planning 14 / 66

Computational Tractability Syntactic fragments

Islands of Tractability

BDR+
1

I How? Dedicated algorithm, forward + backward search.
Search for an intermediate state that can be reached with only
positive-effect actions, and from which the goal can be reach with
only negative-effect actions.

I Example: Blocksworld. ~ General practice?

BDR0

I How? Simple means-end analysis.

I ~ An advanced variant of “STRIPS heuristic”
(missing goals counting).

BDR1 limited to g = O(1) goals

I How? Exhaustive search through a “small” search space.
A single goal cannot expand into multiple sub-goals.

I ~ We’ll visit that island later on.

Carmel Domshlak Automated Action Planning 15 / 66

Computational Tractability Syntactic fragments

BDR+
+ is in P

* pre
* eff

* pre
1 eff

1 pre
* eff

2 + pre
2 eff

* pre
* + eff

1 pre
1 + eff

* + pre
1 eff

1 pre
* eff
g goals

0 pre
* eff

PSPACE-complete

NP-complete

polynomial

* + pre
* + eff

~ Footnote 4: “The following are other results that were left out of the
figure because they were judged to be less interesting, but are listed here
for completeness. ...”

Carmel Domshlak Automated Action Planning 16 / 66

Relaxation heuristics

Back to heuristics!

Carmel Domshlak Automated Action Planning 17 / 66

Relaxation heuristics

Heuristics for Planning

How do we come up with heuristics for general planning tasks?

; four major approaches in the literature:

I abstraction

I delete relaxation

I critical paths

I landmarks

What is relaxation?

Carmel Domshlak Automated Action Planning 18 / 66

Relaxation heuristics

Relaxations for planning

I Relaxation is a general technique for heuristic design:
I Straight-line heuristic (route planning): Ignore the fact that one must

stay on roads.
I Manhattan heuristic (15-puzzle): Ignore the fact that one cannot move

through occupied tiles.

I We want to apply the idea of relaxations to planning.

I Informally, we want to ignore bad side effects of applying actions.

Example (8-puzzle)

If we move a tile from x to y , then the good effect is
(in particular) that x is now free.
The bad effect is that y is not free anymore, preventing us for moving tiles
through it.

Carmel Domshlak Automated Action Planning 19 / 66

Relaxation heuristics

Relaxed planning tasks: idea

In STRIPS, good and bad effects are easy to distinguish:

I Effects that make atoms true are good
(add effects).

I Effects that make atoms false are bad
(delete effects).

Idea for the heuristic: Ignore all delete effects.

Carmel Domshlak Automated Action Planning 20 / 66

Relaxation heuristics

Example: FreeCell

image credits: GNOME Project (GNU General Public License)

Carmel Domshlak Automated Action Planning 21 / 66

Relaxation heuristics

Planning Heuristics: Delete Relaxation

Four classes of heuristics:

2. Delete Relaxation
Estimate cost to goal by considering simpler planning task
without negative side effects of actions.

Example: Delete Relaxation in FreeCell

Problem constraints dropped by the delete relaxation in FreeCell:

I free cells and free tableau positions remain available
after moving cards into them

I cards remain movable and remain valid targets for other cards after
moving cards on top of them

Carmel Domshlak Automated Action Planning 22 / 66

Relaxation heuristics

Relaxed planning tasks

Definition (relaxation of actions)

The relaxation a+ of a STRIPS action a = 〈pre(a), add(a), del(a)〉 is the
action a+ = 〈pre(a), add(a), ∅〉.

Definition (relaxation of planning tasks)

The relaxation Π+ of a STRIPS planning task Π = 〈P,A, I ,G 〉 is the
planning task Π+ := 〈P, {a+ | a ∈ A}, I ,G 〉.

Definition (relaxation of action sequences)

The relaxation of an action sequence π = a1 . . . an is the action sequence
π+ := a1

+ . . . an
+.

Carmel Domshlak Automated Action Planning 23 / 66

Relaxation heuristics

Relaxed planning tasks: terminology

I STRIPS planning tasks without delete effects are called relaxed
planning tasks.

