Automated (AI) Planning Planning as Plan-Space Search

Carmel Domshlak

Automated (AI) Planning

From state-space to plan-space search

Least Commitment Planning

Meeting POCL and Planning-as-CSP

State Space Search

- So far we have considered planning as search in state space
 - forward build a plan in the same order that it is executed
 - backward build a plan in the reverse order of its execution
 - temporal undirected unordered commitments on executing actions in time

Automated (AI) Planning

From state-space to plan-space search

Least Commitment Planning

Meeting POCL and Planning-as-CSP

State Space Search

• Potential problem:

Spending lots of time on trying the same set of actions in different orderings before realizing that there is no solution (with this set)

- Easier to see in FS/BS, and a bit harder to see in TUS.
- Key observation: When we choose what to do, we also choose when to do

Automated (AI) Planning

From state-space to plan-space search

Least Commitment Planning

Meeting POCL and Planning-as-CSP

Searching in the Space of Plans

- In 1974, Earl Sacerdoti built a planner, called *NOAH*, that considered planning as search through plan space
 - Search states (nodes) = partially specified plans
 - Transitions (edges) = plan refinement operations
 - Initial state = null plan
 - Goal states = valid plans for the problems

Automated (AI) Plann<u>ing</u>

From state-space to plan-space search

Least Commitment Planning

Meeting POCL and Planning-as-CSP

- Search through plan space ... hmm ... what is plan?
- <u>Answer I:</u> Totally ordered sequence of either actions or meta-actions
 - But then search through state space is isomorphic to search through plan space!
 - Hmmm ... the nature of the space being searched is in the eye of the beholder ...
 - So what is the point of introducing "search through plan space" ??

• Answer II: Partially ordered sequence of actions

Automated (AI) Planning

From state-space to plan-space search

Least Commitment Planning

Meeting POCL and Planning-as-CSP

- Search through plan space ... hmm ... what is plan?
- <u>Answer I:</u> Totally ordered sequence of either actions or meta-actions
 - But then search through state space is isomorphic to search through plan space!
 - Hmmm ... the nature of the space being searched is in the eye of the beholder ...
 - So what is the point of introducing "search through plan space" ??
- Answer II: Partially ordered sequence of actions

Automated (AI) Planning

From state-space to plan-space search

Least Commitment Planning

Meeting POCL and Planning-as-CSP

Think how *you* might solve a planning problem of ... going for a vacation to Italy

- Need to purchase plane tickets
- Need to buy a "Lonely Planet" guide to Italy

BUT there is no need to decide (yet) which purchase should be done first

Automated (AI) Planning

From state-space to plan-space search

Least Commitment Planning

POP algorithm Discussion

Meeting POCL and Planning-as-CSP

Least Commitment Planning

Think how *you* might solve a planning problem of ... going for a vacation to Italy

- Need to purchase plane tickets
- Need to buy a "Lonely Planet" guide to Italy

BUT there is no need to decide (yet) which purchase should be done first

Least Commitment Planning

- Represent plans in a flexible way that enables deferring decisions
- At the planning phase, only the essential ordering decisions are recorded

Automated (AI) Planning

From state-space to plan-space search

Least Commitment Planning

POP algorithm Discussion

Meeting POCL and Planning-as-CSP

Partial-Order Plans

- Given a Strips task $\Pi = (P, A, I, G)$ we search through a space of *hypothetical* partial-order plans
- A plan (= search node) is a triplet: $\langle \mathcal{A}, \mathcal{O}, \mathcal{L} \rangle$ in which
 - A is a set of actions from A, possibly with (labeled) repetitions
 - $\bullet \ \mathcal{O}$ is a set of ordering constraints over \mathcal{A}
 - \mathcal{L} is a set of causal links (a bit later)
- Example: $\mathcal{A} = \{a_1, a_2, a_3\}$, $\mathcal{O} = \{a_1 < a_3, a_2 < a_3\}$
- Observe: Planner (eventually) must do constraint satisfaction to ensure the consistency of O.