I Plans for relaxed planning tasks are called relaxed plans.

I If Π is a STRIPS planning task and π+ is a plan for Π+, then π+ is
called a relaxed plan for Π.

Carmel Domshlak Automated Action Planning 24 / 66

Relaxation heuristics

Example: Logistics

→

I Initial state I : {at(A, Left), at(T , Left), at(B, Right)}
I f (I , Drive(Left, Right)) = {at(A, Left), at(T , Right), at(B, Right)}
I f

`
I , Drive(Left, Right)+

´
= {at(A, Left), at(T , Left), at(T , Right), at(B, Right)}

I f (I , 〈Drive(Left, Right), Load(A, Left)〉) is undefined

I f
`
I , 〈Drive(Left, Right)+, Load(A, Left)+〉

´
=

{at(A, Left), at(T , Left), at(T , Right), at(B, Right), in(A, T)}

Carmel Domshlak Automated Action Planning 25 / 66

Relaxation heuristics

Example: Logistics

→

I Optimal plan:

1. load(A,T , Left),
2. drive(Left,Right),
3. unload(A,T ,Right),
4. load(B,T ,Right),
5. drive(Right, Left),
6. unload(B,T , Left)}

I Optimal relaxed plan: ??? (subsequence of the optimal plan)

I h∗(I) = 6, h+(I) = ???

Carmel Domshlak Automated Action Planning 26 / 66

Relaxation heuristics

Always subsequence? (Just curious)
An optimal relaxed plan can not always be obtained by skipping actions
from the (real) optimal plan.

I Optimal plan:
〈putdown(A), unstack(B, D), stack(B, C), pickup(A), stack(A, B)〉

I Optimal relaxed subsequence: ???

I Optimal relaxed plan: ???

Carmel Domshlak Automated Action Planning 27 / 66

Relaxation heuristics

Example: 8-Puzzle

1 2 3

6 7 9

4 8

1 2 3

4 6

7 8 9

I Real problem:
I A tile can move from square A to square B if A is adjacent to B and B

is blank

I Monotonically relaxed problem:
I A tile can move from square A to square B if A is adjacent to B and B

is blank (!!!)
I In effect ...

Carmel Domshlak Automated Action Planning 28 / 66

Relaxation heuristics

Example: 8-Puzzle

1 2 3

6 7 9

4 8

1 2 3

4 6

7 8 9

I A tile can move from square A to square B if A is adjacent to B and
B is blank - solution distance h∗

I A tile can move from square A to square B if A is adjacent to B -
manhattan distance heuristic hMD

I A tile can move from square A to square B if A is adjacent to B and
B is blank; in effect, the tile is at both A and B, and both A and B
are blank - h+

Here: h∗(s0) = 8, hMD(s0) = 6, h+(s0) =???
Carmel Domshlak Automated Action Planning 29 / 66

Relaxation heuristics

Example: 8-Puzzle

1 2 3

6 7 9

4 8

1 2 3

4 6

7 8 9

Optimal MD plan:

1. move(t9, p6, p9)

2. move(t7, p5, p8)

3. move(t6, p4, p5)

4. move(t6, p5, p6)

5. move(t4, p7, p4)

6. move(t7, p8, p7)

Optimal relaxed plan:

1. move(t9, p6, p9)

2. move(t8, p8, p9)

3. move(t7, p5, p8)

4. move(t6, p4, p5)

5. move(t6, p5, p6)

6. move(t4, p7, p4)

7. move(t7, p8, p7)

Carmel Domshlak Automated Action Planning 30 / 66

Relaxation heuristics

Example: 8-Puzzle

1 2 3

6 7 9

4 8

1 2 3

4 6

7 8 9

Optimal MD plan:

1. move(t9, p6, p9)

2. move(t7, p5, p8)

3. move(t6, p4, p5)

4. move(t6, p5, p6)

5. move(t4, p7, p4)

6. move(t7, p8, p7)

Optimal relaxed plan:

1. move(t9, p6, p9)

2. move(t8, p8, p9)

3. move(t7, p5, p8)

4. move(t6, p4, p5)

5. move(t6, p5, p6)

6. move(t4, p7, p4)

7. move(t7, p8, p7)

So h∗(s0) = 8, hMD(s0) = 6, h+(s0) = 7(> hMD !)

Carmel Domshlak Automated Action Planning 31 / 66

Relaxation heuristics

8-Puzzle: h+ vs. hMD

1 2 3

6 7 9

4 8

1 2 3

4 6

7 8 9

h+ dominates hMD

I The goal is given as a conjunction of at(ti , pj) atoms

I Achieving each single one of them takes at least as many steps as the
respective tile’s Manhattan distance

I Each action moves a single tile only

And we have just seen that h+ strictly dominates hMD

Carmel Domshlak Automated Action Planning 32 / 66

Relaxation heuristics The relaxation lemma

Dominating states

The on-set on(s) of a state s is the set of atoms that are true in s. A
state s ′ dominates another state s iff on(s) ⊆ on(s ′).

Lemma (relaxation)

Let s be a state, let s ′ be a state that dominates s,
and let π be an action sequence which is applicable in s.
Then π+ is applicable in s ′ and appπ+(s ′) dominates appπ(s).
Moreover, if π leads to a goal state from s, then π+ leads to a goal state
from s ′.

Proof.
The “moreover” part is immediate from appπ+(s ′) dominating appπ(s).
Prove the rest by induction over the length of π.

Carmel Domshlak Automated Action Planning 33 / 66

Relaxation heuristics The relaxation lemma

Consequences of the relaxation lemma

Corollary (relaxation leads to dominance and preserves plans)

Let π be an action sequence which is applicable in state s.
Then π+ is applicable in s and appπ+(s) dominates appπ(s).
If π is a plan for Π, then π+ is a plan for Π+.

Proof.
Apply relaxation lemma with s ′ = s.

; Relaxations of plans are relaxed plans.

; Relaxations are no harder to solve than the original task.

; Optimal relaxed plans are never longer than optimal plans for original
tasks.

Carmel Domshlak Automated Action Planning 34 / 66

Relaxation heuristics The relaxation lemma

Consequences of the relaxation lemma (ctd.)

Corollary (relaxation preserves dominance)

Let s be a state, let s ′ be a state that dominates s,
and let π+ be a relaxed action sequence applicable in s.
Then π+ is applicable in s ′ and appπ+(s ′) dominates appπ+(s).

Proof.
Apply relaxation lemma with π+ for π, noting that (π+)

+
= π+.

; If there is a relaxed plan starting from state s, the same plan can be
used starting from a dominating state s ′.

; Making a transition to a dominating state never hurts in relaxed
planning tasks.

Carmel Domshlak Automated Action Planning 35 / 66

Relaxation heuristics Greedy algorithm

Monotonicity of relaxed planning tasks

We need one final property before we can provide an algorithm for solving
relaxed planning tasks.

Lemma (monotonicity)

Let a+ = 〈pre(a), add(a), ∅〉 be a relaxed action and let s be a state in
which a+ is applicable.
Then appa+(s) dominates s.

Proof.
Since relaxed actions only have positive effects, we have
on(s) ⊆ on(s) ∪ add(a) = on(appo+(s)).

; Together with our previous results, this means that making a
transition in a relaxed planning task never hurts.

Carmel Domshlak Automated Action Planning 36 / 66

Relaxation heuristics Greedy algorithm

Greedy algorithm for relaxed planning tasks

The relaxation and monotonicity lemmas suggest the following algorithm
for solving relaxed planning tasks:

Greedy planning algorithm for 〈P , A+, I , G 〉
s := I
π+ := ε
forever:

if G ⊆ s:
return π+

else if there is an action a+ ∈ A+ applicable in s
with appa+(s) 6= s:

Append such an action a+ to π+.
s := appa+(s)

else:
return unsolvable

Carmel Domshlak Automated Action Planning 37 / 66

Relaxation heuristics Greedy algorithm

Correctness of the greedy algorithm

The algorithm is sound:

I If it returns a plan, this is indeed a correct solution.
I If it returns “unsolvable”, the task is indeed unsolvable

I Upon termination, there clearly is no relaxed plan from s.
I By iterated application of the monotonicity lemma, s dominates I .
I By the relaxation lemma, there is no solution from I .