Automated (AI) Planning

From state-space to plan-space search

Least Commitment Planning

POP algorithm Discussion

Meeting POCL and Planning-as-CSP

Causal Links

A key aspect of least commitment planning is to keep track of past decisions and the *reasons* for those decisions

- If you purchase plane tickets, then make sure bring them to the airport
- If another goal causes you to drop the tickets (e.g., having you hands free to open the taxi door), then you should be sure to pick them up again.

- A good way to reason about (and act for) non-interference between different actions introduced to the plan is to record dependencies between actions *explicitly*
- Causal links $a_p \xrightarrow{q} a_c$ records our decision to use a_p to produce the precondition q of a_c

Automated (AI) Planning

From state-space to plan-space search

Least Commitment Planning

POP algorithm Discussion

Meeting POCL and Planning-as-CSP

Causal Links

A key aspect of least commitment planning is to keep track of past decisions and the *reasons* for those decisions

- If you purchase plane tickets, then make sure bring them to the airport
- If another goal causes you to drop the tickets (e.g., having you hands free to open the taxi door), then you should be sure to pick them up again.

- A good way to reason about (and act for) non-interference between different actions introduced to the plan is to record dependencies between actions *explicitly*
- Causal links $a_p \xrightarrow{q} a_c$ records our decision to use a_p to produce the precondition q of a_c

Automated (AI) Planning

From state-space to plan-space search

Least Commitment Planning

POP algorithm Discussion

Meeting POCL and Planning-as-CSP

- Causal links are used to detect when a newly introduced action interferes with past decisions.
- Such an action is called a threat
- Suppose that
 - $a_p \xrightarrow{q} a_c$ is a causal link in \mathcal{L} (of some plan $\langle \mathcal{A}, \mathcal{O}, \mathcal{L} \rangle$), and
 - a_t is yet another action in \mathcal{A}
- We say that a_t threatens $a_p \xrightarrow{q} a_c$ if
 - $\mathcal{O} \cup \{a_p < a_t < a_c\}$ is consistent, and
 - $q \in \operatorname{del}(a_t)$

Automated (AI) Planning

From state-space to plan-space search

Least Commitment Planning

POP algorithm Discussion

Meeting POCL and Planning-as-CSP

- When a plan contains a threat, then it is *possible* that the plan would not work as anticipated.
 - Which means what?
- Solution: identify threats and take evasive countermeasures
 - promotion by $\mathcal{O} \cup = \{a_t > a_c\}$
 - demotion by $\mathcal{O} \cup = \{a_t < a_p\}$
 - . . .

Automated (AI) Planning

From state-space to plan-space search

Least Commitment Planning

POP algorithm Discussion

Meeting POCL and Planning-as-CSP

Uniformity is the key for simplicity

- Can use the same structure to represent both the planning problem and complete plans
- \bullet Planning problem as a null plan $\langle \mathcal{A}, \mathcal{O}, \mathcal{L} \rangle$ where
 - $\mathcal{A} = \{a_0, a_\infty\}, \ \mathcal{O} = \{a_0 < a_\infty\}, \ \mathcal{L} = \{\}$
 - $pre(a_0) = \{\}, del(a_0) = \{\}, add(a_0) = I$

•
$$\operatorname{pre}(a_{\infty}) = G, \operatorname{del}(a_0) = \{\}, \operatorname{add}(a_0) = \{\}$$

start

(on c a) (clear b) (clear c) (on a table) (on b table)

(on a b) (on b c) *end*

Automated (AI) Planning

From state-space to plan-space search

Least Commitment Planning

POP algorithm Discussion

Meeting POCL and Planning-as-CSP

Regressive algorithm that searches plan-space

- Starts with the null plan
- Makes non-deterministic plan refinement choices until
 - all preconditions of all actions in the plan have been supported by causal links, and
 - all threatened causal links have been protected from possible interference