What about completeness (termination) and runtime?

I Each iteration of the loop adds at least one atom to on(s).

I This guarantees termination after at most |P| iterations.
I Thus, the algorithm can clearly be implemented to run in polynomial

time.
I A good implementation runs in O(‖Π‖).

Carmel Domshlak Automated Action Planning 38 / 66

Relaxation heuristics Optimality

Using the greedy algorithm as a heuristic

We can apply the greedy algorithm within heuristic search:

I In a search node σ, solve the relaxation of the planning task with
state(σ) as the initial state.

I Set h(σ) to the length of the generated relaxed plan.

Is this an admissible heuristic?

I Yes, IF the relaxed plans are optimal (due to the plan preservation
corollary).

I However, usually they are not, because our greedy planning algorithm
is very poor.

~ What about safety? Goal-awareness? Consistency?

Carmel Domshlak Automated Action Planning 39 / 66

Relaxation heuristics Optimality

The set cover problem

To obtain an admissible heuristic, we need to generate optimal relaxed
plans. Can we do this efficiently?

This question is related to the following problem:

Problem (set cover)

Given: a finite set U, a collection of subsets C = {C1, . . . ,Cn} with
Ci ⊆ U for all i ∈ {1, . . . , n}, and a natural number K .

Question: Does there exist a set cover of size at most K , i. e., a
subcollection S = {S1, . . . ,Sm} ⊆ C with S1 ∪ · · · ∪ Sm = U and m ≤ K ?

The following is a classical result from complexity theory:

Theorem
The set cover problem is NP-complete.

Carmel Domshlak Automated Action Planning 40 / 66

Relaxation heuristics Optimality

Hardness of optimal relaxed planning

Theorem (optimal relaxed planning is hard)

The problem of deciding whether a given relaxed planning task has a plan
of length at most K is NP-complete.

Proof.
For membership in NP, guess a plan and verify. It is sufficient to check
plans of length at most |P|, so this can be done in nondeterministic
polynomial time.

For hardness, we reduce from the set cover problem.

Carmel Domshlak Automated Action Planning 41 / 66

Relaxation heuristics Optimality

Hardness of optimal relaxed planning (ctd.)

Proof (ctd.)

Given a set cover instance 〈U,C ,K 〉, we generate the following relaxed
planning task Π+ = 〈P, I ,A+,G 〉:

I P = U

I I = ∅ ≡ I = {p = 0 | p ∈ P}
I A+ = {〈∅,

⋃
p∈Ci
{p}, ∅〉 | Ci ∈ C}

I G = U

If S is a set cover, the corresponding actions form a plan. Conversely, each
plan induces a set cover by taking the subsets corresponding to the
actions. Clearly, there exists a plan of length at most K iff there exists a
set cover of size K .

Moreover, Π+ can be generated from the set cover instance in polynomial
time, so this is a polynomial reduction.

Carmel Domshlak Automated Action Planning 42 / 66

Relaxation heuristics Optimality

Bylander’s Map of BDR: PlanExt

* pre
* eff

* pre
1 eff

1 pre
* eff

2 + pre
2 eff

* pre
* + eff

1 pre
1 + eff

* + pre
1 eff

1 pre
* eff
g goals

0 pre
* eff

PSPACE-complete

NP-complete

polynomial

* + pre
* + eff

Carmel Domshlak Automated Action Planning 43 / 66

Relaxation heuristics Optimality

Bylander’s Map of BDR: PlanMin
PlanMin

0 pre
* eff

0 pre
2 eff

0 pre
1 eff

1 pre
* eff
g goals

0 pre
2 + eff

NP-complete

polynomial

1 + pre
1 + eff

0 pre
3 + eff

* + pre
1 eff

~ The islands are getting smaller and rarer ...

Carmel Domshlak Automated Action Planning 44 / 66

Relaxation heuristics Discussion

Using relaxations in practice

How can we use relaxations for heuristic planning in practice?