Automated (AI) Planning

From state-space to plan-space search

Least Commitment Planning

POP algorithm Discussion

Meeting POCL and Planning-as-CSP

Recursive calls to POP with $POP(\langle \mathcal{A}, \mathcal{O}, \mathcal{L} \rangle, agenda, A)$ where

- $\langle \mathcal{A}, \mathcal{O}, \mathcal{L} \rangle$ is a plan structure
- *agenda* is a list of "open goals" that need to be supported by causal links
- $\bullet~A$ is the action set of our Strips problem

Initial call is with

- null plan $\langle \{a_0, a_\infty\}, \{a_0 < a_\infty\}, \{\} \rangle$, and
- $agenda = \{(g, a_{\infty}) \mid g \in \operatorname{pre}(a_{\infty}) \equiv G\}$

If $\langle \mathcal{A}, \mathcal{O}, \mathcal{L} \rangle$ is outputted by *POP*, then *any* total ordering of actions \mathcal{A} consistent with \mathcal{O} is a valid plan for our problem.

Automated (AI) Planning

From state-space to plan-space search

Least Commitment Planning POP algorithm Discussion

Meeting POCL and Planning-as-CSP

$POP(\langle \mathcal{A}, \mathcal{O}, \mathcal{L} \rangle, agenda, A)$

- Termination: if $agenda = \emptyset$ then return $\langle \mathcal{A}, \mathcal{O}, \mathcal{L} \rangle$
- Goal selection: choose $(q, a_{need}) \in agenda$

Automated (AI) Planning

From state-space to plan-space search

Least Commitment Planning

POP algorithm Discussion

Meeting POCL and Planning-as-CSP

 $POP(\langle \mathcal{A}, \mathcal{O}, \mathcal{L} \rangle, agenda, A)$

- Termination: if $agenda = \emptyset$ then return $\langle \mathcal{A}, \mathcal{O}, \mathcal{L} \rangle$
- Goal selection: choose $(q, a_{need}) \in agenda$
- Action selection:
 - choose action a_{add} (either from A, or from A) such that
 - $q \in \mathsf{add}(a_{add})$, and
 - $\mathcal{O} \cup \{a_{add} < a_{need}\}$ is consistent
 - if no such action then return FALSE
 - otherwise
 - $\mathcal{L} \cup = \{a_{add} \xrightarrow{q} a_{need}\} \text{ and } \mathcal{O} \cup = \{a_{add} < a_{need}\}$
 - if a_{add} is a new action instance then $\mathcal{A} \cup = \{a_{add}\}$, and $\mathcal{O} \cup = \{a_0 < a_{add} < a_{\infty}\}$

Automated (AI) Planning

From state-space to plan-space search

Least Commitment Planning POP algorithm Discussion

Meeting POCL and Planning-as-CSP

The POP Algorithm

 $POP(\langle \mathcal{A}, \mathcal{O}, \mathcal{L} \rangle, agenda, A)$

- Termination: if $agenda = \emptyset$ then return $\langle \mathcal{A}, \mathcal{O}, \mathcal{L} \rangle$
- Goal selection: choose $(q, a_{need}) \in agenda$
- Action selection:
 - **choose** action a_{add} (either from A, or from A) such that
 - $q \in \operatorname{add}(a_{add})$, and
 - $\mathcal{O} \cup \{a_{add} < a_{need}\}$ is consistent
 - if no such action then return FALSE
 - otherwise
 - $\mathcal{L} \cup = \{a_{add} \xrightarrow{q} a_{need}\} \text{ and } \mathcal{O} \cup = \{a_{add} < a_{need}\}$
 - if a_{add} is a new action instance then $\mathcal{A} \cup = \{a_{add}\}$, and $\mathcal{O} \cup = \{a_0 < a_{add} < a_{\infty}\}$
- Update goal set:
 - agenda $\setminus = \{(q, a_{need})\}$
 - if a_{add} was a new action instance then $agenda \cup = \{(r, a_{add}) \mid r \in pre(a_{add})\}$