Different possibilities:

I Implement an optimal planner for relaxed planning tasks and use its
solution lengths as an estimate, even though it is NP-hard.
; h+ heuristic (not that realistic. why?)

I Do not actually solve the relaxed planning task, but compute an
estimate of its difficulty in a different way.
; hmax heuristic, hadd heuristic

I Compute a solution for relaxed planning tasks which is not necessarily
optimal, but “reasonable”.
; hFF heuristic

Carmel Domshlak Automated Action Planning 45 / 66

Relaxation Heuristics

Reminder: Greedy algorithm for relaxed planning tasks

Greedy planning algorithm for 〈P , A+, I , G 〉
s := I
π+ := ε
forever:

if G ⊆ s:
return π+

else if there is an action a+ ∈ A+ applicable in s
with appa+(s) 6= s:

Append such an action a+ to π+.
s := appa+(s)

else:
return unsolvable

Carmel Domshlak Automated Action Planning 46 / 66

Relaxation Heuristics

Graphical “interpretation”: Relaxed planning graphs

I Build a layered reachability graph P0,A0,P1,A1, . . .

P0 = {p ∈ I}
Ai = {a ∈ A | pre(a) ⊆ Pi}

Pi+1 = Pi ∪ {p ∈ add(a) | a ∈ Ai}

I Terminate when G ⊆ Pi

Carmel Domshlak Automated Action Planning 47 / 66

Relaxation Heuristics

Running example

I = {a = 1, b = 0, c = 0, d = 0, e = 0, f = 0, g = 0, h = 0}
a1 = 〈{a}, {b, c}, ∅〉
a2 = 〈{a, c}, {d}, ∅〉
a3 = 〈{b, c}, {e}, ∅〉
a4 = 〈{b}, {f }, ∅〉
a5 = 〈{d}, {e, f }, ∅〉
a6 = 〈{d}, {g}, ∅〉

Carmel Domshlak Automated Action Planning 48 / 66

Relaxation Heuristics

Running example: Relaxed planning graph

a0

b0

c0

d0

e0

f 0

g0

h0

a1

b1

c1

d1

e1

f 1

g1

h1

a2

b2

c2

d2

e2

f 2

g2

h2

a3

b3

c3

d3

e3

f 3

g3

h3

a1

b1

c1

a1

a2

b2

c2

d2

e2

f 2

a1

a2

a3

a4

a3

b3

c3

d3

e3

f 3

g3

a1

a2

a3

a4

a5

a6

c3

d3

e3

f 3

g3

G

Carmel Domshlak Automated Action Planning 49 / 66

Relaxation Heuristics

Example: Blocksworld

1. {on(E ,Table), clear(E), on(A,Table), clear(A), on(B,Table), clear(B),
on(C ,Table), on(D,C), clear(D), holding(NIL)}

2. {. . . , holding(E), holding(A), holding(B), holding(D), clear(C)}
3. {. . . , holding(C), on(E ,A), on(A,E), . . .}
4. {. . . , on(C ,A), . . .}

Home: Relaxed planning graph for this example

Carmel Domshlak Automated Action Planning 50 / 66

Relaxation Heuristics Template

Generic relaxed planning graph heuristics

Computing heuristics from relaxed planning graphs

def generic-rpg-heuristic(〈P, I ,O,G 〉, s):
Π+ := 〈P, s,O+,G 〉
for k ∈ {0, 1, 2, . . . }:

rpg := RPGk(Π+)
if G ⊆ Pk :

Annotate nodes of rpg.
if termination criterion is true:

return heuristic value from annotations
else if k = |P|:

return ∞

; generic template for heuristic functions

; to get concrete heuristic: fill in highlighted parts

Carmel Domshlak Automated Action Planning 51 / 66

Relaxation Heuristics Template

Concrete examples for the generic heuristic

Many planning heuristics fit the generic template:

I max heuristic hmax

I additive heuristic hadd

I FF heuristic hFF

I ...

Remarks:

I For all these heuristics, equivalent definitions that don’t refer to
relaxed planning graphs are possible.

I For some of these heuristics, the most efficient implementations do
not use relaxed planning graphs explicitly.