Automated (AI) Planning

From state-space to plan-space search

Least Commitment Planning POP algorithm Discussion

Meeting POCL and Planning-as-CSP

The POP Algorithm

$POP(\langle \mathcal{A}, \mathcal{O}, \mathcal{L} \rangle, agenda, A)$

- Termination: if $agenda = \emptyset$ then return $\langle \mathcal{A}, \mathcal{O}, \mathcal{L} \rangle$
- Goal selection: **choose** $(q, a_{need}) \in agenda$
- Action selection: choose and process a_{add}
- Update goal set: add preconditions of a_{add} to the agenda ...
- Causal link protection: foreach causal link $\{a_p \xrightarrow{r} a_c\} \in \mathcal{L}$, and a_t that is threatening it
 - choose either $\mathcal{O} \cup = \{a_t > a_c\}$, or $\mathcal{O} \cup = \{a_t < a_p\}$
 - if neither constraint is consistent then return FALSE

Automated (AI) Planning

From state-space to plan-space search

Least Commitment Planning POP algorithm Discussion

Meeting POCL and Planning-as-CSP

The POP Algorithm

$POP(\langle \mathcal{A}, \mathcal{O}, \mathcal{L} \rangle, agenda, A)$

- Termination: if $agenda = \emptyset$ then return $\langle \mathcal{A}, \mathcal{O}, \mathcal{L} \rangle$
- Goal selection: choose $(q, a_{need}) \in agenda$
- Action selection: choose and process a_{add} ...
- Update goal set: add preconditions of a_{add} to the agenda ...
- Causal link protection: foreach causal link $\{a_p \xrightarrow{r} a_c\} \in \mathcal{L}$, and a_t that is threatening it
 - choose either $\mathcal{O} \cup = \{a_t > a_c\}$, or $\mathcal{O} \cup = \{a_t < a_p\}$
 - if neither constraint is consistent then return FALSE
- Recursive invocation: $POP(\langle \mathcal{A}, \mathcal{O}, \mathcal{L} \rangle, agenda, A)$

Automated (AI) Planning

From state-space to plan-space search

Least Commitment Planning POP algorithm Discussion

Meeting POCL and Planning-as-CSP

Choice Points

Three choice points

- Goal selection
- Action selection
- Causal link protection

How crucial these choices are?

- Affect soundness?
- Affect completeness?
- Affect efficiency?

Automated (AI) Planning

From state-space to plan-space search

Least Commitment Planning POP algorithm Discussion

Meeting POCL and Planning-as-CSP

Discussion

Initial call to POP with

- Null Plan (see the right figure)
- $agenda = \{(\texttt{onAB}, a_{\infty}), (\texttt{onBC}, a_{\infty})\}$

First choice is goal selection

• Affects efficiency, but not completeness!

Suppose (onBC, a_{∞}) is selected (i.e., $a_{need} = a_{\infty}$) • Need to choose an action a_{add} that will provide onBC • This is a real non-deterministic choice!

Suppose that an oracle suggests making a_{add} be a new instance of the action *move-B-from-Table-to-C*

- a causal link $a_{add} \xrightarrow{\text{onBC}} a_{\infty}$ is added to \mathcal{L}
- agenda is properly updated (how exactly?)
- no threats to resolve ... recursive call

start

(on c a) (clear b) (clear c) (on a table) (on b table)

(clear b) (clear c) (on b table)

(move b from table to c)

(clear table) ~(on b table) ~(clear c) (on b c)

Automated (AI) Planning

From state-space to plan-space search

Least Commitment Planning POP algorithm Discussion

Meeting POCL and Planning-as-CSP

Suppose $(onBC, a_{\infty})$ is selected (i.e., $a_{need} = a_{\infty}$) • Need to choose an action a_{add} that will provide onBC

• This is a real non-deterministic choice!