Carmel Domshlak Automated Action Planning 52 / 66

Relaxation Heuristics Template

Forward cost heuristics

I The simplest relaxed planning graph heuristics are
forward cost heuristics.

I Examples: hmax, hadd

I Here, node annotations are cost values (natural numbers).

I The cost of a node estimates how expensive (in terms of required
operators) it is to make this node true.

Carmel Domshlak Automated Action Planning 53 / 66

Relaxation Heuristics Template

Forward cost heuristics: fitting the template

Forward cost heuristics
Computing annotations:

I Propagate cost values bottom-up using a combination rule for action
nodes and a combination rule for proposition nodes.

I At action nodes, add 1 after applying combination rule.

Termination criterion:

I stability: terminate if Pk = Pk−1 and cost for each proposition node
pk ∈ Pk equals cost for pk−1 ∈ Pk−1

Heuristic value:

I The heuristic value is the cost of the auxiliary goal node.

I Different forward cost heuristics only differ in their choice of
combination rules.

Carmel Domshlak Automated Action Planning 54 / 66

Relaxation Heuristics hmax

The max heuristic hmax (again)

Forward cost heuristics: max heuristic hmax

Combination rule for action nodes:

I cost(u) = max({cost(v1), . . . , cost(vk)})
(with max(∅) := 0)

Combination rule for proposition nodes:

I cost(u) = min({cost(v1), . . . , cost(vk)})
In both cases, {v1, . . . , vk} is the set of immediate predecessors of u.

Intuition:

I Action rule: If we have to achieve several preconditions, estimate this
by the most expensive cost.

I Proposition rule: If we have a choice how to achieve a proposition,
pick the cheapest possibility.

Carmel Domshlak Automated Action Planning 55 / 66

Relaxation Heuristics hmax

Running example: hmax

a0

b0

c0

d0

e0

f 0

g0

h0

a1

b1

c1

d1

e1

f 1

g1

h1

a2

b2

c2

d2

e2

f 2

g2

h2

a3

b3

c3

d3

e3

f 3

g3

h3

a1

b1

c1

a1

a2

b2

c2

d2

e2

f 2

a1

a2

a3

a4

a3

b3

c3

d3

e3

f 3

g3

a1

a2

a3

a4

a5

a6

G

0

1

0

1

1

1

2

2

2

0

1

1

2

2

2

1

2

2

2

3

3

0

1

1

2

2

2

3

3

Carmel Domshlak Automated Action Planning 56 / 66

Relaxation Heuristics hadd

The additive heuristic

Forward cost heuristics: additive heuristic hadd

Combination rule for action nodes:

I cost(u) = cost(v1) + . . .+ cost(vk)
(with

∑
(∅) := 0)

Combination rule for proposition nodes:

I cost(u) = min({cost(v1), . . . , cost(vk)})
In both cases, {v1, . . . , vk} is the set of immediate predecessors of u.

Intuition:

I Action rule: If we have to achieve several preconditions, estimate this
by the cost of achieving each in isolation.

I Proposition rule: If we have a choice how to achieve a proposition,
pick the cheapest possibility.

Carmel Domshlak Automated Action Planning 57 / 66

Relaxation Heuristics hadd

Running example: hadd

a0

b0

c0

d0

e0

f 0

g0

h0

a1

b1

c1

d1

e1

f 1

g1

h1

a2

b2

c2

d2

e2

f 2

g2

h2

a3

b3

c3

d3

e3

f 3

g3

h3

a1

b1

c1

a1

a2

b2

c2

d2

e2

f 2

a1

a2

a3

a4

a3

b3

c3

d3

e3

f 3

g3

a1

a2

a3

a4

a5

a6

G

0

1

0

1

1

1

2

3

2

0

1

1

2

3

2

1

2

3

2

3

3

0

1

1

2

2

2

3

10

Carmel Domshlak Automated Action Planning 58 / 66

Relaxation Heuristics hadd

Remarks on hadd

I hadd is safe and goal-aware.

I Unlike hmax, hadd is a very informative heuristic in many planning
domains.
Q: Intuitively, when it will be informative?

I The price for this is that it is not admissible (and hence also not
consistent), so not suitable for optimal planning.

I In fact, it almost always overestimates the h+ value because it does
not take positive interactions into account.

Carmel Domshlak Automated Action Planning 59 / 66

Relaxation Heuristics hFF

FF heuristic: fitting the template

The FF heuristic hFF

Computing annotations:

I Annotations are Boolean values, computed top-down.

A node is marked when its annotation is set to 1 and unmarked if it is
set to 0. Initially, the goal node is marked, and all other nodes are
unmarked.

We say that an action node is justified if all its true immediate
predecessors are marked, and that a proposition node is justified if at
least one of its immediate predecessors is marked.
. . .

Carmel Domshlak Automated Action Planning 60 / 66

Relaxation Heuristics hFF

FF heuristic: fitting the template (ctd.)

The FF heuristic hFF (ctd.)

Computing annotations:

I . . .

Apply these rules until all marked nodes are justified:

1. Mark all immediate predecessors of a marked unjustified ACTION node.
2. Mark the immediate predecessor of a marked unjustified PROP node

with only one immediate predecessor.
3. Mark an immediate predecessor of a marked unjustified PROP node

connected via an idle arc.
4. Mark any immediate predecessor of a marked unjustified PROP node.

The rules are given in priority order: earlier rules are preferred if
applicable.

Carmel Domshlak Automated Action Planning 61 / 66

Relaxation Heuristics hFF

FF heuristic: fitting the template (ctd.)

The FF heuristic hFF (ctd.)

Termination criterion:

I Always terminate at first layer where goal node is true.

Heuristic value:

I The heuristic value is the number of marked action nodes.

Carmel Domshlak Automated Action Planning 62 / 66

Relaxation Heuristics hFF

Running example: hFF

a0

b0

c0

d0

e0

f 0

g0

h0

a1

b1

c1

d1

e1

f 1

g1

h1

a2

b2

c2

d2

e2

f 2

g2

h2

a3

b3

c3

d3

e3

f 3

g3

h3

a1

b1

c1

a1

a2

b2

c2

d2

e2

f 2

a1

a2

a3

a4

a3

b3

c3

d3

e3

f 3

g3

a1

a2

a3

a4

a5

a6

GM

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

Carmel Domshlak Automated Action Planning 63 / 66

Relaxation Heuristics hFF

Remarks on hFF

I Like hadd, hFF is safe and goal-aware, but neither admissible nor
consistent.

I Always more accurate than hadd with respect to h+.
I Marked actions define a relaxed plan.

I hFF can be computed in linear time.
I The hFF value depends on tie-breaking when the marking rules allow

several possible choices, so hFF is not well-defined without specifying
the tie-breaking rule.

I The best implementations of FF use additional rules of thumb to try to
reduce the size of the generated relaxed plan.

Carmel Domshlak Automated Action Planning 64 / 66

Relaxation Heuristics Comparison & practice

Comparison of relaxation heuristics

Relationship between relaxation heuristics

Let s be a state of planning task 〈P, I ,O,G 〉. Then:

I hmax(s) ≤ h+(s) ≤ h∗(s)

I hmax(s) ≤ h+(s) ≤ hFF(s) ≤ hadd(s)

I h∗ and hFF are pairwise incomparable

I h∗ and hadd are incomparable

Moreover, h+, hmax, hadd, and hFF assign ∞ to the same set of states.

Note: For inadmissible heuristics, dominance is in general neither desirable
nor undesirable. For relaxation heuristics, the objective is usually to get as
close to h+ as possible.

Carmel Domshlak Automated Action Planning 65 / 66

Relaxation Heuristics Comparison & practice

Does the heuristic really matter?
Example: The 2nd Planning Competition; Schedule domain

Carmel Domshlak Automated Action Planning 66 / 66

	Computational Tractability
	Syntactic fragments

	Relaxation heuristics
	The relaxation lemma
	Greedy algorithm
	Optimality
	Discussion

	Relaxation Heuristics
	Template
	The max heuristic hmax
	The additive heuristic hadd
	hFF
	Comparison