Suppose that an oracle suggests making a_{add} be a new instance of the action *move-B-from-Table-to-C*

- a causal link $a_{add} \xrightarrow{\text{onBC}} a_{\infty}$ is added to \mathcal{L}
- agenda is properly updated (how exactly?)
- no threats to resolve ... recursive call

start

(on c a) (clear b) (clear c) (on a table) (on b table)

(clear b) (clear c) (on b table)

(move b from table to c)

(clear table) ~(on b table) ~(clear c) (on b c)

Automated (AI) Planning

From state-space to plan-space search

Least Commitment Planning POP algorithm Discussion

Meeting POCL and Planning-as-CSP

Suppose that an oracle suggests making a_{add} be a new instance of the action move-B-from-Table-to-C

- a causal link $a_{add} \xrightarrow{\text{onBC}} a_{\infty}$ is added to \mathcal{L}
- agenda is properly updated (how exactly?)
- no threats to resolve ... recursive call

start

(on c a) (clear b) (clear c) (on a table) (on b table)

Automated (AI) Planning

From state-space to plan-space search

Least Commitment Planning POP algorithm

Discussion Meeting POCL and

Planning-as-CSP

- Suppose (clearB, move-B-from-Table-to-C) is selected
- Oracle suggests to reuse an existing action instance a_0
 - add a causal link $a_0 \xrightarrow{\text{clearB}} move-B-from-Table-to-C$
 - *agenda* is properly updated (*how exactly*?)
 - no threats to resolve ... recursive call

Automated (AI) Planning

From state-space to plan-space search

Least Commitment Planning POP algorithm Discussion

Meeting POCL and Planning-as-CSP

- Suppose $(onAB, a_{\infty})$ is selected
- Oracle suggests making a_{add} be a new instance of the action *move-A-from-Table-to-B*, and we do that ...
- ... BUT this time we have a threat!
 - move-A-from-Table-to-B and move-B-from-Table-to-C have no constraints on their relative ordering
 - move-A-from-Table-to-B deletes clearB that is required by move-B-from-Table-to-C

Automated (AI) Planning

From state-space to plan-space search

Least Commitment Planning POP algorithm Discussion

Meeting POCL and Planning-as-CSP

Try to protect the causal link $a_0 \xrightarrow{\text{clearB}} move-B-from\text{-}Table\text{-}to-C$

- In general, there are two options promotion and demotion — and this is a true non-deterministic choice!
- In our example, demotion is inconsistent (why?), but promotion is OK

Automated (AI) Planning

From state-space to plan-space search

Least Commitment Planning POP algorithm Discussion

Meeting POCL and

Planning-as-CSP

Example - Next steps

Next steps follow the same lines of reasoning

Automated (AI) Planning

From state-space to plan-space search

Least Commitment Planning POP algorithm Discussion

Meeting POCL and Planning-as-CSP

Example - Next steps

• Eventually POP returns

• Blackboard: Is it a correct partial order plan?

Automated (AI) Planning

From state-space to plan-space search

Least Commitment Planning POP algorithm

Discussion

Meeting POCL and Planning-as-CSP

Advantages

- Natural extension to planning with partially instantiated actions
 - ... add action instance move-A-from-x?-to-B
 - ... postpone unifying ?x with a concrete object until necessary
- Natural extensions to more complex action formalisms
 - ... action durations
 - ... delayed effects
 - ...
- Least commitment may lead to shorter search times
 - Mainly due to smaller branching factor

Automated (AI) Planning

From state-space to plan-space search

Least Commitment Planning POP algorithm Discussion

Meeting POCL and Planning-as-CSP

- Significantly more complex algorithm
 - ... higher *per-node* cost
- Hard to determine what is true in a state
 - ... harder to devise informed heuristics (for all three types of choices)
 - ... how to prune infinitely long paths??

Automated (AI) Planning

From state-space to plan-space search

Least Commitment Planning POP algorithm

POP algorithm Discussion

Meeting POCL and Planning-as-CSP